
Simplify the future

Bpm’online
Development
Guide

Table of Contents

Getting started with the bpm’online platform 11

Architecture 11

Application infrastructure 11-15

Components 15-18

Packages, schemas, modules 18-22

Application interface and structure 22

Main menu 22-23

Sections 23-25

Section lists 25-28

Section analytics 28-29

Section actions 29-30

Filters 30-32

Tags 32-33

Record edit page 33-34

Details 34-36

Mini-page 36-37

Modal windows 37-38

Communication panel 38-39

Command line 39-40

Action dashboard 40-41

How to start the development 42-43

Development process organization 43-45

Organizing a development environment 45-46

Recommended development sequence 46-49

Development rules 49-50

How to deploy bpm'online on-site 50-51

Deploying the bpm'online cloud application 51-52

Create repository in SVN server 52-55

Working with packages 55-56

Package structure and contents 56-58

Package dependencies. Basic application packages 58-63

Package [Custom] 63-65

Creating and installing a package for development 65-69

Committing a package to repository 69-71

Installing packages from repository 71-75

Updating package from repository 75-76

Exporting packages from the application interface 76-79

Creating a package in the file system development mode 79-86

Binding data to packages 86-92

Transferring changes between the working environments 92

Exporting packages from the application interface 92-95

Installing marketplace applications from a zip archive 95-100

Transferring changes using schema export and import 100-101

Transferring changes using SVN 101-103

Transferring changes using WorkspaceConsole 103-106

Creating a custom client module schema 106-111

Creating the entity schema 111-120

Creating the [Source code] schema 120-121

Development resources 122

Built-in development tools 122

The [Configuration] section 122-129

The [Configuration] section. The [Data] tab 129-132

Source code and metadata viewport 132-134

Designers of configuration items 134

Workspace of the Object Designer 134-136

Module designer 136-138

Source code designer 138-141

Process designer workspace 141-142

User task designer workspace 142-143

Workspace of image list designer 143-145

Report designer 145

Setting up the report designer connection with server 145-147

Report designer workspace 147-151

Report designer features 151-155

Development in the file system 155-158

Visual Studio settings for development in the file system 158-163

Working with the server side source code in Visual Studio 163-168

Working with the client code in the file system 168-172

Working with SVN in the file system 172-175

Creating a package in the file system development mode 175-182

How to install an SVN package in the file system development mode 182-188

How to bind existing package to SVN 188-199

Updating and committing changes to the SVN from the file system 199-202

Creation of the package and switching to the file system development
mode

202-210

Developing the configuration server code in the user project 210-218

Automatic displaying of changes in the development of the custom logic 218-222

Packages file content 222-225

Localization of the file content 225-228

How to create Unit-tests via NUnit and Visual Studio 228-234

How to use TypeScript when developing custom functions 234-239

Working with WorkspaceConsole 239-240

WorkspaceConsole settings 240-241

WorkspaceConsole parameters 241-246

Exporting packages from database 246-248

Saving packages to the database 248-251

Saving SVN packages 251-254

Client code debugging 254-258

Server code debugging 258-267

Bpm’online development cases 268

Section business logic 268

Creating a new section 268-271

Adding an action to the list 271-273

How to add a section action: handling the selection of a single record 273-276

How to add a section action: handling the selection of several records 276-279

Handling the selection of several records. Examples 280-285

How to add a button to a section 285-289

How to highlight a record in the list in color 289-291

Adding quick filter block to a section 291-294

Page configuration 294-295

Setting the edit page fields using business rules 295-299

The FILTRATION rule use case 299-304

The BINDPARAMETER rule. How to hide a field on an edit page based
on a specific condition

304-308

The BINDPARAMETER rule. How to lock a field on an edit page based
on a specific condition

308-310

The BINDPARAMETER rule. How to make a field required based on a
specific condition

310-314

Business rules created via wizards 314-317

Adding an action to the edit page 317-322

Control elements 322

Adding a new field to the edit page 323-328

Adding a button to the edit page 328-330

How to add a button to an edit page in the new record add mode 330-333

How to add the button on the edit page in the combined mode 333-339

How to add a field with an image to the edit page 339-347

How to add the color select button to the edit page 347-351

How to add multi-currency field 351-357

How to add custom logic to the existing controls 357-361

Adding calculated fields 361-365

How to set a default value for a field 365-370

How to add the field validation 370-376

Using filtration for lookup fields. Examples 377-380

Adding an action panel 380-384

Adding a new channel to the action panel 384-390

Displaying contact's time zone 390-394

How to display the difference between dates on edit page fields 394-395

How to block fields of the edit page 395-397

Adding details 397-398

Adding an edit page detail 398-407

Adding a detail with an editable list 407-415

Creating a detail with selection from lookup 415-424

Adding multiple records to a detail 424-427

Creating a custom detail with fields 427-432

Advanced settings of a custom detail with fields 432-437

Creating a detail in wizards 437-441

Adding the [Attachments] detail 441-450

Displaying additional columns on the [Attachments] tab 450-452

How to hide menu commands of the detail with list 452-454

Business processes 454

How to add auto-numbering to the edit page field 454-461

Process launch from a client module 461-467

Creating custom [User task] process element 467-476

How to customize notifications for the [User task] process element 476-481

How to run bpm'online processes via web service 481-490

How to save the record without closing the edit page which is opened by
the business process

490-496

Typical customizations 496

Creating pop-up summaries (mini pages) 496-504

Adding pop-up summaries (mini pages) to a module 504-508

Creating a pop-up summary (mini page) for adding records 508-514

Adding pop-up hints 514-521

How to modify sales pipeline calculations 521-526

How to enable additional filtering in a sales pipeline 526-528

Adding a custom dashboard widget 528-534

The Terrasoft.AlignableContainer custom element 534-543

Adding a duplicate search rule 543-546

Junk case custom filtering 546-547

How to display custom implementation of approving in the section wizard 547-548

How to create custom reminders and notifications 548-556

How to create the [Timeline] tab tiles bound to custom section 556-566

Adding multi-language email templates to a custom section 566-572

Analytics 572

How to create macros for a custom report in Word 572-582

Working with data 582-583

CRUD-operations in configuration 583

The use of EntitySchemaQuery implementation on client 583

Building of paths to columns relative to root schema 583-584

Adding columns to a query 585-588

Getting query result 588-590

EntitySchemaQuery filters handling 590-593

CRUD-operations on server side 593-594

Composing add data queries 594-595

The use of EntitySchemaQuery for creation of queries in database 595-606

Composing modify data queries 606-607

Composing delete data queries 607

Web-services in configuration 608

How to create custom configuration service 608-612

How to call configuration services with ServiceHelper 612-616

Creating anonymous web service 616-618

How to call configuration services using Postman 618-623

Reading multilingual data with EntitySchemaQuery 623-626

Views localization 626-631

Working with the localized data via Entity 631-635

Adding a multilingual terminator to an object schema 635-637

Using the DBExecutor for working with the database 637-638

Sales products customization 638-639

How to change the calculation for the "Closed" column in the [Forecasts]
section.

639-644

Configuration of the editable columns on the product selection page 644-647

Service products customization 647

Adding a new rule for calculating case deadline 647-652

Adding a macro handler in email templates 652-655

Creating Web-to-Case landing pages 655-660

How to hide feed area in the agent desktop 660-662

Adding floating icons for internal case feed posts 662-665

Lending product customization 665

How to create custom verification action page 665-669

Using the EntityMapper schema 669-675

Marketing product customization 675

Adding a custom campaign element 675-686

Prediction 686

How to implement custom prediction model 686-690

Integration with bpm'online and public API 691

Choosing the method of integration with bpm'online 691-698

Authenticating external requests to bpm'online services 698-701

The AuthService.svc authentication service 701-704

Protection from CSRF attacks during integration with bpm'online 704-705

DataService web service 705-706

DataService. Adding records 706-713

DataService. Reading records 713-722

DataService. Data filtering 722-729

DataService. Using macros 729-733

DataService. Updating records 733-738

DataServiсe. Deleting records 738-742

DataService. Batch queries 742-746

OData 746-747

Possibilities for the bpm'online integration over the OData protocol 747-749

Working with bpm'online objects over the OData protocol using Http
request

749-757

Working with bpm'online objects over the OData protocol WCF-client 757-762

Examples of requests for filter selection 762-767

Executing OData queries using Fiddler 767-779

Integration of third-party sites via iframe 779-783

Web-To-Object. Using landings and web-forms 783-785

The ProcessEngineService.svc web service 785-786

Platform description 787

System Settings 787

Setting user session timeout 787-790

Working with data structure 790

Configuration localizable resources 790-793

Localizable resource structure and use 793-795

Localization tables 796-797

Bound data structure 797-798

User interface 798-799

AMD concept Modules 799-801

Modular development principles in bpm'online 801-807

Client Modules 807-812

Client view model schemas 812-813

Mixins. The "mixins" property 813-814

Attributes. The "attributes" property 814-816

Messages. The "messages" property 816-818

Methods. The "methods" property 818

Rules. The "rules" property 818-819

Business rules. The businessRules property 819-820

Modules. The "modules" property 820-821

The "diff" array 821-823

Alias mechanism 823-826

Schema formatting requirements for compatibility with wizards 826-831

Handling a data context loss 831-835

Properties. The "properties" property 835-836

Automatically generated view model properties 836-837

Sandbox. Module message exchange 837-843

Sandbox. Bidirectional messages 843-847

Sandbox. Loading and unloading modules 847-851

New bindTo format at setting connection between view and viewModel 851-852

Controls 852

Controls. Introduction 852-853

Details 853-862

The [Connected entity profile] control 862-871

SourceCodeEditMixin class description and work examples. 871-875

Blocking edit page fields 875-876

Dashboard widgets 876-879

Charts 879-881

Metrics 881-882

Gauge 882-884

Lists 884-885

Web-page 885

Sales pipeline 885-886

Scheduler setup 886

Recommendations on scheduler setup 886-889

Quartz policies for the processing of overdue tasks 889-891

Integration 891

Phone integration 891-894

Oktell 894-897

Webitel 897-898

Asterisk 898-900

Email integration 900-901

Working with email threads 901-903

Self-service Portal 903-904

ClientMessageBridge 904

ClientMessageBridge. Message history save mechanism 904-906

ClientMessageBridge. API description 906-908

ClientMessageBridge. The client-side WebSocket message handler 908-913

Sync Engine synchronization mechanism 913

Bpm'online synchronization with external storages 913-921

Synchronizing metadata in bpm'online 921-924

Synchronizing tasks with MS Exchange 924-926

Synchronizing email with MS Exchange 926-928

Synchronizing contacts with MS Exchange 928-931

Synchronizing appointments with MS Exchange 931-934

Data Enrichment and Prediction 934

Contact data enrichment from emails 934-937

Machine learning service 937-943

Creating data queries for the machine learning model 943-946

Bpm'online lending 946

Terrasoft.Configuration.EntityMapper class 946-949

Bpm'online marketing 949

Campaign elements 949-951

Bpm'online service 951

PortalMessagePublisherExtensions mixin. Portal messages in
SectionActionDashboard

951-953

DataManager class description and use cases 953-957

Feature Toggle. Mechanism of enabling and disabling functions 957-960

The MoneyUtilsMixin mixin 960-964

The DecimalUtils module 964-968

Basic macros in the MS Word printables 968-971

Web-to-Case 971-972

Separate query pool 972-975

Development recommendations for Right-To-Left mode 975-976

Client static content in the file system 976-979

Record deactivation 979-980

Monitoring of private properties overriding. The
Terrasoft.PrivateMemberWatcher class

980-982

The [Timeline] tab 982-986

Server content in the file system 986-987

Logging in bpm’online. Log4net 988-989

Getting started with the bpm’online platform

Contents
Architecture
Application interface and structure

Architecture

Contents
Application infrastructure
Components
Packages, schemas, modules

Application infrastructure

Overview
From the server infrastructure view, the bpm’online is a three-tier architectural system with modifications (Fig. 1).

Fig. 1. Application infrastructure

Bpm’online developer guide 11

The center of the infrastructure is the application server that runs under the Internet Information Services (IIS)
version 7.0 or higher.

The next component of the architecture is the classic database server.

Client workplaces can be located on any available device (PC, laptop, mobile device). All requests to the server are
performed via the web browser or mobile application.

In addition to the three main components, there are:

database session server (Redis)
version control server (optional)
cloud web services.

Application server
Application server consists of two parts: WebAppLoader and WebApp.

WebAppLoader

The main purpose of WebAppLoader is authorization, authentication and redirect of users to the main application.
The main functions of the WebAppLoader:

user authorization
user licensing and authentication
starting the scheduler.

WebApp

After incoming requests were processed in the loader they are redirected to the WebApp. This part is responsible for
the business logic of the system. This is an application that implements specific configuration and workplace in the
system.

Bpm’online developer guide 12

The database server
Database stores a data necessary for user or for the operation of the system itself. All configuration settings that
define functionality of the products are also stored in the database.

Systems that can be used as database server:

MS SQL Server 2012 SP3 or higher
Oracle DBMS 11 g Release 2 and up (when deploying on-site)

NOTE

The MS SQL Server 2016 is used in the bpm’online cloud infrastructure.

Client
All requests to the server are performed via the web browser. Following web browsers are supported:

Internet Explorer 11.0+,
Firefox, the last official version on the bpm’online release date
Chrome, the last official version on the bpm’online release date
Safari, the last official version on the bpm’online release date.

The bpm’online mobile application is used to access the server with mobile devices.

The session storage server (Redis)
Redis main functions:

storing the data of user sessions
storing cached data
Data exchange between web farm nodes.

Redis advantages:

data is stored in RAM, it provides high performance of the system
server can work under Unix OS

Version control system server (SVN).
This is an optional component that is enabled only when you need to start the development of custom configuration
on the platform in parallel with system operation. Server functions:

Transition of modifications between applications. Modifications are transferred with the packages.
Storing the status of the configurations as a packages of specific version. Everything that is developed in
the packages is stored in the version control system.

More information about the version control system can b e found in the “Create repository in SVN server”
article.

Web services
This is an additional cloud services that can be accessed from the several bpm’online applications.

Global Search Service

The Global Search Service is created for integration of the ElasticSearch with the bpm'online and performs following
functions:

1. Registration:

Connects the client by creating an index in ElasticSearch, and stores the index application connection.

Bpm’online developer guide 13

Disconnects the client, upon request by deleting the index in the ElasticSearch.

2. Transition:

Participates in the indexing process. Takes the data from the application database and sends it to the ElasticSearch.

GSS consists of three components:

Service – API for registration and access management to the global search
Worker – exports data from the database and imports to the ElasticSearch index
Scheduler – the scheduler of the Worker.

Bulk email service

Used for integration of bpm’online and bulk email services (ElasticEmail, UniOne, etc.). Enables to work with
following bulk email types:

Bulk emails.
Transactional emails (immediate delivery to one recipient).

Access to the service is performed via public Web API.

Website event tracking service

Enables to track events from on the client site and pass them to the bpm’online. Application identification is
preformed via unique API key by which the temporary event storage and the bpm’online instance for
synchronization are defined. The JavaScript code embedded in the site pages used to perform tracking. The code
sends events to the service.

The database enrichment service

Account data enrichment service uses different search technologies to find information about accounts and their
communications from the open Internet sources.

The service for enriching contacts from email uses different search technologies to find information about contacts
and their communications from the emails.

Deployment options
There are two deployment options:

1. On-site

2. Cloud.

On-site deployment

In On-site deployment, all costs associated with the organization of the server part (installation, configuration,
maintenance, administration) are assigned to the customer.

One of the advantages of this deployment option is the simpler integration with the Active directory, since the
domain controller is usually located in the enterprise LAN. Also, the on-site deployed application is better for
development.

Disadvantages of this deployment options are that the customer bears constant costs to support this infrastructure
(update, administration, maintenance costs).

How to deploy bpm'online on-site is described in the "Deploying bpm’online application on-site" article in the User
Guide.

Cloud deployment

In the cloud deployment option, the application is deployed on the cloud servers (Amazon, Azure etc). All
application server part is stored in the data centers and administrated by bpm’online employees. All issues related to
administration, speed, scalability are solved by the bpm’online employees and client uses only the client part of the
application.

Bpm’online developer guide 14

http://academy.bpmonline.com/documents/?product=studio&ver=7&id=1263

Advantages of the Cloud deployment:

timely updates
maximal performance
compliance with industry standards on data availability and security.

See "Deploying the bpm'online cloud application" article for more on restrictions related to bpm'online cloud.

On-site system installation schemas
Figure 2 contains two possible installation schemas of the bpm’online application.

Fig. 2. Installation schemas

Non fault tolerance system installation requires one application server, one Redis server, one database server and
using SVN server for development.

Fault tolerance system requires:

several workload balancers
several web farm nodes
several nodes of database cluster
several nodes of the Redis cluster

SVN server can be used for development, but it is not recommended on such complex fault tolerance systems.

Components

Overview
The bpm'online architecture is comprised of the following components (Fig. 1):

Bpm’online developer guide 15

Fig. 1. Components

1. Database

Database stores user data, application settings and access rights settings at the physical data storage level.

Database primary functions:

data storage
data management
configuration settings storage.

Database objects:

tables
views
stored procedures
indexes
triggers in tables.

There is usually no need to work directly with the database objects during bpm'online development process. The
system has tools that enable working with data directly from the UI.

Custom business logic can be implemented at the database level, with the help of views and stored procedures.

It may be faster and more rational to implement certain tasks at the database level. An example of such a task is
the setup of custom duplicate search rules.

2. Server core

Server libraries are written in C# with the use of .NET Framework classes ('.NET class libraries of platform
core' in the on-line documentation).

The server core is a modifiable system component. Developers can create instances of server classes and use server
libraries. Changes to these classes and libraries are restricted.

Server core primary components:

ORM data model and its methods. It is recommended to use the object model for accessing data, although

Bpm’online developer guide 16

direct database access is also implemented in the server core components.
Packages and replacement mechanism.
Server control element libraries. These elements include pages created using ASP.NET technology, for
example, [Configuration] section pages.
System web services.
Functionality of designers and system sections.
Libraries for integration with external services.
Business process engine (ProcessEngine). This system component can execute algorithms that are set up
as process diagrams.

3. Client core

The primary task of this level is to ensure the functioning of client modules. The client core classes ('JavaScript
API for platform core' in the on-line documentation) are written in JavaScript with the use of various
frameworks. They implement the UI and other business tasks on the browser side.

Client core primary components:

Client framework external libraries. For example, the RequireJS library implements the mechanism for
asynchronous loading of the client modules; the ExtJs framework implements the UI.
Sandbox is a special client core component that ensures interaction between various client modules
through message exchange.
Client modules are JavaScript files that implement the functionality of primary system objects.

4. Configuration

A configuration is a set of functionalities available to users of a certain workspace. This includes:

Server logic.
Auto-generated classes, which are a product of system settings.
Client logic, which includes pages, buttons, actions, reports, business processes and other customizable
configuration elements.

Configurations are easily modifiable system components. Configurations consist of the following elements:

Objects – entities that store data and connect a database table to a class on the server side.
Business processes – customizable elements that are visual algorithms of user activities.
Client modules.

All configuration elements are grouped in packages.

Packages are finite sets of functions that can be installed or uninstalled in configurations.

The final system functionality is formed based on the set of installed packages (Fig. 2).

Fig. 2. Bpm'online configuration

Bpm’online developer guide 17

http://requirejs.org/
https://docs.sencha.com/extjs/5.1.3/index.html

Packages, schemas, modules

Overview
Packages

A “package” is a combination of configuration elements (schemas, data, scripts, additional libraries) that
implements specific functions.

The bpm'online package mechanism is based on the open/closed principle of object-oriented programming.
According to this principle, all entities (classes, modules, functions) must be open for extension but closed for
modification. This means that new functions must be implemented by adding new entities, rather than modifying
the existing ones.

Each bpm'online product is a set of packages. To extend or modify system functions, a package with the
corresponding changes must be installed.

There are two types of bpm'online packages:

Base (pre-installed) packages include base functionality (such as Core, Base, Product packages), packages
that extend system functions (such as phone integration packages) and packages created by third-party
developers. Base packages are supplied with the system or can be installed as the marketplace
applications.
Custom packages are packages created by system users. They can be bound to the SVN storage.

Configuration elements from base packages cannot be modified. Any development of new functions and changes to
existing functions are made in the custom packages only. A special replacement mechanism is used for this.

Package replacement mechanism

The mechanism replaces system objects in packages. If the behavior of an element from a base package must be

Bpm’online developer guide 18

modified, a new inherited element is created in a custom package. This custom element is identified as a replacing
one for its parent element from the base package. The replacement of elements is hierarchical. All changes that must
be applied to the pre-installed element are implemented in a replacing custom package. As a result, the system will
execute the logic of the replacing element instead of its parent base element.

NOTE

The replacement of a single base element can be implemented in several custom packages. The final
implementation of a replacing element in a compiled configuration is determined by the hierarchy of all
packages that contain replacing elements for the base package.

Package hierarchy

To use functionality from a different package, specify the dependency of the different package.

A dependent package extends or modifies the functionality of the package that it depends on. As a result, package
dependency hierarchy is built. In the hierarchy, lower level packages can supplement or modify the functionality of
any package that is higher in the hierarchy (Fig. 1).

Fig. 1. Package dependencies

A complete list of all packages that are installed in a workspace is displayed on the [Packages] tab of the
[Configuration] section.

Packages can be installed from a ZIP archive (usually, those are pre-installed base packages) and version control
system repository. The [Packages] tab also displays custom packages that were added in the current workspace.

Package composition:

1. Schemas – configuration elements of the system that define system functions.
2. External assemblies – third-party libraries that are required for development and integration with external

systems. After installation, the libraries can be used in source code schemas.
3. SQL scripts – custom SQL scripts that are executed in the database during the package installation. SQL

scripts may be required for transferring packages to other configurations if the package transfer requires
database changes.

4. Data – section records, lookups and system setting values that are implemented in the current package may
be required for transferring the package to other configurations if certain database records and values are
connected to the current package.

For more information on working with packages, please refer to the "Development tools" articles.

Bpm’online developer guide 19

Schema

A bpm'online configuration is a set of objects, processes, pages and modules.

The base element of a configuration is a schema. Configuration elements are schemas of different types. From the
programming point of view, a schema is a core class inherited from the base Schema class.

Schema types:

Schema Class Purpose

Object schema EntitySchema These schemas can be used to manage database structure
without needing to work with the database directly..

Client module
schema

ClientUnitSchema These schemas implement application client.

Source code
schema

SourceCodeSchema These schemas implement additional server logic of the
application.

Business process
schema

ProcessSchema These schemas implement custom business processes.

Page schema PageSchema These schemas implement ASP.NET pages.

Business process
task schema

ProcessUserTaskSchema There schemas generate custom user tasks for business
processes.

Report schema ReportSchema These schemas generate reports.

Image list schema ImageListSchema

Schemas are stored in the database as metadata. To edit schemas, various designers in the [Configuration]
section are used: object designer, process designer, module designer, source code designer, etc.

Being inherited from the base Schema class, schemas of all types have a number of required properties and methods.

Required properties of schemas:

1. UId – unique identifier. When a new configuration element is added, its schema is created and assigned a
unique identifier.

2. Name – schema name used for identification of the schema in program code.
3. Caption – schema title used for identification of the schema in the system interface.

Schema primary methods:

1. ReadMetaData – reads schema metadata from the database.
2. WriteMetaData – writes schema metadata into the database.
3. GetLocalizableValues – method that returns a collection of localized schema resources. These resources are

used for storing and displaying names, captions, etc.

Collections of schema instances of different types are managed by special classes called “schema managers”.

Separate schema managers are used for different schema types.

Properties and methods of different classes are documented in the library of classes.

Object

The bpm'online data model is based on objects. An object is a business entity that declares a new ORM-model class
on the server core level. On the database level, creating an object implies the creation of a new table with the same
name and column composition as the created object. This means that in most cases each object is a representation of
a actual table in the database.

There are base objects and custom objects.

Base objects are non-editable and are stored in the base packages. They can be replaced in custom

Bpm’online developer guide 20

packages.
Custom objects are objects created as part of configurations saved in custom packages.

There are 3 types of objects in bpm'online:

1. Objects connected to database tables.
2. Objects connected to database views.
3. Virtual objects used for creating hierarchies and implementing the inheritance mechanism (such as the

BaseEntity entity).

Object type is set in the object designer (Fig. 2).

Fig. 2. Object types

A system object has three primary components:

1. Object schema – database table structure and properties. Object schema includes table columns (names and data
types), indexes, access rights to object schema. Schema of an object is an instance of the EntitySchema class.

2. Object data – a data row of a table and methods for its processing. Each data row is an instance of the Entity class.

3. Embedded object process. Event model is implemented for each system object. Handling of object events is
implemented through an embedded object process.

Module

Starting with version 7.0, the bpm'online client side has a module structure, which means that it is implemented as a
set of functional blocks, each of which is implemented in a separate module. As part of the application operation
process, loading of modules and their dependencies is done according to the Asynchronous Module Definition
(AMD) approach.

The AMD approach declares the mechanism for determining and asynchronous loading of modules and their
dependencies, which allows loading only the currently required data when working with the system. The AMD
concept supports various JS frameworks. In bpm'online, the RequireJS loader is used for working with modules.

Bpm’online developer guide 21

http://en.wikipedia.org/wiki/Asynchronous_module_definition
http://en.wikipedia.org/wiki/Asynchronous_module_definition
http://requirejs.org/

A module is a code fragment encapsulated in a separate block that can be loaded and executed independently.

The RequireJS loader provides the mechanism for declaring and loading modules, based on the AMD concept.
General operational principles of the RequireJS loader mechanism:

1. Modules are declared in a special define() function, which registers fabric function for instantiating modules
but does not immediately load the declared module when called.

2. Module dependencies are passed as an array of string values and not through the properties of the global
object.

3. The loader loads all module dependencies passed as arguments to define(). Modules are loaded
asynchronously, the load order is determined by the loader.

4. After all specified module dependencies are loaded, the factory function, which returns the module value, is
called. Loaded dependency modules will be passed to the factory function as arguments.

Each client schema in bpm'online 7.x is characterized by at least one client module.

Client core provides mechanisms for working with modules:

Provide API for accessing client modules.
Determine the mechanism for message exchange and module loading.
Provide access to base libraries, system enumerations and constants.
Implement client mechanism to work with data.

Client module types

The following client module types are used in bpm'online:

1) Non-visual module

Non-visual modules implement system functionality, which, as a rule, is not connected to data binding or displaying
data in the UI. Examples of non-visual models are business rules (BusinessRuleModule) and utility modules, which
implement service functions. In the base version, non-visual modules have *Utilities, or *UtilitiesModule in their
names.

2) View schema (visual module)

Visual modules implement the View models (ViewModel) according to MVVM template. These modules encapsulate
data that is displayed in GUI control elements, as well as methods for working with them. Examples of visual
modules are section, detail and page modules.

3) Extension module (replacing client module)

This type of module is designed for extending the functionality of base modules.

Application interface and structure

Contents
Main menu
Sections
Record edit page
Details
Mini-page
Modal windows
Communication panel
Command line
Action dashboard

Main menu

Bpm’online developer guide 22

https://github.com/amdjs/amdjs-api/wiki/AMD#define-function-
http://en.wikipedia.org/wiki/Model_View_ViewModel

Overview
The main menu is displayed in the working area (1) of the UI after the application has been loaded (Fig. 1). The main
menu can be opened using the "Menu" button located at the top (3) of the side panel (2).

Fig. 1. Main menu

Main menu commands used for opening system sections are also available in the section area (5) of the side panel
(2). The list of available section navigation commands depends on the selected workplace.

Two schemas correspond to the main menu: the base schema of the ApplicationMainMenu business object and the
product main menu schema inherited from the base product main menu schema SimpleIntro. For the
SalesEnterprise product, the main menu schema is named EnterpriseIntro.

The element composition of the main menu UI depends on the product. All elements are placed in corresponding
containers that are set up in the base or inherited schema of the main menu. The primary containers of the
SalesEnterprise product include:

Menu main container (MainContainer), which contains all main menu elements.
Section and setting container (LeftContainer), which contains areas for commands that open sections
and settings.
Resource container (RightContainer), which contains areas with links to various resources.
Base functionality container (BasicTile), which contains commands for opening sections that are
available in all products.
Sales container (SalesTile), which contains commands for opening sections of the Sales product family.
Analytics container (AnalyticsTile), which contains command for opening the [Dashboards] section.
Settings container (SettingsTile), which contains commands for opening the settings sections.
Video container (VideoPanel), which contains video player and name of the linked video.
Link container (LinksContainer), which contains links to training web resources and social networks.
Mobile app links container (MobileAppLinksPanel), which contains links to bpm'online mobile app in
various app stores.

Bpm’online developer guide 23

Sections

Overview
The "Section" element is displayed in the workspace of the user interface after selecting the appropriate menu item
in the sidebar or on the main application page (Fig. 1).

Fig. 1. The [Contacts] section interface elements

As a rule, a section has two views: section list data display (Fig. 1) and section analytics display (Fig. 2).

Fig. 2. The [Contacts] section interface elements in the "Analytics" view

Each section corresponds to a certain schema. For example, the [Contacts] section is configured by the
ContactSectionV2 schema. All sections are inherited from the parent BaseSectionV2 schema. More detailed
information about schemata, their purpose and structure can be found in the "Schemata" article.

Bpm’online developer guide 24

The user interface elements of the application relating to the section are placed in appropriate containers that are
configured in the base or inherited section scheme. The main containers are:

Action buttons container with a section action button (1) and a drop-down list (2)
Filters container with filters (3) and tags (4)
Section list data view container (GridDataView) with action buttons to edit (5), copy (6), and delete (7) the
current record
Section analytics data view container (AnalyticsDataView)

The order and content of the main section containers depending on the data display (Fig. 1) (Fig. 2)

The main interface elements and section functional elements are: list, section analytics, actions, filters and tags.

Section list displays records in tile or list view. Section list is displayed in the GridDataView container (Fig. 1).
More information about lists can be found in the "Section lists" article.

Section analytics is used to display statistical data using diagrams, metrics or drop-down lists. Dashboards and
user custom widgets are displayed in the in the container of the AnalyticsDataView analytics section (Fig. 2). More
information about dashboards can be found in the "Section analytics" article.

Actions are functional section elements that are used to perform various operations with an active section list.
Actions can be invoked with buttons (Fig. 1) in the ActionsButtons container or the active record container (Fig. 1).
More information about actions can be found in the "Section actions" article.

Filter is used to search and filter records in the section. There are quick, standard, advanced filters and filter
folders. The [Filter] buttons are located in the filters container (Fig.1 and Fig.2). More detailed information about
filters can be found in the "Filters" article.

Tag is used to quickly search for section records by key words. The [Tag] buttons are located in the tags container
(Fig.1 and Fig.2). More detailed information about tags can be found in the "Tags" article.

Section lists

Overview
Section list is a list of records that can be displayed in one of two views.

A tile view displays the fields of each record in multiple lines. This is the default list view. In the [Contacts] section
the following fields are displayed (Fig. 1)

Name (1)
Position (2)
Business phone (3)
Account (4)
Email (5)
Mobile phone (6)

Fig. 1. The [Contacts] section list elements in the tile view

Bpm’online developer guide 25

A tile view displays records as a simple table in which each record corresponds to one line (Fig. 2). The sequence of
fields in the list view may not coincide with the sequence of fields in the tile view.

Fig. 2. The [Contacts] section interface elements in the list view

To avoid redundancy of the reported data, the list section displays only the most significant table columns. All data
are displayed and edited on the section edit pages. Learn more about them in the "Edit page" article.

Each section has its own business object schema that describes the structure of a database table, which stores the
data records. It also provides specific instructions for processing these data. From these data the list section is
formed. Each table line corresponds to a section record. For example, the [Contacts] section corresponds to the
Contact business object schema (Fig. 3) that contains Contact table properties (Fig. 4). The full list of model schema
columns and their properties can be found using the object designer which is described in the "Workspace of the
Object Designer".

Fig. 3. Contact object schema in the objects designer

Bpm’online developer guide 26

Fig. 4. Contact table

The layout and content of the displayed fields can be modified using the section wizard, or the drop-down list wizard
available in the [View] button menu. More information on the section wizard can be found in the "Section wizard"
article.

If you want to add a custom column in the business object schema and display it in the list, it can be done in two
ways.

The first way is to use the section wizard. Create a replacing Contact object In the current custom package, which
will inherit all the columns of the base Contact object from the Base package, to which a new custom column will be
added. More information about the section wizard can be found in the "Creating a new section" article.

The second way is, using the object wizard, create a replacing Contact object in the custom package, which will
inherit all the columns of the base Contact object from the Base package. Then, add the required columns to the
replacing object and set up their properties. Next, using the section wizard or the drop-down list wizard, set up the

Bpm’online developer guide 27

https://academy.bpmonline.com/documents/sales-enterprise/7-9/section-wizard

added columns display in the list. More information about the object wizard can be found in the "Workspace of
the Object Designer".

Section analytics

Overview
Bpm'online analytics elements are used for gather statistics on section data. To open section analytics, go to the
analytics (dashboards) view (Fig. 1) by clicking the corresponding button (1). To view analytics for all system
sections, use the [Dashboards] section.

Analytics elements display information in special blocks called "dashboard blocks". The section area where the
dashboard blocks are displayed is called the "dashboard panel". For more information on creating custom
dashboard panels, please refer to the "Setting up dashboards" article.

The bpm'online application uses the following dashboard blocks (Fig. 1):

Chart (2). Charts are used to visually display data as graphs of various types or as a list of records. For more
information on setting up charts, please refer to the "Setting up the “Chart” dashboard component" article in the
User Guide.

Metric (3). A metric is used to display single numeric values, for example, the total number of current customers.
For more information on setting up metrics, please refer to the "Setting up the “Indicator” dashboard component"
article in the User Guide.

Gauge (4). A gauge displays data in relation to a scale.

List (5). A list displays filtered records. For more information on setting up lists, please refer to the "Setting up the
“List” dashboard component" article in the User Guide.

Web page (6). This dashboard component displays web pages. This can be a search engine, currency converter page,

Bpm’online developer guide 28

https://academy.bpmonline.com/documents/marketing/7-9/setting-dashboards
https://academy.bpmonline.com/documents/marketing/7-9/setting-chart-dashboard-component
https://academy.bpmonline.com/documents/marketing/7-9/setting-indicator-dashboard-component
https://academy.bpmonline.com/documents/marketing/7-9/setting-list-dashboard-component
https://academy.bpmonline.com/documents/marketing/7-9/setting-list-dashboard-component

corporate website, etc

Sales pipeline (7). This dashboard component is used for sales stage dynamics analysis.

The widget dashboard component displays additional custom widgets.

For more information on customizing analytics, please refer to the "Dashboard components setup" article.

Section actions

Overview
Actions are functional section elements that operate with one or multiple active list records. Actions can be invoked
with buttons of different types, located in the action container of the current section and in the active record
container (Fig. 1).

Fig. 1 Action interface elements of the [Contacts] section

User action interface elements are (Fig. 1):

action buttons (1), (7)...(9);
button with drop-down menu (2);
action menu options (3)...(6).

There are standard section actions and additional actions that are unique for each section.

The standard actions are:

Add (1) — opens the edit page of a section and creates a new record.

Open (7) — opens the section edit page and populates it with the data from an active record.

Copy (8) — opens the section edit page, copies the data from an active record and creates a new record.

Delete (9) — deletes the active record.

Select multiple records (3)— sets the multiple selection mode of the registry entries.

Export list to file (4)— exports all list records of the current section to the *.csv file.

Additional actions are unique for each section of the application. For example, for the [Contacts] section, additional

Bpm’online developer guide 29

https://academy.bpmonline.com/documents/sales-enterprise/7-9/dashboard-components-setup

actions are:

Show on map (5).
Go to contact duplicates (6).

Read more about additional actions in the "Bpm'online sales sections".

You can also create custom actions in bpm'online. Learn how to add custom actions in the "Adding an action to
the list" article.

Filters

Overview
Filters are used to search and filter records in the sections. There are quick, standard and advanced filters and filter
folders in bpm'online.

Filter management elements are displayed above the system sections list (pic 1). You can manage quick filters on the
"Quick filter" dashboard, and standard and advanced filters and filter folders are set up in the "Filter" menu.

Fig. 1 Quick and standard filters of the [Activities] section

Quick filter is used to filter data based on most frequently used parameters. For example, activities of a single
employee for a specified period of time are most often viewed in the [Activities] section. The following quick filters
are designed exactly for this purpose (Pic 1):

Today (1) filter displays records of the current day.
Current week (2) filter displays records of the current week.
Select period (3) filter displays records of the selected period, for example, "Yesterday", "Current week",
etc. You can also set a custom period specifying the dates of its start and finish in the embedded calendar.
Select owner (4) filter displays the activities of a single or multiple employees.

More detailed information about the filters is available in the "Quick filter" article.

A standard filter is used to search for records in the system sections based on specified values of one or more
columns. For example, if you want to find all employees in the section (Pic. 2), you need to set up [Account] (5) and
[Position] (6) filter fields.

Bpm’online developer guide 30

https://academy.bpmonline.com/documents/sales-enterprise/7-9/bpmonline-sales-sections
https://academy.bpmonline.com/documents/sales-enterprise/7-9/quick-filter

Fig. 2 [Contacts] section filter

You can set up standard filters by running the [Set condition] (7) command in the "Filter" menu. More detailed
information about standard filter setup is available in the "Standard filter" article.

An advanced filter is used when you need to apply more complex filter consisting of several parameters and search
criteria. For example, if you want all specialists to display only those who work in the departments "Development"
and "Administration" (Fig. 3).

Fig. 3 Advanced [Contacts] section filter

To set up the advanced filter, you must run the [Switch to extended mode] command (8, Fig. 2). More detailed
information about advanced filter setup is available in the "Advanced filter" article.

Filter folders are used to segment records based on the specified filtering criteria. When selecting a folder, the
section will display only those records that meet the filter folder conditions.

You cannot manually include or exclude records from filter folders. A record is automatically displayed in the folder
if it meets the filter folder conditions. If a record no longer meets the filter folder criteria, it is excluded from the
folder automatically.

To display filtered folders you need to run the [Show folders] command (8, Fig. 2). The existing folders will be
displayed (Fig. 4) If necessary, you can create the required folder structure and define rules for their content.

Fig. 4 Filter folder of the [Contacts] section

Bpm’online developer guide 31

https://academy.bpmonline.com/documents/sales-enterprise/7-9/standard-filter
https://academy.bpmonline.com/documents/sales-enterprise/7-9/advanced-filter

More detailed information about filter folders is available in the "Working with folders" article.

In bpm'online you can add user filters. More information about user quick filters is available in the "Adding quick
filter block to a section" article.

Tags

Overview
Tags are used to quickly search for information by keywords. When you filter records by tags, the section will display
only those records that have the selected tag.

Fig. 1 The [Contacts] section tags

Records are tagged manually. Each section of bpm'online sales has a separate list of tags.

Bpm'online sales contains the following tag types:

Bpm’online developer guide 32

https://academy.bpmonline.com/documents/sales-enterprise/7-9/working-folders

Personal tags — can be seen and used only by users who created them. Neither system administrators
nor managers can see the personal tags of employees. Personal tags are displayed in green.
Corporate tags — displayed for all employees of the company. Any employee can set or clear a corporate
tag. Any employee/role with access rights to perform "Corporate tag management" operation can create
new corporate tags Corporate tags are displayed in blue.
Public tags — displayed for all employees and for self-service users. Any employee can set or remove a
public tag. Any employee/role with access rights to perform "Public tag management" operation can create
new corporate tags Public tags are displayed in red.

More information about creating and configuring tags can be found in the "Working with tags" article.

Record edit page

Overview
An edit page is a container with a set of fields for entering and editing the columns in the section object schema (see
"Section list"). An edit page opens when you create or edit a section list record. Every section contains one or more
edit pages.

Fig. 1 The [Contacts] section edit page interface

Every edit page has its own client module schema. For example, the [Contacts] section setup is performed in the
ContactPageV2 schema of the UIv2 package. All edit page schemas are inherited from the parent BasePageV2
schema of the NUI package. More information about packages, objects, and modules can be found in the
"Packages, schemas, modules" article.

The user interface elements related to the edit page are located in the corresponding containers that are configured
in the base or inherited the edit page schema. The main edit page containers include (Fig. 1):

the container for the action buttons (ActionButtonsContainer);

Bpm’online developer guide 33

https://academy.bpmonline.com/documents/sales-enterprise/7-9/working-tags

the container for the left side of the edit page (LeftModulesContainer), which contains the main input
fields;
the action dashboard container (ActionDashboardContainer) with the action panel and workflow bar;
the tabs container (TabsContainer) with input fields, grouped by any attribute (Fig. 1).

If you need to add custom input fields to an edit page, it has to be replaced with a custom edit page. Read more
about schemas replacement and inheritance in the article "Creating custom schemas. Replacement and inheritance".
You can learn how to add various interface elements to the edit page in a series of articles in the "Page configuration"
section.

Details

Overview
The purpose of details is to display supplemental data for a primary section object. The section details are displayed
on the section edit page tabs in the tabs folder.

Depending on the method of entering and displaying data, there are following types of details.

A detail with edit fields — data are filled in and edited in the detail data fields (Fig. 1). If necessary, you can add a
new field to a detail (1). For example, the [Contact communication options] detail.

Fig. 1. The details with edit fields and the [Contacts] section data adding page

A detail with adding page — data are entered and edited on the detail edit page. For example, the [Contact address]
detail (Fig. 1) — each address is entered and edited on the "Contact address" page (Fig. 2).

Fig. 2. The "Contact address" detail adding page

Bpm’online developer guide 34

A detail with editable list — data are displayed as a list and are entered and edited directly in the list. For example,
the [Order product] detail (Fig. 3)

Fig. 3. The [Product in order] detail with editable list

A detail with selection from lookup — data are selected from a lookup displayed in the modal window. For example,
the [Lead product] detail (Fig. 4) — data are selected from a lookup in the modal dialog box "Select: Product" (Fig.
5).

Fig. 4. The [Lead product] detail with selection from lookup

Fig. 5. Selecting products from the [Lead product] detail

Bpm’online developer guide 35

Each detail corresponds to a business object schema connected to the object of the current section. For example,
[Contact addresses] detail corresponds to "Contact addresses" (ContactAddress) object schema of the Base package.
The connection is set up based on the mandatory [Contact] column of the detail object.

The content, location and behaviour of the user interface detail elements are configured by the detail schema. For
example, the [Contact Addresses] detail is configured by the "Contact addresses detail" schema
(ContactAddressDetailV2), that inherit "Base detail scheme with a list" (BaseAddressDetailV2) of the UIv2 package.
Application details schemata are inherited from the base detail schema with a list (BaseGridDetailV2) and base
detail schema (BaseDetailV2) of the NUI package.

A detail edit page is configured by the edit page schema. For example, the [Contact addresses] detail edit page
properties are configured by the "Contact address page" schema (ContactAddressPageV2), which is inherited from
the "Base address page" (BaseAddressPageV2) of the UIv2 package.

In bpm'online you can create custom details. More information about custom detail creation depending on its type
can be found in the next articles:

Creating a detail in wizards.
Adding an edit page detail.
Adding a detail with an editable list.
Creating a detail with selection from lookup.
Creating a custom detail with fields.
Adding the [Attachments] detail.

Mini-page

Overview

Bpm’online developer guide 36

A mini-page is designed to quickly view and add information about a section record without opening the edit page.
 Mini-page can be displayed by hovering the cursor over hyperlinks that lead to, for example, the contact edit page
(Fig. 1) and account edit page (Fig. 2).

Fig. 1 Contact mini-page

Fig. 2 Account mini-page

Using the mini-page, you can make calls, write and send emails, and create tasks or contacts. You can also view a
location on the map. More information about mini-pages can be found in the "Mini-page" article.

The contents, location and behavior of user interface elements are configured in the schema of the mini-page view
model schema. For example, the contact mini-page is configured through the ContactMiniPage schema, and the
account mini-page through the AccountMiniPage schema of the UIv2 package. The parent schema for all mini-pages
schemas is the BaseMiniPage schema, part of the NUI schema.

If necessary, you can create a custom mini-page. An example of creating a custom mini-page for records in the
[Knowledge Base] section is described in the "Creating pop-up summaries (mini pages)" article.

Modal windows

Bpm’online developer guide 37

https://academy.bpmonline.com/documents/sales-enterprise/7-9/mini-pages

Overview
Modal windows display data in a pop-up dialog box. When a modal window opens, the page from which the modal
window was opened does not close, and no new pages are opened in the process. Thus, the page that the modal
window displays is not shown in the browser history.

The modal windows are used to display and select data from various lookups, for example, when selecting an activity
assignee from the contact lookup (fig.1).

Fig. 1. Modal window for selecting activity assignee from the contacts lookup

General properties and behavior of modal windows are specified in the ModalBox and ModalBoxSchemaModule
modules of the NUI package. The modal window for selecting data from lookups is called in the LookupUtilitiesV2
module.

Communication panel

Overview
The communication panel is designed for user interaction with clients and colleagues without interrupting execution
of the current task. Using the communication panel, you can make calls, process unread mails and post in the
enterprise social network.

The communication panel contains the following tabs (Fig. 1):

Calls (1) — enables you to accept and make calls directly in the application. Read more about the
possibilities of telephony in the "Managing calls in bpm'online" article.

Bpm’online developer guide 38

https://academy.bpmonline.com/documents/sales-enterprise/7-9/phone-integration

Email (2) — designed to work with email. Features of configuration and integration with email services are
described in the "Working with email" article.
Feed (3) — displays messages of the [Feed] section and is used to view messages in subscribed channels
and to add new posts and comments. More information can be found in the "[Feed] section" article.
The notification center displays notifications about various events in the system. It is described in detail in
the "Notification center" article.

Fig. 1 Communication panel

The communication panel is configured in the CommunicationPanel scheme of the UIv2 package. The "Calls" tab is
configured in the inherited CommunicationPanel scheme of the CTIBase package . The communication panel tab
buttons (1...4) are located in the communicationPanel container, and the tabs in the rightPanel container (Fig. 1).

Command line

Overview
The command line enables quick access to the most frequently performed operations.

To run a command, type it in the command line and click "Execute command" (Fig. 1) or press [Enter] on the
keyboard. If you enter an incomplete command, the system will offer a list of possible commands in the drop-down
list.

Fig. 1 Command line

Bpm’online developer guide 39

https://academy.bpmonline.com/documents/sales-enterprise/7-9/working-emails
https://academy.bpmonline.com/documents/sales-enterprise/7-9/feed-section
https://academy.bpmonline.com/documents/sales-enterprise/7-9/notification-center#HT_chapter_notifications_center

The features of the command line are:

Navigation — "Go to…” a section
Search for records —"Search ..." for contacts, accounts or records
Creating records — "Create..." a record
Start business process — "Start process ..."
Create custom commands with the "Create custom command".

Read more about the possibilities of the command line in the "Command line" article.

The command line input field is located in the mainHeaderContainer conatiner (Fig. 1).

To track commands and their execution in the system, use the CommandLineService service. To store commands in
the system, a database table is used. The structure of database table is described by the Command object schema.
The command parameters are described by using the CommandParams object schema. To display the list of
available commands for autocompletion and other functionalities of the command line, the CommandLineModule
module is used.

Action dashboard

Overview
The action dashboard is designed to display information about the current state of a record and consists of two parts
(Fig. 1):

The Workflow bar (1) — shows the business process stage status.
The Action panel (2) — enables you to move on to the activity, work with email or feed, without leaving the
section. The action dashboard displays business process activities that are connected to the section object
by the corresponding field. The action panel can also display an auto-generated page, pre-configured page,
question or object page.

Fig. 1 Action dashboard in the [Leads] section.

Bpm’online developer guide 40

https://academy.bpmonline.com/documents/sales-enterprise/7-9/command-line

The action dashboard is located in the ActionDashboardContainer container of the section record edit page. The
workflow bar is located in the attached HeaderContainer container, and the action panel — in the
ContentContainer.

The arrangement of the elements of the action dashboard is configured by the BaseActionsDashboard view model
schema and the SectionActionsDashboard inherited schema of the ActionsDashboard package.

Bpm’online developer guide 41

How to start the development

Development of custom solutions in bpm’online is a complex and laborious process. Keep the following sequence of
action to avoid difficulties.

1. Set up the development process.

Organization of development process depends on the volume and complexity of planned custom modifications of
bpm’online. To add small and simple modifications to the bpm’online functions you do not need to set up specific
processes. Implement these modifications in the application used for development and transfer them to the working
version of bpm’online after preliminary testing.

To add complex and extensive custom functionality you need to set up three working environments (development,
pre-production and production environments). Developed functionality can be transferred between these working
environments only if it fits specific criteria. For more information on development of complex functionality, see
"Development process organization" article.

The sequence of development and transfer of the developed solution to the working application depends on the
organization of the development process. For more information about development sequence, see the
“Recommended development sequence” article.

NOTE

To develop complex project solutions, use the recommendations provided in the "Terrasoft Project Life Cycle”
documentation.

2. Select and configure development environment

To develop simple functionality that requires small modifications, you can use free trial version of bpm’online
deployed on cloud. For more information on bpm'online deployment on cloud, please see the "Deploying the
bpm'online cloud application" article.

To use specific development tools (for example, Visual Studio), you will need to deploy application on-site. Please
refer to “How to deploy bpm'online on-site” for any details.

To add complex custom functionality that requires work of a group of developers, you will need to use specifically
configured development environment. For more information refer to the “Organizing a development
environment” article.

ATTENTION

The development in the bpm’online production environment is forbidden. In most cases the development is
connected with errors and their tracking, debugging and compiling the application, etc. Usually this has a
negative impact on bpm’online performance or can make the work of other users difficult or impossible.

3. Configure SVN storage (optional)

Version control system (SVN) is an optional component for development. If an active development of the application
is expected, the version control system will facilitate the management of the development process.

More information about the version control system can b e found in the “Create repository in SVN server" and
"Working with SVN in the file system" articles.

4. Create a custom package for developing new functionality

The bpm'online functionality is implemented in configuration elements – schemas. A set of schemas that implement
some functionality is combined in a package. More information about purpose and structure of bpm’online packages
can be found in the “Package structure and contents”, “Package dependencies. Basic application

Bpm’online developer guide 42

https://academy.bpmonline.com/documents/technic-plc/7-10/project-life-cycle-methodology

packages” and “Package [Custom]” articles.

Create a new custom package to develop new functionality. Please refer to the “Creating and installing a
package for development” article for any details.

ATTENTION

To use the version control system, the package must be connected to the SVN storage at the time of creation.
Working with packages in SVN described in the "Creating and installing a package for development",
"Committing a package to repository", "Installing packages from repository" and "Updating
package from repository” articles.

For more information about creating a package in the development in file system mode, refer to the
“Creating a package in the file system development mode” article.

5. Create schemas that implement the functionality

To implement the functionality, it is required to create various types of schemas in user packages. Creating of
schemas is described in the “Creating a custom client module schema”,”Creating the entity schema” and
“Creating the [Source code] schema” articles.

Templates of development of new functionality are described in the “Bpm’online development cases” article.

6. Transfer modifications to test and production environments

After the development is completed, the modifications must be transferred to the pre-production environment for
the testing. If the testing was successful, transfer the modifications to the production environment. For more
information refer to the “Transferring changes between the working environments” article.

See also
Development process organization
Organizing a development environment
Recommended development sequence
Development rules
How to deploy bpm'online on-site
Deploying the bpm'online cloud application
Create repository in SVN server
Working with packages
Transferring changes between the working environments
Creating a custom client module schema
Creating the entity schema
Creating the [Source code] schema

Development process organization

Overview
When adding a new complex custom functionality to bpm'online, be sure to follow the proper development process.
We recommend deploying three separate environments: development, testing and operational.

NOTES

Bpm’online developer guide 43

For more information on organization of the project development process, please refer to the "Project Life
Cycle Methodology" documentation.

The Development Environment is a separate application (or a number of applications) where a new functionality is
developed. These applications must be deployed on local computers (on-site), which gives the ability to export
schemas to the file system and create a new program code using different IDE. SVN version control is also highly
recommended. Use a separate application and database for developing new functions. For more information about
the development Environment, please refer to the "Organizing a development environment" article.

The Pre-Production environment can be a separate application where the new functions are installed and tested.
Usually, the testing is done by a system analyst from the development team or the customer who ordered the
development of the new functionality. If needed, the application can be deployed in the cloud or on-site.

The production environment is a separate bpm'online application, in which all current user business processes are
executed. If needed, the application can be deployed in the cloud or on-site mode, on customer servers.

For more information about deployment options, please refer to the "How to deploy bpm'online on-site" and
"Deploying the bpm'online cloud application".

ATTENTION

The production database must never be used for development or pre-production testing. Development
activities cannot be performed in the production environment.

The general development process is shown in Fig. 1.

1. All development activities are performed in the development environment.
2. After development is complete, the developers prepare packages with the new functions and install them in

the pre-production environment.
3. The new functions are then tested in a pre-production application.
4. Any errors found during testing are corrected in the development environment (stage 1). When the testing is

complete and all errors are corrected, the packages with the new functionality are installed in the production
environment.

Fig. 1. General workflow of the development process

Bpm’online developer guide 44

https://academy.bpmonline.com/documents?product=plc&ver=7
https://academy.bpmonline.com/documents?product=plc&ver=7

It is recommended to use zip-archives to transfer packages between environments. Zip-archives can be created in
the [Configuration] section or by WorkspaceConsole utility. For more information about transferring
changes between applications, please refer to the "Transferring changes between the working
environments" article.

Organizing a development environment

Overview
The development environment is a separate bpm'online application (or a number of applications) used exclusively
to develop new functions. Pre-production and production environments are used for testing the implementation of
developed functionalities. For more information on pre-production and production environments, see
"Development process organization" article.

Bpm’online developer guide 45

ATTENTION

The production environment database must never be used for development. Development-related activities in
the production environment are strictly forbidden.

The applications can be deployed either locally (on-site), or on bpm'online servers (cloud), with or without the use of
SVN repository. You can also use file system development mode. For more information on bpm'online
deployment options, please see "How to deploy bpm'online on-site" and "Deploying the bpm'online cloud
application" articles. For more information on working with the version control repository, please see the "Create
repository in SVN server" and "Working with SVN in the file system" articles.

Development in on-site application
Having separate development environment applications for each developer requires on-site deployment (Fig. 2).
Because this option is aimed at maximum development productivity, the use of SVN, as well as development in the
file system are required. For more information on development in the file system, please see the "Development in
the file system" section.

Fig. 2. Organization of development environment in several configurations of one application

Advantages:

1. Fast and convenient development process.
2. Independent development environments. Since development is made in a separate application, other

applications cannot be affected.
3. Using the version control system for saving and transferring changes.
4. Possibility of using IDEs and setting up continuous integration processes.

Disadvantages:

1. Cloud deployment option is unavailable.

Recommendations:

1. Development in separate applications is recommended for supporting active development or making changes
to base functionality.

2. Recommended for both small and large developer teams.

Recommended development sequence

Bpm’online developer guide 46

Introduction
Development of complex functionality requires proper organization of the development processes. There are
three general options for development environment deployment:

All instances are deployed on-site.
Development environment is deployed on-site, pre-production and production environments are deployed
on the cloud.
All instances are deployed on the cloud.

Development sequence
Recommended algorithm of the development process is given on Fig. 1.

Fig. 1. General sequence of development

Bpm’online developer guide 47

1. Development of new functions

It is recommended to develop in a separate application with a separate database for each developer. Use
subversion control system (Subversion, Git, etc.) to transfer changes between different development
environments.

ATTENTION

Using SVN is not recommended for transferring changes to the production environment, as this method does
not assume creating database backups. Transferring changes with SVN can only be used in the development
environment.

2. Exporting packages to archives

Two options for uploading packages into archives:

From the [Configuration] section (see the “Exporting packages from the application interface”

Bpm’online developer guide 48

https://subversion.apache.org/
https://git-scm.com/

article).
Via the WorkspaceConsole utility (see the “Transferring changes using WorkspaceConsole”
article).

3. Installing the packages on the pre-production environment

There are two options for installing packages to application:

1. From the custom application interface (see the “Installing marketplace applications from a zip
archive” article). You can use this option when placing a pre-production environment in the cloud.

2. Via the WorkspaceConsole utility (see the “Transferring changes using WorkspaceConsole” article).
You can use this to set up the continuous integration processes when placing pre-production environment
on-site.

ATTENTION

To migrate changes to an application deployed in the cloud, it is recommended that you use the options of the
bpm'online user interface. Using WorkspaceConsole is not possible because the user does not have direct
access to the cloud application database.

In case errors are found during the testing stage, the new functions are revised and the errors are corrected in the
development environment. After all errors have been fixed, repeat steps 1—3.

4. Creating production database backup

Back the production database up before installing the packages with the new functions. This is a required step, since
there is always a chance that the new functions developed by third-party developers may disrupt the operation of the
application.

ATTENTION

Contact bpm’online support to create the backup of the database deployed in cloud. When deploying an on-
site application, the database backup is created by the client on its own.

5. Installing the packages on the production environment

Options for uploading packages to the production environment are common to the options for pre-production
environment (Step. 3).

Development rules

Introduction
During the creation of new functionality, bpm’online developers and partners have compiled a set of rules and
recommendations. Development can be carried out by several employees simultaneously in personal development
environments. Any employee with the appropriate skills can act as a developer.

Minimal required developer skills
Over 6 months of C#, JavaScript, and T-SQL (PL-SQL) programming experience.

Recommended developer skills
Over a year of C#, JavaScript and T-SQL (PL-SQL) programming experience. Expertise in WCF and OData

Bpm’online developer guide 49

https://en.wikipedia.org/wiki/Continuous_integration
https://docs.microsoft.com/en-us/dotnet/framework/wcf/whats-wcf
http://www.odata.org/documentation/odata-version-3-0/

technologies, as well as Sencha Ext.JS framework and RequireJS library.

Development rules and recommendations
Using a development environment

New functionality must only be developed in the development environment. It is forbidden to develop new
functionality in a pre-production or production environment.

Developing in a configuration

The development should be carried out only in the development database in the default workspace (the [Default]
configuration, sequence number 0). Developing in custom configurations is not recommended, even in case of
minor changes that will not be delivered to other users.

Developing in a custom package

The development of new custom bpm’online functionality must be carried out in a separate custom package. Do
not use the [Custom] package. All the necessary data (for example, lookup contents content), SQL-scripts and
dependencies must be attached to the package.

Using the SVN

If the development is carried out by several developers, you must use the revision control system (SVN). When
the development is carried by a single developer, it is recommended to use SVN.

Identification of the solution provider

To prevent errors associated with same package element names and their properties created by different vendors,
use the following system settings:

[Publisher] (Maintainer) - contains the package vendor name. The default value is set to “Customer”.
[Object name prefix] (SchemaNamePrefix) contains a prefix installed in the custom schema names and
names of custom columns in the objects that are inheritors to the system objects. The default value is set to
“Usr”.

Using the extending and replacing modules and schemas

If you want to create a extending view model schema (for example, schema of the section record edit page), you
need to add only the differences from the parent schema. Most often, those are the new attributes, methods, events,
and the diff array of modifications. You must only add only new view models that are not in the parent schema to the
diff array of modifications.

If you need to create a replacement module, you need to copy the module’s source code, which is replaced, and to
add a new functionality. Bpm’online modules cannot be expanded.

NOTES

The [Configuration] section contains the same [Add] — [Replacing Client Module] command for creating
extending and replacing schemas. That is why extending schemas are also called "replacing".

Using localizable strings

It is forbidden to use string literals in the schema source code. All string values that are displayed in the user
interface must be presented as localizable strings. This is important for localization of solutions.

Data backup

Before moving changes to the production environment, it is imperative to create a backup copy of the database. The
database must be backed up before installing updates and solution from third-party developers.

Bpm’online developer guide 50

https://docs.microsoft.com/en-us/dotnet/framework/wcf/whats-wcf
http://www.odata.org/documentation/odata-version-3-0/
https://docs.sencha.com/extjs/5.1.3/index.html
http://requirejs.org/

How to deploy bpm'online on-site

Introduction
The on-site (on-premises) deployment implies hosting the system on the servers or personal computers of
customers.

To deploy the bpm’online application on-site, the server-side and the client-side must meet certain technical
requirements. These requirements are described in the “Server-side system requirements” and “Client-side system
requirements” articles. Complying with certain technical requirements will ensure high system performance.

The guide, which covers all stages of bpm’online on-site setup and deployment, including setup instructions for
bpm’online, additional Windows components, database deployment, modifying configuration files, setting up DB
server connection parameters as well as website setup in IIS, is available in the "Deploying bpm’online application
on-site" article in the User Guide.

Deploying the bpm'online cloud application

Introduction
The standard procedure for deploying the bpm”online cloud application is as follows:

1. Use the free trial registration page at bpmonline.com to create your trial bpm'online site. During the trial, you
can familiarize yourself with the main features of the application. After the trial period is complete, the demo
version can be transferred to the primary bpmonline site.

2. Contact a bpm'online sales manager to deploy a new application on the cloud or transfer an existing
application to the bpm'online cloud service. Bpm'online staff will perform the transfer.

When creating bpm'online cloud applications, certain limitations apply. Compliance with these requirements is
critical for successful deployment.

Primary limitations

The use of SQL Agent is restricted

Tasks (Jobs) and other actions performed by SQL Agent cannot be created. The bpm'online task planner must be
used instead.

The use of DB Mail is restricted

Email notifications must be sent via bpm'online platform features.

The use of Extended Stored Procedure is restricted

All logic must be implemented either through standard stored procedures on T-SQL, or through the use of the
application server features.

Bpm’online developer guide 51

http://academy.bpmonline.com/documents/?product=studio&ver=7&id=1456
http://academy.bpmonline.com/documents/?product=studio&ver=7&id=1468
http://academy.bpmonline.com/documents/?product=studio&ver=7&id=1468
http://academy.bpmonline.com/documents/?product=studio&ver=7&id=1263
http://academy.bpmonline.com/documents/?product=studio&ver=7&id=1263
https://www.bpmonline.com/demo/bpmonline
https://www.bpmonline.com/

The use of DBMS user names is restricted

Database users are not created within the DBMS on the bpm'online site. Domain users and domain authentication
are used instead.

Modifications to Web.config are restricted

All required parameters must be stored as bpm'online system settings.

Binding to server and DBMS IP addresses is restricted

Server IP addresses may be changed. Therefore, any binding to any specific IP address will become invalid after such
change. Always use domain names.

Installing additional software is restricted

No additional software can be installed on bpm'online servers.

Working with file system is restricted

Working with the application and DBMS server file system is restricted by OS access rights. Access to files is
available through FTP and HTTP protocols.

Third-party applications cannot be run on server

Running third-party applications is restricted by OS access rights. All business logic must be implemented as part of
the bpm'online application.

Database must be deployed on SQL Server 2016

To ensure compatibility with bpmonline site cloud infrastructure, the application database provided by customers
must be created on SQL Server 2016.

The application must support both HTTP and HTTPS protocols

The use of logic that supports only one protocol is restricted. Instead, current application protocol must be defined.

The application must work with access rights of a regular user

The use of functions that require administrator access rights is restricted.

The application must work as a user without a profile

On the bpm'online site, the users are created without profiles or the ability to actually log in to OS.

Additional recommendations for partners
Set the partner name as the "Maintainer" system setting.
In the UsrPrefix system setting, specify a partner-specific prefix. For example, if the partner name is
"FineSolution", the UsrPrefix could be "FS".
The partner solution must not use replacing modules. Only schemas may be replaced.
Server logic must be concentrated in C# classes and called where needed.
The public API for server classes and client schemas must be covered by unit-tests.
All required data, scripts, and libraries must be bound to packages.
Development must be performed with the use of SVN and all packages must be committed to the
repository.

Bpm’online developer guide 52

Create repository in SVN server

Introduction
The purpose of version control system in bmp'online:

Transfer of changes between workspaces.
Storage of versions of configuration schemas.

Version control system is an optional component. However, if you intend to customize the application, the version
control system is required.

bmp'online supports operation with Subversion control system (SVN) of version 1.7 and higher.

For more details on use of SVN see documentation.

Principles of operation with repositories of version control
system

ATTENTION

The principles listed below are applicable when working with SVN repositories via the bpmonline built-in
development tools. The principles are not applicable when the file system design mode is turned on (see
"Working with SVN in the file system").

You can add newly created packages to any repository in the list.
You can commit an already installed package only to the repository that was specified when the package
was created.
You can install any number of packages from the list of available repositories in the configuration.

Register a repository and add it to the list of repositories in order to use it.

SVN setup
To set up integration with SVN:

1. Install SVN server

You can install SVN on the application server, DBMS server or on a separate dedicated server.

Use one of the publicly available SVN installers for Windows:

VisualSVN
CollabNet

You can download the last version of binary files of the SVN server for your operating system here.

SVN server can function independently or through Apache web-server (it is installed automatically be means of the
VisualSVN and CollabNet utilities). In the first case, repositories are accessed through svn:// protocol. In the second
case repositories are accessed through the http(s):// protocol.

We recommend using the http(s):// protocol for integration with bpm’online.

2. Create a user on the SVN server

You can create an SVN server user via the standard tools that are supplied with the utility that was used for
installation of the ASVN server, for example, VisualSVN (figure 1). Login and password are required for working

Bpm’online developer guide 53

http://svnbook.red-bean.com/
https://www.visualsvn.com/server/
http://www.collab.net/products/subversion
http://subversion.apache.org/packages.html

with the bpm'online repository.

Fig. 1. — Creation of a new user in SVN server (VisualSVN utility).

3. Create repository on the SVN server

The repository is created by standard tools of utility that were used for the SVN sever setup (i.e., VisualSVN and
CollabNET).

NOTE

bpm'online supports simultaneous operation of several repositories that can be located on different SVN
servers.

4. Install SVN client

You can additionally install an SVN client in the developer workplace, for example, TortoiseSVN.

NOTE

We recommend using TortoiseSVN client version 1.8 and up.

The installation of an SVN client is optional since it does not affect bpm'online operation. Using an SVN client is
convenient for viewing the local working copy, history, revert operations, review, etc.

List of repositories
To open the list of available repositories (figure 2), select the [Open repository list] action on the [Actions] tab of the
[Configuration] section interface.

Fig. 2. - Window with repository list of version control system

Bpm’online developer guide 54

http://tortoisesvn.net/

Adding a new repository

In order to adda new repository, select [Add] on the list tool bar. As a result, a card for the new repository opens
(Figure 3).

Fig. 3. — New repository card

[Name] — repository name.

[Storage address] — network address of existing SVN repository. Repository addressing is supported by both the
HTTP protocol (standard network protocol) and SVN protocol (own network protocol of the Subversion system).

[Active] — checkbox that determines whether to use the repository in the system operation. Each new repository is
marked as active by default.

NOTE

You can work with active repositories only. Moreover, all repositories, from which the packages are updated,
must be active. These include the repository from which the initial package is updated and the repositories
from which all packages-dependencies of the initial package are updated.

After registration of a new repository it can be used for creating custom packages and installing created packages in
the workspace.

Working with packages

Introduction
Any bpm’online product is a specific set of packages that are used to modify the configuration.

A bpm'online package is a collection of configuration elements that implements particular block of functionality.

Learn more about configuration elements in a package and their structure in the "Package structure and

Bpm’online developer guide 55

contents" article.

Package dependencies, package hierarchy and main system packages are described in the "Package
dependencies. Basic application packages".

The "Package [Custom]" describes features of the package intended for custom application configuration with the
help of system wizards.When a customer develops new functionality and, therefore, creates new packages they have
to use a revision control system (SVN). Working with packages described in the:

Creating and installing a package for development
Committing a package to repository
Installing packages from repository
Updating package from repository
Installing marketplace applications from a zip archive
Exporting packages from the application interface
Creating a package in the file system development mode
Binding data to packages

Package structure and contents

General information about packages
A bpm'online package is a collection of configuration elements (schemas, data, scripts, additional libraries) that
implement a particular block of functionality. In the file system, packages are directories with various subdirectories
and files.

Any bpm’online product is a finite set of packages. To extend or change product functionality, you need to install the
package in which all necessary changes are already implemented.

The bpm'online packages can be divided into two types:

Pre-installed packages. Supplied with the system and are installed by default. These include packages with
basic functionality (e.g., Base, NUI) and packages developed by third-party developers. These packages
are installed from zip archives as marketplace appblication or by using the WorkspaceConsole utility.
Custom packages are created by the users of the system. These packages can be attached to the SVN
repository.

Configuration elements of the pre-installed packages cannot be modified. You can develop additional functionality
or modify the existing functionality only via custom packages

Package version
One of the characteristics of a package is its version. The version is specified in the corresponding package mini-
page field (Fig. 2). The package version can contain digits, Latin characters, "." and "_” symbols. The package
version must begin with a numeric or alphabetic character.

ATTENTION

The package versioning mechanism is deprecated and is not supported, starting with bpm'online 7.9.
Therefore, all pre-installed packages have a version no higher than 7.8.

Fig. 2. Package version in the package mini-page

Bpm’online developer guide 56

In addition, the package version is stored in its metadata of the PackageVersion object specified in the
descriptor.json file. The descriptor.json file is created for each package version. Example of descriptor.json:

{
 "Descriptor": {
 "UId": "8bc92579-92ee-4ff2-8d44-1ca61542aa1b",
 "PackageVersion": "7.8.0",
 "Name": "UsrCustomPackage",
 "ModifiedOnUtc": "\/Date(1522412432000)\/",
 "Maintainer": "Customer",
 "Description": "Package created by user",
 "DependsOn": [
 {
 "UId": "e14dcfb1-e53c-4439-a876-af7f97083ed9",
 "PackageVersion": "7.8.0",
 "Name": "SalesEnterprise"
 }
]
 }
}

All elements of the package are of the same version as the package itself.

The application is updated by installing packages with the functionality of newer package versions.

Package structure
When you commit a package to the SVN, a folder with the package name is created, and the branches and tags
directories are created inside it (Fig. 3).

Fig. 3. Package structure in the SVN

Bpm’online developer guide 57

The branches directory contains all versions of this package. Each version is stored in a separate subfolder whose
name matches the package version number in the system, for example, 7.8.0.

ATTENTION

The structure that takes into account the package versions remained for compatibility with bpm'online
versions below 7.9.

The tags directory stores tags. The tags in the version control system represent a "snapshot" of the project at a
certain point in time, a static copy of the files required for saving some critical stage of development.

Working copies of the packages are stored locally in the file system. The path to the package repository is specified in
the ConnectionStrings.config configuration file in the connectionString attribute of the
defPackagesWorkingCopyPath element:

<add name="defPackagesWorkingCopyPath"
connectionString="%TEMP%\%APPLICATION%\%WORKSPACE%\TerrasoftPackages" />

The directory containing the package name is created in this path. Its inner structure is shown in Fig. 4.

Fig. 4. The package directory structure in the file system

The package schemas are contained in the Schemas directory. External assemblies attached to the package, data and
SQL scripts are contained in the Assemblies, Data and SqlScripts directories. All package text resources, translated
into different languages, are stored in a separate Resources directory.

ATTENTION

Starting with version 7.11.3 the Files catalog has been added to the package structure. The catalog contains the
file content (see "Using file content in packages")

The descriptor.json file stores the package metadata in JSON format — ID, name, version, dependencies, etc.

Package dependencies. Basic application packages

Bpm’online developer guide 58

Introduction
Bpm’online application development follows the basic principles of software design, in particular the “don’t repeat
yourself” (DRY) principle. In the bpm’online architecture, the concept of packages was built around this principle
and is implemented using dependencies between packages. Each package contains certain application functionality,
which should not be duplicated in other packages. If a package requires functions that are part of a different
package, you will need to set up dependencies between the packages.

Dependencies and package hierarchy
Packages can have multiple dependencies. For example, package C (Fig. 1) depends on packages A and D. Thus, all
the functionality of the packages A and D is available in the package C.

Fig. 1. Dependencies and package hierarchy

Package dependencies form a hierarchical chain. This means that if you add a package to the dependency of another
package, the dependent package will contain all functionality of the added package as well as functionality of all
packages that the added package depends on. The closest analogy of the package hierarchy is the inheritance
hierarchy of classes in object-oriented programming. For example, package E (Fig. 1) contains not only package C
functionality on which it depends, but also the functionality of packages A, B and D. In addition; package F contains
the functionality of packages B and D.

How to add package dependencies
Dependencies can only be added to a custom package, and only after it has been created. To add dependencies, click
the [Add] (1) button on the [Depends on packages] (Fig. 2) detail. In the opened dialog of the package lookup, select
the required package (2) and click the [OK] button (3).

Fig. 2. Adding dependency to a custom package

Bpm’online developer guide 59

https://en.wikipedia.org/wiki/Don't_repeat_yourself
https://en.wikipedia.org/wiki/Don't_repeat_yourself

The selected package will be displayed in the list of dependencies of the current package. The packages that have
been added to the dependencies are not displayed in the package lookup (Fig. 3).

Fig. 3. Added package dependency

Bpm’online developer guide 60

After creating a new package, it will be automatically added to the dependencies of the pre-installed “Custom”
package (fig. 4).

Fig. 4. "Dependent Packages" tab

Bpm’online developer guide 61

The list of dependencies in the metadata
The list of package dependencies is stored in the package metadata in the DependsOn property of the object
specified in the descriptor.json file. The DependsOn property is an array of objects that contain the package name,
version and unique identifier by which the package can be identified in the application database. A descriptor.json
file is created for each package version. Example of descriptor.json:

{
 "Descriptor": {
 "UId": "51b3ed42-678c-4da3-bd16-8596b95c0546",
 "PackageVersion": "7.8.0",
 "Name": "UsrDependentPackage",
 "ModifiedOnUtc": "\/Date(1522653150000)\/",
 "Maintainer": "Customer",
 "DependsOn": [
 {
 "UId": "e14dcfb1-e53c-4439-a876-af7f97083ed9",
 "PackageVersion": "7.8.0",
 "Name": "SalesEnterprise"
 }
]
 }
}

Application package hierarchy
Use the package dependency diagram to explore the hierarchy and application package dependencies. This chart is
located on the [Package dependencies] tab of the [Configuration] section (Fig. 5).

Fig. 4. A fragment of package dependency hierarchy

Bpm’online developer guide 62

If you click the node element of the package name diagram, the animated arrows will display package dependencies.
For example, in the SalesEnterpise product, the [UsrDependentPackage] depends only on the [SalesEnterpise]
package and all its dependencies (Fig. 5). The [Custom] package also depends on the [SalesEnterprise] package.

Primary packages
The application’s primary packages include the packages that are always available in all products. A brief list of such
packages is shown in table 1.

Table 1. Basic application packages

Package name Contents
Base Base schemas of the primary objects, sections and object schemas, pages or

processes connected to them.

Platform Modules and pages of the section wizard, content designer, dashboard designer, etc.

Managers Client modules of the schema managers.

NUI Functionality connected to system user interface.

UIv2 Functionality connected to system user interface.

DesignerTools Schemas of designers and their elements.

ProcessDesigner Process designer schemas.

Package [Custom]

Bpm’online developer guide 63

Introduction
There are two types of bpm’online packages:

Pre-installed packages are supplied with the system and are installed by default.
Custom packages are created by the system users. Packages can be bound to the SVN repository.

Configuration elements from the pre-installed packages are not available for editing. Any development can be done
in the custom packages only.

The Section Wizard and Detail Wizard create various schemas that must be saved in a custom package. A clean
application install does not include editable packages. The pre-installed packages cannot be modified.

By default, any custom changes are saved in a pre-installed package named “Custom”. This package enables adding
schemas manually and using wizards.

Specifics of the “Custom” package
As a pre-installed package, “Custom” cannot be added to the SVN subversion control repository. The schemas can be
transferred from the “Custom” package only by using the export/import function.

Unlike other pre-installed packages, the “Custom” package cannot be exported to the file system via the
WorkspaceConsole utility.

The “Custom” package depends on all pre-installed packages. If a new custom package is created or installed, a
dependency from this package is automatically added to the “Custom” package. The “Custom” package must always
be the last in the package hierarchy (depend on all other packages). For more information on the package
dependencies and hierarchy, please see the Package dependencies. Basic application packages article.

Custom packages cannot depend on the [Custom] package.

Fig. 1. The “Custom” package in a package hierarchy

Bpm’online developer guide 64

NOTE

A custom package can technically be made last in the package hierarchy using the [Custom Package Id]
(CustomPackageUId) system setting. You can add pre-installed packages (including the “Custom” package) to
its dependencies only of the development is done without using SVN.

It is not recommended to replace the “Custom” package with other packages!

Recommendations
It is recommended to use the [Custom] package in the following cases:

If the changes will not be transferred to another environment.
If the changes are made using wizards or manually, and the amount of changes is not large.
If there is no need to use SVN.

If the changes are significant, it is advisable to create a new custom package using the SVN. For more information on
using custom packages please refer to the Creating and installing a package for development article.

Creating and installing a package for development

Introduction

Bpm’online developer guide 65

A bpm'online package is a collection of configuration elements (schemas, data, scripts, additional libraries) that
implements particular block of functionality. In the file system, packages are directories with various subdirectories
and files. Basic information about the packages are described in the "Package structure and contents” and
“Package dependencies. Basic application packages”

How to create a custom package
To create a new custom package, go the [Packages] tab menu of the [Configuration] section and select the [Add]
action (Fig. 1. 1).

Fig. 1. How to add a new package

As a result, the package mini-page will open (Fig. 2).

Fig. 2. Package mini-page

Bpm’online developer guide 66

Main fields of the package mini-page:

[Name] - package name. Required field. Name cannot match the names of already existing packages.
[Position] - package position in hierarchy Required field (see "Configuration localizable resources").
The default value is set to 0.
[Revision control system storage] — the revision control system storage name to which package
modifications will be committed (see "The [Configuration] section"). A list of available storages is
generated from the list of storages in SVN. Storage located in the configuration storage list but not marked
as active will not appear in the drop-down list of available storages. This is a required field.

ATTENTION

The [Revision control system storage] is populated, when you create a new package and becomes non-editable.
If the revision control system is not used, this field is not displayed.

[Version] - package version. Required field. The package version can contain digits, Latin characters, "."
and "_” symbols. The added value text must begin with digits or letters. All elements of the package are of
the same version as the package itself. The package version does not necessarily have to match the version
of the application.
[Description] - package description, for example, extended information about package functions. This is a
non-required field.

NOTE

When you create a new package, you cannot specify its dependencies yet. Add dependencies, when you edit an
already created package.

If a user is not logged in the selected package of the revision control system storage, they will be prompted to
authorize before creating a package.

The contents of the key package mini-page fields pack will be saved in its metadata:

{
 "Descriptor": {

Bpm’online developer guide 67

 "UId": "1c1443d7-87df-4b48-bfb8-cc647755c4c1",
 "PackageVersion": "7.8.0",
 "Name": "NewPackage",
 "ModifiedOnUtc": "\/Date(1522657977000)\/",
 "Maintainer": "Customer",
 "DependsOn": []
 }
}

In addition to these properties, the package metadata contains information about the dependencies (DependsOn
property) and the developer (Maintainer). The Maintainer property value is set by using the [Publisher] system
setting.

After filling in all the fields and clicking the [OK] button, the package will be created and will appear on the
[Packages] tab (Fig. 3).

Fig. 3. New package on the [Packages] tab

For the created package to have all the functionality that is inherent in the system, you need to specify the
dependencies. To do this, indicate the last package in a hierarchy of pre-installed packages. To determine which of
the packages in the hierarchy of packages is the latest, you need to go to the [Package dependencies] tab of the
[Configuration] section. Next, you must find all packages located one level above the [Custom] package. For
example, fig. 4 shows that the [SalesEnterpriseSoftkey_ENU] and [SalesEnterpriseSoftkey_Obsolete] packages are
last in the hierarchy of packages. How to add the package to the dependencies is described in the "Package
dependencies. Basic application packages”

NOTE

You cannot add the [Custom] package to the dependencies of a new package. The reasons for this are
described in the "Package [Custom]” article.

Fig. 4. Defining the last package in the hierarchy of pre-installed configuration packages

Bpm’online developer guide 68

The [Custom] package must contain all dependencies of all packages of the application. It is therefore necessary to
ensure that the [Custom] package contains the dependency of the newly created package.

Committing a package to repository

Introduction
Committing package to storage is adding all package modifications to the SVN storage.

ATTENTION

Packages are commited manually. Modifications of other configuration packages are not committed.

Bpm’online developer guide 69

Package committing is required when:

creating a new package
adding new and modifying existing package components
deleting package components
modifying package properties

ATTENTION

The information below are applicable when working with SVN repositories via the bpmonline built-in
development tools. The information are not applicable when the file system design mode is turned on (see
"Working with SVN in the file system").

The system displays the names of custom packages that have not been committed yet and the name of the storage
the packages will be committed to (Fig. 1.1). The SVN revision number is not displayed. and will be added after the
committing. Such packages are locked by default.

Fig. 1. Package display

The system displays the names of custom packages that have already been committed, the name of the storage and
the latest SVN revision number. The basic package is displayed in the same way as the custom package (Fig. 1.2). If a
custom package has been modified, its name will be displayed in bold (Fig. 1.3).

ATTENTION

If an element was deleted from a package (for example, schema or SQL script), then those modifications won’t
affect the package display.

Committing a package to storage
To commit a package to storage, first, select it on the [Packages] tab. In the context menu, select the [Commit
package to storage] action.

ATTENTION

When the file system development mode is enabled, the SVN integration mechanism is turned off.
Therefore, the [Commit package to repository] action is unavailable.

Fig. 3. The [Commit package to storage] action

Bpm’online developer guide 70

As a result, the [Changes] window will open (Fig. 4).

Fig. 4. The [Changes] window

You must add a comment in the [Description] window when committing a package. For example, describe the
modifications made to the package. The committed files are displayed in the bottom of the window.

After pressing the [Commit Changes to Repository] button, the package will be committed and the modifications will
be become available for other system users.

ATTENTION

The is committed to the storage specified in its properties. Packages can only be committed to an active
storage.

When a package is committed, the lock is removed. The package and its components become available for
other system users.

Installing packages from repository

Introduction

Bpm’online developer guide 71

Installing a package from the repository is adding the package and all its dependencies from the version control
system repository (SVN) to bpm’online.

Package installation is required when:

Multiple developers work on the package functionality.
Changes are transferred between applications.

ATTENTION

The information below are applicable when working with SVN repositories via the bpmonline built-in
development tools. The information are not applicable when the file system design mode is turned on (see
"Working with SVN in the file system").

Package installation sequence

Important!

Before updating the application via SVN, you must back up the database. If the application is deployed in the
cloud, you should contact support.

Please note that you cannot revert to the previous version of the application via SVN.

The package is installed from the repository using the actions in the [Configuration] section. More details about this
section tools can be found in the "The [Configuration] section” article.

To install the package from the repository, go to the [Configuration] section, right-click the [Packages] tab and select
the [Install Package from Repository] option (Fig. 1).

Fig. 1. The [Packages] tab context menu

Then, in the dialog box, select the repository, the name and version of the package to install, and then click the
[Install] button (Fig. 2).

Fig. 2. The dialog box for the package installing from the repository

Bpm’online developer guide 72

During the package installation, the bound data will be automatically applied, and dependencies will be installed.

If, for any reason, the automatic application of changes has not been enabled, then changes must be applied
manually. To do this, perform the following actions for the installed package in the [Configuration] section:

1. Generate the source codes for items that require it.
2. Compile the modified items.
3. Update the database structure.
4. Install SQL scripts if necessary.
5. Install the connected data.

NOTE

Checkboxes in the [Database Update Required] and [Require database installation] columns on the
[Schemas], [SQL scripts] and [Data] tabs of the [Configuration section] indicate that a schema, script or data
needs to be installed in the database or requires modification of the database structure. In case of errors, the
text of the last error can be seen in the [Last error message text] column.

Please note that not all of these columns are displayed on the [Schemas], [SQL scripts] and [Data] tabs of the
[Configuration] section. If necessary, you can add them using the [Columns setup] context menu.

ATTENTION

Starting with version 7.11, after installing or updating a package from SVN, bpm'online application requires
compilation (the [Compile all items] action in the [Configuration] section). In the process of compilation, the
static content will be generated (see "Client static content in the file system" article).

Changes in package hierarchy
When you install a custom package, the system checks its dependencies and optionally installs or upgrades all the
packages the current package depends on. For example, when you install the [UsrCustomPackage] package from the
repository, the [UsrDependentPackage] package dependency will also be installed (Fig. 3).

Fig. 3. The [Changes] window after a package has been installed from SVN

Bpm’online developer guide 73

This modifies the package hierarchy in the application (Fig. 4).

Fig. 4. New application package hierarchy

When a custom package is installed from SVN, the package hierarchy will be modified in the following way:

1) The application detects all dependencies of the installed package specified in its metadata in the DependsOn
property.

{
 "Descriptor": {
 "UId": "8bc92579-92ee-4ff2-8d44-1ca61542aa1b",
 "PackageVersion": "7.8.0",
 "Name": "UsrCustomPackage",
 "ModifiedOnUtc": "\/Date(1522671879000)\/",
 "Maintainer": "Customer",
 "Description": "Package created by user",
 "DependsOn": [
 {
 "UId": "51b3ed42-678c-4da3-bd16-8596b95c0546",
 "PackageVersion": "7.8.0",
 "Name": "UsrDependentPackage"
 },

Bpm’online developer guide 74

 {
 "UId": "e14dcfb1-e53c-4439-a876-af7f97083ed9",
 "PackageVersion": "7.8.0",
 "Name": "SalesEnterprise"
 }
]
 }
}

2) Then the system checks whether the package dependencies are installed in the configuration. If the dependencies
are installed, they update, if not — the application installs them.

ATTENTION

If the package dependencies are not found in the repository (e.g., repository is not registered or not active),
you will see the package installation error message. When you install the package the whole hierarchy of its
dependencies is updated, so all repositories that may contain the package dependencies should be included in
the configuration and activated.

3) When a package is installed, only the dependencies installed from the version control system (SVN) are installed
or updated. Packages installed from zip files and pre-installed packages are not updated.

ATTENTION

If the workspace is missing any pre-installed dependency packages that were installed from zip files, the
package installation will fail.

You must first install the packages on which the installed custom package or its dependencies depend on.

Updating package from repository

Introduction
The package upgrade process is downloading to the application all changes of the selected package and all
its dependencies changes from the version control system storage (SVN)

The sequence of package update from SVN
Open the context menu, go to the [Packages] tab and select the [Update package from storage] action (Fig. 1).

Fig. 1. The [Update package from storage] action

Bpm’online developer guide 75

This will start the update process of the selected package and all its dependencies from the active SVN storages.

The system will detect all dependencies of the installed package specified in its metadata in the DependsOn
property. The metadata and the package properties are described in detail in the "Package structure and
contents” article.

ATTENTION

If package dependencies are located in an inactive storage, the package update error message will pop up.
When a package is updated, the whole hierarchy of its dependencies are updated as well, so all SVN storages,
which can be contain package dependencies, must be activated.

ATTENTION

Starting with version 7.11, after installing or updating a package from SVN, bpm'online application requires
compilation (the [Compile all items] action in the [Configuration] section). In the process of compilation,
the static content will be generated (see "Client static content in the file system" article).

Exporting packages from the application interface

Introduction
To transfer custom packages between non-shared environments (e.g. development and test environments), you
must first export these packages to the file system.

Since bpm’online version 7.10.1, packages can be exported directly from the application interface. This enables you
to export packages without using the Workspace Console utility.

ATTENTION

The [Custom] package cannot be transferred between applications. Learn more about this package in the

Bpm’online developer guide 76

"Package [Custom]" article.

Exporting packages
To install packages from the application interface:

1. Go to the [Configuration] section.

2. On the [Packages] tab, select one or multiple packages (hold Ctrl or Shift to select multiple packages).

3. Trigger the [Export packages to archive] action (Fig. 1).

Fig. 1. The [Export packages to archive] action

Depending on the browser settings, the zip-archive with packages will either be saved to the default downloads
folder, or the browser will display a dialog box for selecting a folder for the archive (Fig. 2).

Fig. 2. A dialog box for selecting a folder for the archive

Bpm’online developer guide 77

The zip-archive will contain one or multiple packages (Fig. 3) and can be imported into another bpm'online
application (see "Installing marketplace applications from a zip archive").

Fig. 3. A zip-archive with packages

ATTENTION

You cannot create packages in a production environment, then create a development environment on the basis
of the production environment, finalize the functionality of packages, and transfer them back to the
production environment. The development sequence is described in more detail in the "Recommended
development sequence" article.

Bpm’online developer guide 78

Creating a package in the file system development mode

Introduction
If you do not intend to use SVN in the development process, then the process of creating a package is the file system
development mode is the same as that in the normal mode. For more information on creating packages please refer
to the “Creating and installing a package for development” article.

Attention!

The working with SVN mode is enabled in the bpm'online by default. If the [Version control system
repository] field is empty when a package is created, then the package will not be bound to the repository. The
versioned development of this package can be performed only after you manually bind it to the repository
from the file system.

When the file system development mode is enabled, the SVN integration mechanism is turned off. The
packages from the SVN repository can be only installed and updated with built-in tools. It is recommended to
create a package with built-in tools and bind it to the repository with the external utilities like TortoiseSVN.

Attention!

Ensure that application is configured to access the SVN repository before binding the package to the
SVN repository when development mode in the file system is enabled.

Package creation process
1. Create a package in the application

Select the [Add] action in the context menu of the [Packages] tab in the [Configuration] section (Fig. 1).

Fig. 1 Adding a package in the [Configuration] section

Fill out the main package properties fields in the package edit page (Fig. 2). Please see the "Creating and
installing a package for development” article for details. Specify the repository name to which the package will
be bound.

Bpm’online developer guide 79

https://tortoisesvn.net/

Attention!

The repository name in the package edit page indicates that the package will be created by third-party tools in
this repository. This allows updating the package from the [Configuration] section in future.

Fig. 2 Package summary

2. Download created package to file system

Click [Download packages to file system] (Fig. 3).

Fig. 3 [Download packages to file system] action

As a result, the empty package will be downloaded to the [Path to the installed
application]\Terrasoft.WebApp\Terrasoft.Configuration\Pkg\sdkPackageInFileSystem folder (Fig. 4).

Fig. 4 Package in the file system

Bpm’online developer guide 80

NOTE

When the file system development mode is enabled, the package must be manually added to the repository.

3. Create necessary folders for the packages in the SVN repository

Go to the repository specified in the package edit page to create folders for the package via SVN client (such as
TortoiseSvn). Create a folder in the repository with the name that matches the name of the package created in the
application.

Attention!

This is a brief example of working with SVN via TortoiseSvn. More information about working with SVN
repository via TortoiseSvn can be found in the documentation.

Fig. 5 Creating a folder in the SVN repository

Bpm’online developer guide 81

https://tortoisesvn.net/
https://tortoisesvn.net/support.html

Create branches and tags sub-folders in the created folder to replicate the bpm’online flat package structure.
Finally, create a folder with the name that matches the package version number (7.10.0) in the branches folder
(Fig.6).

Fig. 6 Flat package structure in the repository

Bpm’online developer guide 82

4. Create a working copy of the package version branch

To create a working copy of the package version branch, execute SVN checkout from the repository folder with the
name that matches the package version number, to the package folder in the file system (Fig. 7) and confirm the
download to the existing folder (Fig. 8).

Fig. 7 Obtaining the working copy of the package version branch from the repository

Bpm’online developer guide 83

Fig. 8 Confirmation of the SVN checkout operation to the existing folder.

As a result the [Path to the installed
application]\Terrasoft.WebApp\Terrasoft.Configuration\Pkg\sdkPackageInFileSystem package folder will be
bound to the branch of the 7.10.0 version of the package in the repository (Fig. 9).

Fig. 9 Visual mapping of the bound of the folder with the SVN repository

Bpm’online developer guide 84

5. Commit the package folder in the repository

To commit the package folder, add all the contents of the following folder to the repository: [Path to the installed
application]\Terrasoft.WebApp\Terrasoft.Configuration\Pkg\sdkPackageInFileSystem. After adding the folder to
the repository, execute the “Commit” command (Fig. 11).

Fig. 10 Adding a folder to the repository

Fig. 11 Committing changes to the repository

Bpm’online developer guide 85

See also
Working with SVN in the file system
How to install an SVN package in the file system development mode
How to bind existing package to SVN
Updating and committing changes to the SVN from the file system
Creation of the package and switching to the file system development mode

Binding data to packages

Introduction
It is often necessary to provide certain data together with newly developed functions when delivering custom
packages. The data might include lookup values, new system settings, demo section records, etc.

Use the [Data] tab of the [Configuration] section to bind needed data to a package containing the developed
function. You can find general information about the tab including recommendations and common data binding
mistakes in the "The [Configuration] section. The [Data] tab” article.

Case description
Binding two demo records and their linked records from other sections for the [Books] custom section.

ATTENTION

When adding a section, the data necessary for registration and correct section operation are linked to the
package via wizard (Fig.1).

Bpm’online developer guide 86

Fig. 1. Data collection linked to the package via wizard

Source code
You can download the package with case implementation using the following link.

Case implementation algorithm
1. Adding a new [Books] section

ATTENTION

Create a new section function in a separate developer package. Select the developer package in the
[Default value] column of the [Current package] system setting to create schemas in the developer package via
section wizard. After wizard operation is over, you can set up Custom package as your current package.

Use the section wizard to add a new [Books] section. Section properties and field location on record edit page are
shown on fig. 2 and fig. 3.

Fig. 2. The [Books] section properties

Bpm’online developer guide 87

https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkBookExample_18.04.25_10.55.21.zip
https://academy.bpmonline.com/documents?product=enterprise&ver=7&id=1245

Fig. 3. Record edit page properties

The base properties of edit page columns are specified in table 1.

Table 1. Edit page column properties of section records

Title Name (Code in
DB)

Data type

Name UsrName String

Description UsrDescription String Multiline text

ISBN UsrISBN String

Author UsrAuthor The [Contact] lookup. The column value will be bound
to one of the [Contacts] section records.

Publisher UsrPublisher The [Account] lookup. The column value will be bound
to one of the [Accounts] section records.

Bpm’online developer guide 88

Price UsrPrice Decimal

2. Adding needed records to the section

Add two demo records to the section (Fig.4). Add records to the bound [Contacts] and [Accounts] sections if needed.

Fig. 4. Section records

3. Binding contact data to the package

Since the [Books] section records are bound to the [Contacts] section records by the UsrAuthor column, bind the
author data to the package first. Run the [Add] command on the [Data] tab of the [Configuration] section and set up
the following properties of the page for binding data to package (Fig/5):

1. [Name] – “ContactsInBooks”

2. [Object] – “Contact”

3. [Installation type] – “Installation”. Possible installation types are described in the "The [Configuration]
section. The [Data] tab" article.

4. [Columns] – select only the populated columns. It is required to select the [Id] column.

5. Data filtering – filter the needed data, for example, by contact name.

Fig. 5. Page for binding contact data to package

Bpm’online developer guide 89

NOTE

Filtering by the Id column is recommended (see the following step), since the full contact name can be
changed.

4. Binding account data to the package

Run the [Add] command on the [Data] tab of the [Configuration] section and set up the following properties of the
page for binding data to package (Fig/6):

1. [Name] – “AccountsInBooks”

2. [Object] – “Account”

3. [Installation type] – “Installation”

4. [Columns] – select only the populated columns. It is required to select the [Id] column.

5. Data filtering – filter the needed data, for example, by account identifier. You can determine the identifier from
the browser address bar by opening the needed record edit page (Fig. 7)

Fig. 6. Page for binding account data to package

Fig. 7. Determining the account identifier

5. Binding custom package data to the package

Run the [Add] command on the [Data] tab of the [Configuration] section and set up the following properties of the
page for binding data to package (Fig/8):

1. [Name] – “Books”

2. [Object] – “Books”

Bpm’online developer guide 90

3. [Installation type] – “Installation”

4. [Columns] – select only the populated columns. It is required to select the [Id] column.

5. Data filtering – filter the needed data. If a section contains only two records you can avoid using the filter (Fig.8).

Fig. 8. The page of binding custom section data

As a result of case implementation, three additional data collections for three sections will be bound to the package
(Fig.9).

Fig. 9. The [Data] tab of the developer package

Bpm’online developer guide 91

You can export packages to archive using the corresponding function (see “Exporting packages from the
application interface”). After you install the package into another application, the bound records will be
displayed in the corresponding sections.

Transferring changes between the working environments

Overview
It often becomes necessary to transfer individual changes between the working environments (applications) in
the development process, for example, when you install changes made in the development environment to a test
environment.

There are several ways to transfer changes between configurations in the bpm'online:

To transfer custom packages between non-shared environments (e.g. development and test
environments), you must first export these packages to the file system. How to do this, see the
"Exporting packages from the application interface" article.

Since bpm’online version 7.11 marketplace application can be installed from .zip archive. The marketplace
application is a set of bpm'online pacakges. Installation functions of the marketplace applications are
available in the [Installed applications] section. More information about installation functions can be
found in the "Installing marketplace applications from a zip archive" article.

Schema import and export is used for transferring one or more schemas, for example, when exchanging
incomplete features between developers. For more information about this method, see the "Transferring
changes using schema export and import” article.
Use version control system if you need to manage changes in different versions during development. This
option is also recommended if several developers are working with the same schemas simultaneously. For
more information about this feature, see the "Transferring changes using SVN” article.
If you install service packs provided by third-party developers, use the WorkspaceConsole utility. A
detailed procedure for uploading and downloading packages with the WorkspaceConsole utility is
described in the “Transferring changes using WorkspaceConsole” article.

Exporting packages from the application interface

Introduction
To transfer custom packages between non-shared environments (e.g. development and test environments), you
must first export these packages to the file system.

Since bpm’online version 7.10.1, packages can be exported directly from the application interface. This enables you
to export packages without using the Workspace Console utility.

ATTENTION

The [Custom] package cannot be transferred between applications. Learn more about this package in the
"Package [Custom]" article.

Bpm’online developer guide 92

Exporting packages
To install packages from the application interface:

1. Go to the [Configuration] section.

2. On the [Packages] tab, select one or multiple packages (hold Ctrl or Shift to select multiple packages).

3. Trigger the [Export packages to archive] action (Fig. 1).

Fig. 1. The [Export packages to archive] action

Depending on the browser settings, the zip-archive with packages will either be saved to the default downloads
folder, or the browser will display a dialog box for selecting a folder for the archive (Fig. 2).

Fig. 2. A dialog box for selecting a folder for the archive

Bpm’online developer guide 93

The zip-archive will contain one or multiple packages (Fig. 3) and can be imported into another bpm'online
application (see "Installing marketplace applications from a zip archive").

Fig. 3. A zip-archive with packages

ATTENTION

You cannot create packages in a production environment, then create a development environment on the basis
of the production environment, finalize the functionality of packages, and transfer them back to the
production environment. The development sequence is described in more detail in the "Recommended
development sequence" article.

Bpm’online developer guide 94

Installing marketplace applications from a zip archive

Introduction
Since bpm’online version 7.11, marketplace applications can be uploaded and installed directly in the application
interface. This functionality is available in the [Installed applications] section. Installing the application directly
from the marketplace is described in more detail in the “Installing applications from the marketplace” article.

To install the marketplace application from the bpm'online interface, a *.zip archive containing package archives
(*.gz) is used. This archive can be exported from the [Configuration] section. Package archives (*.gz) can be
downloaded from the database or from the SVN repository using the WorkspaceConsole utility (see:
“Working with WorkspaceConsole”).

ATTENTION

When installing the marketplace application from *.zip-archive, the name of the application in bpm'online is
formed based on the name of *.zip-archive. If you use a *.zip archive with the same set of packages but with a
different name when you update this application, a new application record will be created in the [Installed
applications] section.

ATTENTION

You cannot use the [Custom] package in the marketplace application. For more information about a [Custom]
package, please see the “Package [Custom]” article.

Installing an applications from a zip archive
To install packages from the application interface:

1. Go to the [System Designer] section and in the [Admin area] group, click the [Installed applications] link (Fig. 1).
The [Installed applications] section will open in a separate window.

Fig. 1. System designer

Bpm’online developer guide 95

https://academy.bpmonline.com/documents/studio/7-11/installed-applications-section
https://academy.bpmonline.com/documents/studio/7-11/installing-applications-marketplace

2. In the [Installed applications] section, select the [Install from file] command from the [Add application] drop-
down menu (Fig. 2).

Fig. 2. The marketplace application installation menu

A page for installing an application will open in a separate window (Fig. 3).

Fig. 3. Application installation page

Bpm’online developer guide 96

3. Click on the [Select file] button, and select the necessary * .zip archive (Fig. 4).

Fig. 4. Selecting a package for import

The system will be backed up (Fig. 5) and the application will be installed (Fig. 6).

Fig. 5. System backup

Bpm’online developer guide 97

Fig. 6. Application setup

A corresponding message will be displayed (Fig. 8).

Fig. 7. Successful installation message

Bpm’online developer guide 98

Fig. 8. Unsuccessful package installation message

After the installation is complete, you can download the log file by clicking the [Download Installation Log] button.

ATTENTION

You cannot create application packages in a production environment, then create a development environment
on the basis of a production environment, refine the functionality of packages, and transfer them back to the
production environment. For more information about development sequence, see the “Recommended
development sequence” article.

Restoring from backup
If you encounter an error during the installation process, you can restore the previous configuration by clicking the
[Restore packages from backup] button (Fig. 8). After the backup is restored, a corresponding message will be
displayed (Fig. 9). You can select another package file for import.

Fig. 9. Restoring a backup copy message

Bpm’online developer guide 99

Transferring changes using schema export and import

Introduction
One way to transfer changes between work environments or between configurations of the same work environment
(usually a development environment) is by exporting and importing schemas.

The schema export and import is used in the following cases:

1. Transferring “work-in-progress” schemas from one developer to another, as committing incomplete features
to the version control system (SVN) is not a good practice.

2. Saving development results (if the SVN version control system cannot be used for this purpose).
3. Quick schema transfer between the environments.

Advantages:
Ability to replace contents of a schema quickly.

Disadvantages and limitations:
The mechanism enables you to export and import only schemas. You cannot export or import packages. In
addition, it is not possible to transfer data connected to the packages.
Administrator access rights in the application are required.
It is not possible to load several schemas at the same time.

Exporting schemas
To export a schema:

1. Go to the [Configuration] section of the system designer.
2. Select the package in which the schema is located.
3. Select a schema to export.

Bpm’online developer guide 100

4. Click the [Export to file] on the [Actions] tab (Fig. 1,1).

Fig. 1. Configuration action for client schema export and import

A file with the schema name and *.md extension saved on your hard drive as a result.

Importing schemas
To import a schema:

1. Go to the [Configuration] section of the system designer.
2. Select the package in which you want to import a schema.
3. Click the [Import from file] on the [Actions] tab (Fig. 1, 2).
4. Select the file of the previously exported schema in the dialog box (Fig. 2).
5. Compile the configuration by selecting [Compile all items] on the [Actions] tab (Figure 1, 3).

Fig. 2. Import file selection window

Attention!

When importing multiple schemas, you need to consider their mutual dependencies. First, you need to import
all the dependency schemas, and then import the schemas that depend on them. For example, first you need to
import the object schema, and then the page layout view model, which is dependent on the object schema.

Transferring changes using SVN

Bpm’online developer guide 101

Introduction
The version control system is an optional component. Although bpm'online can work without it, the version control
system is required in case a user driven application customization is expected. If the development is carried out by a
team of developers, using SVN to transfer and merge changes becomes essential.

The purpose of version control system in bpm'online is:

Transfer of changes between working environments, for example, between development environments.
Storage of configuration schemas and package versions.

Bpm'online supports the Subversion (SVN) version control system 1.8 and up. Details on how to use SVN can be
found in the documentation. SVN repository configuration and bpm'online integration is described in the "Create
repository in SVN server” article.

Benefits of transferring changes via SVN
Ability to transfer both the schemas and packages between working environments and configurations.
Ability to transfer package data, such as lookup or section records.
Automatic installation of SVN dependency packages.
Autonomy from the support service in terms of transferring changes in the cloud.

The recommended steps for transferring changes via SVN

ATTENTION

The information below are applicable when working with SVN repositories via the bpmonline built-in
development tools. The information are not applicable when the file system design mode is turned on (see
"Working with SVN in the file system"). See "Working with SVN in the file system" for more
information.

1. Verify that the application to which you want to transfer changes is configured to
work with SVN.

For more details about the application setup for working with the version control system, please see the "Create
repository in SVN server” article.

2. Enable mechanisms for automatic application of changes.

To apply the necessary changes after the transfer, enable mechanisms for automatic application of changes. To do
this, you need to set the following keys of the appSettings element in the Web.config file (located in the
Terrasoft.WebApp directory) to true:

<add key="AutoUpdateOnCommit" value="true" />
<add key="AutoUpdateDBStructure" value="true" />
<add key="AutoInstallSqlScript" value="true" />
<add key="AutoInstallPackageData" value="true" />

The AutoUpdateOnCommit key is responsible for automatically updating packages from the SVN before they are
committed to the repository. If this key is set to false, then, before the commit operation can be run, the application
will notify the user about the need to update the local copy from SVN if package schemas have been modified. The
AutoUpdateDBStructure, AutoInstallSqlScript and AutoInstallPackageData keys are responsible for automatically
updating the database structure, installing SQL scripts, and the data bound to package.

3. Make sure that all necessary data are bound to package.

Bpm’online developer guide 102

http://svnbook.red-bean.com/

You need to make sure that all the data you need to migrate is bound to the corresponding package before the
package transfer. These data are represented by lookup and section records.

NOTE

If a section wizard was used when creating sections, then certain data is automatically connected to the
current package.

4. Make sure that all dependencies of the package can be transferred.

Dependencies on other packages can be added to the custom package during the development process. If the
dependency packages are developed by third-party developers, you need to make sure that they are already installed
in the application into which the user package will be transferred. If the dependency packages are in an accessible
SVN repository, they will be installed automatically if necessary.

5. Install the package from the repository

The sequence of package installation is described in detail in the "Installing packages from repository".

Important!

Before updating the application via SVN, you must back up the database. If the application is deployed in the
cloud, you should contact support.

Please note that you cannot revert to the previous version of the application via SVN.

ATTENTION

Starting with version 7.11, after installing or updating a package from SVN, bpm'online application requires
compilation (the [Compile all items] action in the [Configuration] section). In the process of compilation, the
static content will be generated (see "Client static content in the file system" article).

Transferring changes using WorkspaceConsole

Introduction
The WorkspaceConsole utility is designed to work with bpm'online packages. Use the utility to:

Export packages from development environments and migrate them to test environments or production
environments (the packages are saved as archives).
Install new packages when upgrading or migrating from development environments.
Export and import localization resources of schemas.
Create and migrate between workspace applications.
Work with configuration schemas.

Attention!

Bpm'online production environments that actively run business processes should not be updated during
business hours. Updating production environments during business hours may cause loss of data.

First, you must set up the WorkspaceConsole before start working with it. The setup procedure is described in the
“WorkspaceConsole settings” article.

NOTE

Bpm’online developer guide 103

WorkspaceConsole needs access to the bpm’online database. If the application is deployed in the cloud, then
only employees of the cloud services department are able to work with the WorkspaceConsole utility. Please
contact the support if you need to transfer changes to a cloud application.

Benefits of transferring changes via the WorkspaceConsole
Ability to transfer both the schemas and packages between working environments and configurations.
Ability to transfer package data, such as lookup or section records.
Ability to work separately with localization resources, bound data and SQL scripts.

The recommended steps for transferring changes via
WorkspaceConsole

1. Check the data binding.
Be sure to check data binding before exporting packages. These data include: system settings, lookups, section
filling, etc.

Attention!

If the section was created via the section wizard, then the data necessary for its work are bound to the
corresponding package automatically. However, for the section to be displayed in the workplace after import,
you must bind the corresponding value of the SysModuleInWorkplace object.

2. Backup the application database where you want to transfer the changes

You need to back up the database before updating the application with the WorkspaceConsole. If you use
WorkspaceConsole commands incorrectly, the data could be damaged or lost.

3. Export the packages from the application database that contains the changes to
transfer

To export the packages from the database, you need to run the WorkspaceConsole with the following parameters
(table 1):

Table 1. WorkspaceConsole parameters for exporting database packages

Parameter Value Description
operation SaveDBContent Saves the contents of database to the file system. The

content type is determined by the contentTypes
parameter value. The destinationPath parameter
determines where to export the contents in the file
system.

contentTypes Repository The database content type to be exported. The
Repository value specifies that a workspace (with the
name specified in the workspaceName parameter)
must be exported to a specific directory (specified by
the destinationPath parameter).

workspaceName [Workspace name] Workspace (configuraion) name where uploaded
packages are defined. All users work in the Default
workspace by default.

destinationPath [Path to local directory] A path to local directory in the file system. The
packages archived in *.gz format will be will be
exported to this directory.

An example of a database export command for the Windows command prompt:

Bpm’online developer guide 104

[Path to WorkspaceConsole]\Terrasoft.Tools.WorkspaceConsole.exe -
operation=SaveDBContent -contentTypes=Repository -workspaceName=[Workspace name] -
destinationPath=[Path to local directory]

After you run this command, the archives of all packages from the specified workspace will be exported into the local
directory.

NOTE

Use text editor (such as Windows notepad) to create a batch file (* .bat) with the necessary command in it.

4. Import the packages to the application where the changes must be transferred

To import the database packages, run the WorkspaceConsole with the following parameters (table 2):

Table 2. WorkspaceConsole parameters for database packages load

Parameter Value Description
operation InstallFromRepository Imports the contents of packages from archives to the

database. The bound SQL-scripts, source code
generation and installation of bound data are
performed if needed. Operation works only with new or
modified packages and their elements.

packageName [Package name] Name of a package from the configuration specified in
workspaceName parameter. Note that all the packages
that the specified package depends on will be installed
as well. Optional parameter. If it is not specified, then
all packages from the configuration will be imported.

workspaceName [Workspace name] Workspace (configuraion) name where installed
packages are defined. All users work in the Default
workspace by default.

sourcePath [Path to local directory] A path to a local directory in the file system. The
directory must contain the package archives for
importing (*.gz files).

destinationPath [Path to local directory] A path to local directory in the file system. Packages
from the directory determined in sourcePath
parameter will be unpacked here.

skipConstraints false The option to skip creating foreign keys in the database
tables. Can be true or false.

skipValidateActions true The option to skip checking for possibility of the
creating table indexes during the database structure
update. Can be true or false.

regenerateSchemaSources true Indicates the need to regenerate the source code after
saving the packages in the database. Can be true or
false.

updateDBStructure true Indicates the need of modify the database structure
after the package installation. Can be true or false.

updateSystemDBStructure true Indicates the need to modify the structure of the
system schema database before the package
installation. Also creates all missing indexes in the
system tables. Can be True or false.

installPackageSqlScript true Indicates the need to run SQL scripts before and after
package installation. Can be True or false.

installPackageData true Indicates the need to install the data bound to the

Bpm’online developer guide 105

packages after the package installation. Can be True or
false.

continueIfError true Indicates the need of interrupt or resume the
installation on the first error. If this parameter is set to
true, the installation process will continue, even if
errors are detected. The user will receive the list of
errors after the installation. Can be True or false.

logPath [Path to local directory] A path to the directory where the log of the completed
operation will be created. The file name consists of the
date and time of the operation launch.

An example of a package installation command for the Windows command prompt:

[Path to WorkspaceConsole] -packageName=UsrCustomAuto -workspaceName=Default -
operation=InstallFromRepository -sourcePath=[Path to package archives] -
destinationPath=[Package extraction path] -skipConstraints=false -
skipValidateActions=true -regenerateSchemaSources=true -updateDBStructure=true -
updateSystemDBStructure=true -installPackageSqlScript=true -installPackageData=true -
continueIfError=true -logPath=[Path to the logs]

5. Restart the application in IIS

The modifications are made by the WorkspaceConsole utility directly into the database and therefore are not
available for any application that is already running. Restart the application in IIS for the changes to take effect.

Creating a custom client module schema

Introduction
Client Modules are separate functional blocks, downloaded and run on demand in accordance with the AMD
technology. System functions are implemented via client modules. All client modules in bpm’online share
description structures that correspond with AMD module description format. Custom module types are described in
the "Client Modules” article.

The following client module types are available in bpm’online:

non-visual modules (module schema)
visual modules (view module schema)
expanding modules and replacing client modules (Replacing schema of the custom model).

The procedure for creating a custom schema differs for various types of schemas.

Creating a new schema of the non-visual module
Non-visual modules represent system functionality that is not associated with data binding or data display in the UI.
Examples of non-visual modules in the system are business rule modules (BuisnessRuleModule) and utility modules
that implement utility functions.

To create a non-visual module schema:

1. Go to the [Configuration] section and select custom package to add new schema.

2. On the [Schemas] tab, select [Add] — [Module] (Fig. 1).

Fig. 1. Adding new module schema

Bpm’online developer guide 106

3. Select the root element of the structure in the custom module designer (Fig. 2, 1) and fill out the properties of
the generated schema module (2):

Fig. 2. Client module designer

The main properties of the module schema are:

[Name] – schema name. May contain only Latin characters and numbers. Contains the prefix specified in
the [Object name prefix] system setting (SchemaNamePrefix).
[Title] – schema title. Can be localized.
[Package] – custom package where the schema is generated.

4. Add the module source code to the [Source code] tab (Fig. 2.3). You need to make sure that the module name in
the define() function is the same as the module schema name.

5. Save the module schema after making all the changes (Fig. 3):

Fig. 3. Saving the client module schema

Bpm’online developer guide 107

Creating a new view model schema.
Custom view model schema is a visual module schema. It is a configuration object for generating views and view
models by the ViewGenerator and ViewModelGenerator generators. For more information about the schema
structure, please see the “Client view model schemas” article.

To create a schema of the visual module:

1. Go to the [Configuration] section and select custom package to add a new schema.

2. Select one of the commands to add the schema from the “Additional” commands menu on the [Schemas] tab (Fig.
4):

Fig. 4. Commands for adding view model schemas

You can add the following types of visual module schemas:

[Schema of the Edit Page View Model] – a schema of the edit page of section record.
[Schema of the Section View Model] – a schema of the section page with the list and dashboards.
[Schema of the Detail View Model with List] – a schema of the edit page of detail with list.
[Schema of the Detail View Model with Fields] – a schema of the edit page of detail with fields.

3. Select the root element of the structure in the designer of custom schema model (Fig. 5.1) and fill the
properties of the generated schema (2):

(Fig. 5). custom view model schemas designer

Bpm’online developer guide 108

The main properties of the view model schema match with the main properties of the non-visual module schema,
mentioned above.

4. Add the model schema source code to the [Source code] tab (Fig. 5.3). You need to make sure that the visual
module name in the define() function is the same as the view model schema name.

Save the module schema after making all the changes (Fig. 3).

Creating a replacing schema
Replacing schemas are used to extend the functions of the already existing schemas. The existing schemas also may
be replacing and belong to different packages.

To create the replacing schema of the non-visual or visual modules:

1. Go to the [Configuration] section and select custom package to add new module schema.

2. On the [Schemas] tab, select [Add] — [Replacing client module] (Fig. 6).

Fig. 6. Creating a replacing schema

3. Select the root element of the structure in the custom module designer (Fig. 7.1).

Bpm’online developer guide 109

(Fig. 7). Creating a replacing schema

4. To make the replacing module for a specific section or page, specify the title of the base view model schema that
you want to replace in the [Parent object] field of the schema properties. For example, to create a replacing schema
for the [Contacts] section you need to specify the ContactSectionV2 as a parent object. Start typing the “Contact
Section” schema title in the [Parent object] field of the replacing schema properties and select the corresponding
value from the drop-down list.

After confirmation of the selected parent object (Fig. 8), the other property fields are filled out automatically (Fig. 9,
1).

Fig. 8. The confirmation dialog for using the parent schema

Fig. 9. A replacement client schema in the client schema designer

Bpm’online developer guide 110

5. Add the model schema source code to the [Source code] tab (Fig. 9.2). You need to make sure that the replacing
module name in the define() function is the same as the view model schema name.

6. Save the module schema after making all the changes (Fig. 3).

Creating the entity schema

Introduction
The ORM (Object-relational mapping) objects in bpm'online are based on bpm'online objects — entities. An entity is
a business model that allows you to declare a new class of ORM model on the server core level. At the base level,
creating an entity means creating a table with the same name and with the same columns as the created object. In
most cases, each entity is a system representation of a table in the database.

Bpm'online configuration is based around schemas. Every type of the configuration item is represented by a schema
of the appropriate type. From the implementation view point, any type of schema is a kernel class that is inherited
from the base Schema class. More information about schemas and their properties can be found in the "Packages,
schemas, modules” article.

An entity as a configuration element is presented by entity schema that is implemented by the EntitySchema class.
The composition of the columns indexes and methods is described in entity schemas.

There are base and custom entity schemas.

Base entity schemas are not available for editing and are located in the pre-installed packages.

Custom entity schemas can be created as part of configuration and placed in custom packages. Base schemas can be
replaced by custom schemas.

Creating a custom object schema

Bpm’online developer guide 111

https://en.wikipedia.org/wiki/Object-relational_mapping

To create a custom schema, open the [Configuration] section, select a custom package, go to the [Schemas] tab
and select [Add] > [Object] command (Fig.1). As a result, the Object designer window will open, where you can
configure the created entity.

Fig. 1. Creating a new object schema

You need to assign values to the following required properties for the created entity schema (Fig. 2):

[Title] – localized schema title. The default value is set by object designer and can be modified.
[Name] – schema name. The default value is set by object designer and can be modified. Contains the
prefix specified in the [Prefix for object name] system setting (SchemaNamePrefix). By default the prefix
is “Usr”.

Attention!

Prior to 7.9.1 version, the maximum allowed length of the entity name was 30 characters. Starting with version
7.9.1, the maximum length of the entity name is 128 characters.

Entities with names longer than 30 characters can not be used on Oracle databases that are earlier than
version 12.2.

[Package] – a package where the entity schema will be placed after the publication. By default, it contains
a package name that was selected before the schema creation. Select one of the available packages from
the drop-down list.
[Id] – a system column used as a primary key in the database table. It is displayed in the extended view of
the "Workspace of the Object Designer”.

Fig. 2. Required entity schema properties in the object designer

Bpm’online developer guide 112

NOTE

To display all schema properties in the object designer, select the [All] option in the display menu of the
“Workspace of the Object Designer” object properties.

The entity is the representation of the table record in the database and it must have the id column used as a table
primary key. If you try to save an object schema without an Id, a warning will pop up (Fig. 3).

Fig. 3. Empty [Id] property warning

You can set the [Id] property value by selecting the column of specific type from the drop-down list (Fig. 4) or by
specifying one of base system object as a parent object.

Fig. 4. Setting the Id column

Bpm’online developer guide 113

NOTE

The procedure for adding the column is covered in the “Adding the custom column to the entity” section.

Specifying the parent object
The inheritance mechanism is implemented for bpm'online objects. It is used when the created entity schema must
have the functionality already implemented in one of the existing entities. The [Base object] and the [Base lookup]
system objects are used as parent objects in most cases.

To implement the inheritance of a new entity schema from an existing entity schema you need to select the root
element of the data structure in the entity schema (Fig. 5.1). In the [Parent object] field of the schema properties,
select the base entity schema whose functionality you need to inherit. To inherit the functionality of the [Base object]
schema, start typing the schema title in the [Parent object] field and select the schema from the drop-down list.

Fig. 5. Selecting the parent schema

Bpm’online developer guide 114

After confirming the selected parent object (Fig. 6), the columns inherited from that object will be added to the
entity structure.

Fig. 6. The confirmation dialog for using the parent object

Fig. 7. Columns inherited in the entity structure

Bpm’online developer guide 115

NOTE

Select the [Show system columns] checkbox in the settings window of the object designer (see “Workspace
of the Object Designer”) to display inherited columns.

Save the object schema to preserve the metadata changes. Publish the schema to create the corresponding table in
the database and make the changes available to bpm’online users.

Adding a custom column to an entity
This section covers adding an Id column to an entity schema.

Use [Add] button (Fig. 8) or [Add] command from the context menu of the Columns node in the entity structure to
add a custom column. Select the column type from the drop-down list and specify column properties. To add an Id
column, execute [Add] > [Unique identifier] command.

Fig. 8. Adding an Id column

Bpm’online developer guide 116

NOTE

Enable the [Show Entire List of Column Types] option in the properties window of the "Workspace of the
Object Designer” to display all types of columns in the “add” menu.

Specify the properties of the Id column (Fig. 9):

[Title] – column localized title. The default value is set by the object designer and can be modified.
[Name] – column name. The default value is set by the object designer and can be modified.
[Data type] – the type of the data in the column. The default value is set by object designer depending on
the selected command and can be changed.
[Required] – specify that the column is required. Since the Id column cannot be empty, select “Application
Level” for this property.
[Default value] – set the column’s default value. Choose “Select from System Variables” from the default
value dialog box (Fig. 10). Then select the name of the system variable in the [Name] field. Select the “New
Id” variable, which generates unique Ids.
[Usage mode] – select the “Advanced” mode.

Fig. 9. Adding the Id column

Bpm’online developer guide 117

Fig. 10. Setting the default value

Save the schema after setting values for all required attributes.

Adding indexes to the object
Indexes also can be added to the object. They will be automatically created in the database table when the object is
published.

To create an index by one column, select the [Indexed] checkbox in the [Behavior] property block. All reference
columns are indexed by default.

You can create a composite index in a following way:

1. Select [Add] > [Index] in the context menu of the [Indexes] element. You can specify a custom name for the
index or select the [Generate Name Automatically] option. After that, the unique index name will be
generated by the system.

2. To implement an integrity constraint for the columns of the index, i.e. to exclude the possibility of inserting
duplicate combinations of values, select the [Unique] checkbox for the index.

3. Then add the necessary columns to the index. Select [Add] > [Indexed column] in the context menu of the

Bpm’online developer guide 118

[Indexes] element. Select the object column and specify the sorting direction for the added indexed column.

Creating the replacing object schema
Replacing object schemas are used to extend the functions of the already existing schemas. The existing schemas
also may be replacing and belong to the different packages.

To create a replacing object schema, go to [Configuration] section and select custom package to add new module
schema. On the [Schemas] tab, select [Add] > [Replacing Object] (Fig. 11).

Fig. 11. Command for creating a replacing object schema

To implement the replacement of the new entity schema, select the root element of the data structure in the entity
schema (Fig. 5, 1). In the [Parent object] field of the schema properties, select the base entity schema whose
functionality you need to replace. To replace the functionality of [Base object] schema, start typing the schema title
in the [Parent object] field and select the corresponding value from the drop-down list.

After confirmation of the selected parent object (Figure 6), the other property fields are filled in automatically (Fig.
12, 1).

Fig. 12. Main properties of the replacing object schema

After implementing the changes, publish the replacing object schema.

Saving and publishing objects

Bpm’online developer guide 119

All structure changes of a business object are stored in RAM.

Save the schema to preserve the changes at the metadata level. To do this, select the [Save] command in the object
designer.

To implement changes at the database level, the object must be published. The created (or modified) physical
objects in the database (tables, columns, indexes) are the result of successful publication of an object in the
[Configuration] section.

Creating the [Source code] schema

Perform the following actions to create a non-visual module schema.

1. Go to the [Configuration] section and select the custom package to add a new schema.

2. On the [Schemas] tab, run the Add > Source Code command (Figure 1).

Fig. 1. Adding a new [Source code] schema

3. Select the root element of the structure (Fig. 2, 1) and fill in the created schema properties (2) in the schema
designer.

Fig. 2. The [Source code] schema designer

Bpm’online developer guide 120

Main [Source code] schema properties:

[Name] – schema name. May contain only Latin characters and numbers. Includes the [Prefix for object
name] system setting prefix (SchemaNamePrefix).
[Title] – schema title. May be localized.
[Package] – a custom package used to create a schema.

4. Use the [Source Code] tab of the schema designer to add the source code (Fig. 2, 3). Make sure that the source
code declares a class with a name that matches the schema name.

5. Publish the schema (Fig. 3):

Fig. 3. Saving and publishing a schema

ATTENTION

The schema designer uses RAM to process changes. Save the schema to apply changes to the schema
metadata. To do this, click [Save] in the object designer. Publish the schema to apply changes to the database.

Bpm’online developer guide 121

Development resources

Contents
Built-in development tools
Development in the file system
Working with WorkspaceConsole
Client code debugging
Server code debugging

Built-in development tools

Contents
The [Configuration] section
The [Configuration] section. The [Data] tab
Source code and metadata viewport
Designers of configuration items

The [Configuration] section

Introduction
The [Configuration] section is designed for managing configuration elements that implement bpm’online
configuration functions.

The [Configuration] section tools enable:

Managing packages that comprise system functions, as well as managing the package contents.
Expand and modify bpm’online functions.
Organize the integration with subversion control systems.
Manage the development processes and transfer changes between the working environments.
Manage workspaces.

To start working with the [Configuration] section, go to the [System designer] – [Advanced settings] –
[Configuration].

NOTE

You can open the [Configuration] section using a direct link: [application website address]/[Workspace
number]/WorkspaceExplorerModule.aspx, for example:
http://my.bpmonline.com/0/WorkspaceExplorerModule.aspx.

Starting with version 7.8.4, the WorkspaceExplorerModule.aspx has become available via alternative paths:
/dev.aspx or /dev. For example, http://my.bpmonline.com/0/dev.

The section interface is available on Fig. 1.

Fig. 1. The [Configuration] section

Bpm’online developer guide 122

Actions in the [Configuration] section
The actions are available on the [Actions] tab of the [Configuration] section side panel, as well as in the section’s
context menu. The actions are divided into several groups.

General

[Run] – opens a selected page configuration element in a separate window. The opened page will work as if was
opened from the regular UI. The actions is available only for schemas of the “Page” type.

[Open list of workspaces] – opens the [List of custom workspaces] window used for creating, setting up and deleting
workspaces.

[Open list of repositories] – opens the [List of repositories] window used for creating, configuring and deleting links
to subversion control repository.

[Export to file] – saves the selected schema to an *.md file, which can be imported to a different workspace (see
“Transferring changes using schema export and import”).

[Import from file] – imports the specified *.md file of a configuration element to a package currently selected in the
[Packages] list. As a result:

If the workspace does not yet have a schema with the same name, a new schema will be added. It will be
identical to the one originally saved to the imported *.md file.
If the workspace already contains an element with the same name, it will be replaced with the imported
element.

ATTENTION

If the workspace already contains a schema with the same name as the imported one, the current schema will
be completely overwritten. The new schema will be completely identical to the imported one, match its
properties and logic, including the inherited logic.

Configuration

[Compile modified items] – publishes changes from the configuration status whose status is “changed”. As a result,
application’s executable files will be updated. Changes will become available to the users who work in this
workspace.

[Compile all items] – publishes all configuration elements and compiles them. As a result, application’s executable
files will be updated. The [Compile all items] action also exports static content to the ...\Terrasoft.WebApp\conf (see
“Client static content in the file system”).

Bpm’online developer guide 123

[Restore from repository] – cancels all changes in the current workspace and restores its state to the last committed
state. Unavailable in the file system development mode (see “Development in the file system”).

[Verify configuration] – verifies the workspace for errors and invalid links (data, script, access to the base packages
from the dependent ones, etc). The verification results are presented to the user in the form of a report.

ATTENTION

Starting from version 7.12.1, the [Verify configuration] action has been deleted from the configuration.

[Download packages to file system] – exports the packages from the application database to the following directory:
...\Terrasoft.WebApp\Terrasoft.Configuration\Pkg. Available in the file system development mode only (see
“Development in the file system”).

[Update packages from file system] – imports the packages from the following catalog:
...\Terrasoft.WebApp\Terrasoft.Configuration\Pkg to the database. Available in the file system development mode
only (see “Development in the file system”).

Source Code

The actions in the [Source Code] group are designed for viewing and generating source code of bpm’online schemas.

ATTENTION

After updating the workspace from the repository and before compilation, run source code generation via the
[Generate where it is needed] action.

[Open] – opens the source code of the currently selected schema. The source code is opened in the source code
viewing window.

[Generate for selected items] – re-generates source code for selected configuration elements (“schemas”) only.
Changes in the selected schemas, as well as changes in their parent schemas will take effect.

[Generate for modified items] – generates source code only foe schemas that have been modified in the current
configuration.

[Generate where it is needed] – generates source code for all schemas that require source code generation.

[Generate for all items] – generates source code for all schemas in the current workspace. This operation may take
some time (longer than 10 minutes).

Metadata

The actions in the [Metadata] group are designed for viewing metadata in which the structure of bpm’online
schemas is saved.

[Open] – opens the metadata view window for the selected schema.

Profile

The actions in the [Profile] group are designed for deleting the data that was automatically saved in the current
user’s profile.

The profile data includes page area status (expanded/collapsed), status of page area splitters, designer view
preferences, list settigs (columns and their arrangement), etc.

[Clear for selected pages] – deletes all current user’s profile data for the selected page schemas.

[Clear for all pages] – deletes all current user’s profile data for all pages.

[Clear all] – deletes all current user’s profile data for all pages and designers.

Database Structure

The actions in the [Database Structure] group are designed for making changes in the bpm’online database
structure. For example, the database structure requires updating when adding new columns to objects, so that the
corresponding column appears in the database as well.

Bpm’online developer guide 124

[Update for selected items] – updates the database structure according to the changes in the selected schemas,
where the [Database Update Required] checkbox is selected.

[Update where it is needed] – updates the database structure according to the changes in all schemas, where the
[Database Update Required] checkbox is selected.

SQL script

The actions in the [SQL script] group are designed for making changes in the bpm’online database via SQL scripts.
These actions are available for items on the [SQL scripts] tab.

[Install selected items] – runs the scripts selected on the [SQL scripts] tab.

[Install where it is needed] – runs all SQL scripts of a package, where the [Database Update Required] checkbox is
selected.

Data

The actions in the [Data] group are designed for installing package data (such as lookup records) to the database.

[Install selected items] – install the data selected on the [Data] tab.

[Install where it is needed] – installs package data, where the [Needs to be installed in database] checkbox is
selected.

Configuration elements
Primary configuration element types are schemas, external libraries, SQL scripts and data. All configuration
elements are grouped on the corresponding tabs.

Schemas

The [Schemas] tab contains configuration element schemas. It displays complete list of configuration element
schemas or the list of schemas of the package currently selected on the [Packages] tab (Fig. 1).

Different types of schemas are identified with different icons:

 – objects

 – business processes and their actions

 – reports

 – source code and client modules

 – image lists

 – pages (legacy configuration element).

Use the list toolbar to add, edit and delete schemas.

[Add] – create a new schema. Use the menu commands of the [Add] button to add different types of schemas.
Clicking a schema type in the menu opens the corresponding schema designer (see “Designers of configuration
items”). For example, select the [Object] command in the [Add] menu to add a new object. The object designer will
open.

Fig. 2. Selecting the schema type

Bpm’online developer guide 125

[Edit] – opens selected schema in the corresponding designer for editing.

[Delete] – deletes the schema in the current working copy of the current workspace. Running the [Commit package
to repository] action will delete the schema in both the workspace and the repository.

Attention

After deleting an object schema from the configuration, the database still contains the table connected with the
object. Use correspondent SQL query to remove the table from the database.

External Assemblies

The [External Assemblies] tab contains the list of external libraries used in the configuration schemas (Fig. 3).

Fig. 3. The list of configuration items on the [External Assemblies] tab

Bpm’online developer guide 126

To add a new element on the tab, select a package to save the library in; click the [Add] button and select the needed
library (Fig. 4) and click [Load].

Fig. 4. Adding an external library to a package

SQL Scripts

The [SQL Scripts] tab contains the list of SQL scripts bound to the package.

Fig. 5. List of the configuration elements on the [SQL scripts] tab

To add an SQL script, click [Add] and select an item from the menu (Fig. 6).

Fig. 6. The [Add] menu on the [SQL scripts] tab

Bpm’online developer guide 127

[Add] – opens an SQL script binding window, where you can add the script code and set binding
parameters.
[Add file] – opens a window for selecting a script file, which will be loaded to the SQL script binding
window.

The toolbar also contains buttons for editing:

[Edit] – edit a previously added SQL script.

[Delete] – delete a previously added SQL script.

Data

The [Data] tab contains information on the package-bound data.

Fig. 7. List of the configuration elements on the [Data] tab

Use the list toolbar to add, edit and delete data.

[Add] – create a new “data” configuration element. Clicking this button opens the data adding window.

[Edit] – edit previously added data.

[Delete] – delete previously added data.

Package Dependencies

The [Package dependencies] tab displays hierarchy of all packages installed in the current workspace (Fig. 8).

Fig. 8. The [Package Dependencies] tab

Bpm’online developer guide 128

The [Configuration] section. The [Data] tab

Introduction
When delivering packages to customers, it is sometimes necessary to install additional data for correct operation of
all functions. Binding data to a package enables you to achieve this purpose.

The [Data] tab of the [Configuration] section displays information about the data bound to a package.

Fig. 1. List of configuration elements on the [Data] tab

Bpm’online developer guide 129

The [Data] tab actions
You can use the following actions on the tab (Fig.1):

[Add] – add new data. The action opens a new page of binding data to package.

[Edit] – edit previously bound data. The action opens a page of binding data to package for editing selected data
from the list.

[Delete] – delete previously bound data.

The page of binding data to packages
Displays properties of the data bound to a package. It contains the [Properties] and [Bound data] tabs.

The [Properties] tab

The [Properties] tab is used for installing the properties of package bound data (Fig.2).

Fig. 2. The [Properties] tab

The tab contains the following fields and groups:

1. [Name] – the name of the data bound to a package.

2. [Object] – the object that package bound data are connected to. Use the caption and not the object name when
you select it.

3. [Installation type] – specificities of adding the bound data to the application during package installation. The
following types are available:

[Initial installation] – the data will be added to the corresponding tables during the first package
installation. This installation type is enabled only if the package is installed via
WorkspaceConsole. Not recommended.
[Installation] – the data will be added to the application during the first package installation or
updated during the package update process. This installation type is the most common one and is
used by default.
[Update existing] – only the object columns with the selected [Forced update] checkbox in the
[Columns] group will be updated during the package update process. This installation type is used, for
example, when delivering the hotfix updates.

Bpm’online developer guide 130

https://en.wikipedia.org/wiki/Hotfix

4. [Columns] – the object bound columns selected in the [Object] field. All object columns are added by default. You
can edit the list of columns and their properties via actions. Column properties:

[Name] – the name of an object column.
[Forced update] – the checkbox indicating that data update is required when you update the package.
It is recommended for installation in case of using the [Update existing] installation type.
[Key] – the key column checkbox. By default the key is installed for the primary column of an object.
If compound keys are used in the database, select the columns that make up a compound key. The
primary column should not be included into a compound key.

5. Data filter – enables creating conditions that will be used when filtering the selected object records that are being
bound to a package. If the filter is not set, all the application data connected to the selected object will be bound. The
filtered data can be displayed via the [Display data] action.

The tab actions:

1. [Display data] – displays data bound to a package.

2. [Save] – saves the data bound to a package and closes the page of binding data.

3. [Cancel] – closes the page of binding data without binding the data.

The [Bound data] tab

The [Bound data] tab is used to display the data that have already been bound (Fig.3).

Fig. 3. The [Bound data] tab

The [Check data] action enables checking the correctness of already bound data and the data being bound.

Recommendations
1. The data installation type depends on how a customer will further work with data after the update. The
[Installation] type should be used in most cases.

2. We recommend to delete the [Created by], [Modified on], [Modified by], [Active processes] standard columns
from the list of columns to bind. Leave only the [Created on] service column.

3. We recommend you to be very careful with using the [Forced update] property of the bound columns. Avoid
selecting it for system setting values, external system keys,web-service URLs, i.e. for all columns that affect bpm-
online operation capacity.

4. Filter the bound data by identifier or object name (code). We do not recommend using object captions,
modification dates, etc.

Bpm’online developer guide 131

Typical mistakes in data binding
1. Additional data, such as custom lookup or system setting values are not bound for new functions created in
custom packages. New functions do not work after installation of a package into a new application, since the
necessary data are missing.

2. Filters are not set during binding data of a new custom section. As a result, all data including those used for
testing will be bound to the package. Such data volume can be quite big, which leads to longer package installation.

3. The bound data were not applied during package installation via SVN, for example, when automatic data applying
is disabled (see "Installing packages from repository”).

Source code and metadata viewport

You can open the source code and metadata viewport by the following actions [Source code] –› [Open] and
[Metadata] –› [Open], respectively. These viewports also can be opened from item designers.

Source code viewport (Figure 1) displays schema source code.

Fig. 1. — Source code viewport

The source code of the schema is generated by the system automatically and can be edited manually.

The metadata viewport (figure 2) is designed for viewing and manual editing of metadata of selected schemas.

Fig. 2. — Metadata viewport, tab [Metadata]

Bpm’online developer guide 132

The [Metadata] tab shows metadata in their initial view. Use this tab in order to edit metadata manually.

NOTE

The system generates metadata automatically upon saving schemas and it is not recommended to edit them
manually. Schema with incorrectly saved metadata can't be opened for editing in the designer unless metadata
errors are corrected.

The [Metadata (Read)] (Figure 3) displays data that is similar to that displayed by the [Metadata] tab, but in a form
suitable for reading. Internal identifiers (for example, "A2") are replaced with actual values of items, specified in the
[Name] property field (for example, "AccountName"). This tab can be used for manual editing of metadata.

Fig. 3. — Metadata viewport, tab [Metadata (Read-Only)]

Bpm’online developer guide 133

The [Modifications Package] (Figure 4) shows the list of differences in metadata between the current schema and its
parent schema.

Fig. 4. — Metadata viewpoint, tab [Modifications Package]

Designers of configuration items

Contents
Workspace of the Object Designer
Source code designer
Module designer
Process designer workspace
User task designer workspace
Workspace of image list designer
Report designer

Workspace of the Object Designer

The workspace of the Object Designer (figure 1) consists of several functional areas and contains controls and tools
used for creating objects.

Fig. 1. — The object designer workspace

Bpm’online developer guide 134

Object structure area (1)

The object structure area shows columns and indexes added to the object. For example, the structure of the
"Account" object contains the "Name", "Ownership Type", "Primary Contract", "Parent Account" and other columns.

Column types in the object structure depend on the type of data in the columns. Column indexes are designed to
speed up operations with the columns, such as search and filtering.

You can add necessary items to the object structure using the [Add] menu that contains the list of all available object
components.

Properties and events area (2)

You can change the set of individual characteristics of the object and its items on the [Properties] tab. This includes
setting the default value or making columns required.

This tab also provides the possibility for the generation of events, processing of which allows creating operating logic
of the object when the user takes certain actions, for example, filling of required fields before saving entries in the
course of event processing.

Toolbar (3)

In addition to the standard buttons, the Object Designer toolbar includes the following buttons:

Add Add an item to the object structure. The menu contains the list of all available
types of columns and indexes.

Delete Delete of columns from the object.

NOTE

Deleting columns from an object is similar to deletion of columns from the
corresponding table of the system database.

Up Move the item up in the object structure.

Down Move the item down in the object structure.

Settings window

Bpm’online developer guide 135

In addition to the standard items, the configuration window of the Object Designer also contains the following
items:

Show Indexes Display indexes in the object structure.

Show entire list of column
types

Display full list of structure items in menu [Add] (menu shows only basic items by
default).

Show system columns Display the columns, the [Use Mode] property of which contains an "Extended" or
"Never" value. For example, columns with information on primary keys ("ID") of
object records are not shown in the object structure by default.

Module designer

Introduction
The module designer is used to configure the [ClientUnitShema] schema. You can add a source code of the
JavaScript modules, their dependencies, localized strings, images, messages, parameters and CSS styles to the
schema.

A user interface of the module designer (Fig. 1) has several function areas, controls and instruments to create
module schemas.

Fig. 1 User interface of the module designer

Source code editor

The area of the source code editor (1) is used to edit the source code of the user JavaScript classes. With the editor
you can add, delete and format the source code of the added functions. The debugging of the source code is not
provided in the editor. The editor has three tabs:

[Source code] – the source core of the module.

[LESS] – the source code of the CSS styles connected with the module. Styles can be added with the LESS language

Bpm’online developer guide 136

compiled to CSS.

[Images (view only)] – allows to view the collection of the images added to the module resources.

Schema structure window

The schema structure area (2) is used to display the schema structure; the root element, resources, dependencies,
messages and parameters.

Property window

The properties of the element selected in the structure area (2) are displayed in the properties window (3). If the root
element of the structure is selected, then the main properties of the schema source code are displayed. If the
localized string is selected, then the properties of the localized string are displayed.

Configuration of the properties view is performed with menu commands (Fig. 2). Select the [All] command to
display all properties of the selected element of the structure.

Fig. 2 View properties configuration commands

Toolbar

The module designer toolbar (Fig. 1,4) has the following menu and buttons:

Name Purpose
Save Menu with save and publish commands.

Delete Deletes the selected element of the object structure.

Up Moving an element to a position higher from its current position in the object
structure.

Down Moving an element to a position lower from its current position in the object
structure.

Code validation Performs source code check for formatting errors. Result is displayed on the [JS
errors] tab.

Additional Contains commands for opening metadata view windows (Fig. 3).

Settings Opens the settings window

Fig. 3 Additional module designer commands

Bpm’online developer guide 137

Settings window

The window of the module designer settings (Fig. 4) has the following items:

Name Purpose
Show in Structure Select to show a name or a title of the schema element in the structure.

When Clicking "Save"
Button, Perform
Command

Select the command that will be performed after clicking the [Save] button. Possible
options include saving metadata and publishing a schema.

Fig. 4 Module designer settings

Source code designer

Introduction
Source code designer is used to configure schemas of the SourceCodeShema type. Use it to add the C# source code
of classes to the schema and localizable strings used to localize UI text implemented by these classes.

The working area of the source code designer (Fig. 1) consists of several functional areas and contains the controls
and tools necessary for creating source code schemas.

Fig. 1. Source code designer

Bpm’online developer guide 138

Source code editor

Use the source code editor area (1) to edit the C# source code of custom classes. Add, delete and format the source
code of custom functions. Note: Source code debugging is not available in the editor.

Schema structure window

The schema structure (the root element and localizable strings of the source code) is located in the structure area
(2).

Properties window

The properties window (3) displays the properties of the element selected in the schema structure (2). If you select
the root element of the structure, you will see the general properties of the source code schema on the right-hand
side. If you select a localizable string, you will see its properties.

Use the context menu (Fig. 2) to display all available properties of the selected element in the schema structure.
Click [All] to switch to advanced mode.

Fig. 2. Context menu

Bpm’online developer guide 139

Toolbar

The source code designer toolbar features the following menus and buttons:

Name Purpose
Save Saving and publishing the schema.

Delete Deleting the selected object.

Up Moving the selected element up.

Down Moving the selected element down.

Additional Opening the source code or the metadata window (Fig. 3).

Settings Opening the settings window.

Fig. 3. Source code designer settings

Settings window

The source code designer settings window (Fig. 4) includes:

Name Purpose
Show in Structure Choosing to display either the “Name” or the “Title” of the schema elements in the

structure.

When Clicking "Save"
Button, Perform
Command

Choosing what happens when you click the [Save] button. Possible options – “Save”
or “Publish” the schema.

Fig. 4. Source code designer settings

Bpm’online developer guide 140

Process designer workspace

Overview
The process designer workspace (Fig. 1) consists of several functional areas and contains control elements and tools
to create processes.

Fig. 1 The process designer workspace

Process elements workspace (1)
The [Elements] workspace contains a list of elements which a process can cosnsist of.

Depending on the purpose, elements are divided into several groups: [Actions], [Events], [Boolean operators].

A description of the items, their purpose and properties refer to the process setup documentation.

Designer workspace (2)

Bpm’online developer guide 141

https://academy.bpmonline.com/documents/technic-bpms/7-8-0/bpms-overview

A designer workspace displays a graphical representation of a process. You can edit captions and other properties of
the process elements. The elements are placed on the workspace by highlighting the desired item.

Process structure workspace (3)
The [Structure] workspace displays a tree structure of process elements, which are displayed on the workspace, and
those that appear only in the structure, such as process parameters.

Process structure can include the following groups of items:

• [Links] — displays a list of flows and process connecting objects.

• [Parameters] — sets the parameters of the process elements and their values.

• [Methods] — adds methods used in the process scripts.

• [Messages to user] (LocalizableStrings) contains a list of messages displayed to users in the system interface. These
messages can be localized.

• [Namespaces] (Usings) — adds a namespace to the process helps developers to simplify the work with the source
code of the process script.

Properties and events workspace (4)
A set of common characteristics of a process and each of its element is available in the [Properties] tab.

Each process element has individual properties. A set of properties depends on the element type. For example, in a
conditional flow the property is [Condition].

Toolbar (5)

The process designer menu contains the following commands:

• [Save] — saves changes made to the process schema. If no changes that require publication have been made to a
process, then after saving users will start work with the updated process.

• [Publish] — appears in the menu if changes that require compilation of the updated bpm'online executables have
been made to a process.

 — switch cursor to regular mode. Use this button to exit the vertical or horizontal displacement of the process
elements and to deselect an item in the [Items] workspace.

The [Advanced] process designer menu contains the following commands:

• [Open source code] — opens a window with the process source code.

• [Open metadata] — opens a window of the process metadata.

User task designer workspace

Overview
The User Task Designer (Fig. 1) consists of a number of functional areas and contains tools for creating custom
activities for use in business processes.

Fig. 1. User Task Designer work area

Bpm’online developer guide 142

Structure area (1)
The [Structure] area contains a tree-like structure of the business process elements.

The Properties Area (2)
Use the [Properties] area to modify the number of separate characteristics of a user task and any of its items.

The Toolbar (3)
In addition to the standard buttons, the toolbar of the user task designer also contains the following buttons:

[Add] – adds an item to the user task structure. The item currently selected in the structure will determine the type
of an item that will be added by clicking the button. For example, if the [Parameters] group or a parameter is
selected in the structure, clicking the [Add] button will add a new parameter. The [Add] button menu also contains
the following commands:

[Add Parameter] – adds a parameter to the user task structure.
[Add Method] – adds a method to the user task structure.

You can also add an item by using the [Add] command of the right-click menu in the [Structure] area.

[Delete] – deletes the selected item from the user task structure.

[Up] – moves an item up the list in the user task structure.

[Down] – moves an item down the list in the user task structure.

Workspace of image list designer

Bpm’online developer guide 143

Overview
The workspace of the image list designer (figure 1) consists of four main functional areas and contains necessary
tools for creating image lists.

Fig. 1. — Working area of image list designer

Specifics of the image list designer are described in chapter, "Specifics of handling of image list designer".

Designer image area (1)

List items in the form of image sketches are located in image areas.

Image list structure area (2)

A tree-type structure of image list items is displayed in the [Structure] area.

Property area (3)

You can change a set of individual characteristics of an image list and also each item in the [Property] area. Image
files are downloaded into the list through the same area.

Toolbar (4)

In addition to the standard buttons, the toolbar of image list designer also includes the following buttons.

Add Add a new item into the list. The item doesn't include images upon adding.

Delete Delete selected elements from image list.

Bpm’online developer guide 144

Up Movement of the item above its current position in the object structure.

Down Movement of the item below its current position in object structure.

Report designer

Overview
The [Report] configuration elements are used to form analytic reports to build printables.

Report designer is a separate application supplied along with the bpm’online and used to create and edit [Report] configuration
elements. Report designer should be installed on local PC.

ATTENTION

Zip archive with report designer can be downoloaded by this link
https://academy.bpmonline.com/sites/default/files/documents/downloads/ReportDesigner/ReportDesigner_7_10_en.zip

Contents
Setting up the report designer connection with server
Report designer workspace
Report designer features

Setting up the report designer connection with server

The report designer application starts with the login window (Fig. 1).

Fig. 1. Login window

Click the button to open additional login parameters used to select server and configuration (Fig. 2).

Fig. 2. Login window with additional parameters

Bpm’online developer guide 145

https://academy.bpmonline.com/sites/default/files/documents/downloads/ReportDesigner/ReportDesigner_7_10_en.zip

Description of all fields of login window is given in the Table 1.

Table 1. Login window fields

Name Description
User The user name that is used to log in to bpm’online system.

Password The password used to log in to bpm’online system.

Server Server with bpm’online application. If server is not present in the list, click the
 button and add corresponding server in the [Available Servers] window.

Configuration Name of the bpm’online configuration.

ATTENTION

Starting with version 7.10.0 only the Default configuration is available.

[Available Servers] window

[Available Servers] window (Fig.3) is used to configure parameters of connection to server with bpm’pnline
application. A list of commands enabled in the [Available Servers] window is given in the Table 2.

Fig. 3. [Available Servers] window

Table 2. Edit commands of the available servers list

Name Description
Add Adding a new server to the list. Click the button to open [Server Connection

Setup] window (Fig. 4). Here you can add a name and a link to the new server.

Bpm’online developer guide 146

Server link is the web address of the server (for example,
http://mywork.bpmonline.com).

Edit Modifying connection parameters of the selected server.

Delete Deleting the selected server from the list,

Fig. 4. Server Connection Setup window

Report designer workspace

Overview

ATTENTION

A Zip archive with the report designer can be downloaded via this
link https://academy.bpmonline.com/sites/default/files/documents/downloads/ReportDesigner/ReportDesigner_7_10_en.zip

The workspace of the report designer (Fig. 1) consists of several functional areas and contains tools that are necessary for creating
reports.

Fig. 1. Report designer workspace

Bpm’online developer guide 147

https://academy.bpmonline.com/sites/default/files/documents/downloads/ReportDesigner/ReportDesigner_7_10_en.zip

Report layout area (1)
This area is the breadboard layout of the report page. Any element from the [Items] window can be placed on this area.

The [Items] window (2)
The window contains a list of elements that can be added to the report page (labels, picture boxes, charts, page breaks, etc.).

Note

The position of the [Items], [Structure], [Data] and [Properties] windows can be arbitrary in the designer workspace. In
addition, some windows can be hidden. Click the [Windows] button and select a corresponding window to display or hide it.

The [Structure] window (3)
The window displays a tree-like structure of elements that were added to the report.

The [Data] window (4)
The window displays the structure of the report source data. For example, this area can display bpm’online section columns.
Columns displayed in the [Data] window can be placed to the report designer area.

The [Properties] window (5)
The window displays individual characteristics of the selected report element. Values of the properties can be modified.

The ribbon (6)
Ribbon is a set of toolbars at the top of the report designer workspace. Ribbon helps to find commands to perform tasks.

The [Report] toolbar

The [Report] tollbar is used to create, edit and save reports (Fig. 2). Description of the commands of the [Report] toolbar is given in
the Table 1.

The [Report] toolbar

Bpm’online developer guide 148

Table 1. Commands of the [Report] toolbar

Command Description
Create Creates a new report If another report was opened when the [Create] button was clicked, you will

receive a warning message to save the opened report before creating a new one. The report will be saved
under its current name.

Open Opens the selected report in the designer. Button menu contains the following items:

[Open] – opens the report from the bpm’online application database. After clicking this menu
item, the [Open Report from Server] window with a list of configuration elements of the
“Report” type will open. The selected report will be opened in the designer.
[Open from file] – opens the report from the .repx file.

Save Saves the report. Button menu contains the following items:
[Save] – saves the report to the system database without updating the bpm’online executable
files When you save a new report, a new configuration element of the "Report" type is created.
[Publish] – saves the report to the system database and updates the executable files.
[Save to file] – saves the report to the .repx local file . The .repx files can be opened only in
the report designer.

The [Data] toolbar

Connection of the report with objects and database is carried out via report data source. The report data source may include columns
of system objects and additional custom columns. For example, to add a list of accounts and their industries to the report, the data
source must contain the [Name] and [Industry] columns of the [Account] object.

The report data source is created with the [Data] toolbar (Fig. 3).

Fig. 3. [Data] toolbar

The [Data] button menu contains the following commands:

[Select Objects] – opens the [Objects for Report] window to select object columns. Data of these columns will be used to
create a report.
[Load from file] – loads the report data source from the .xsd file.
[Save to file] – saves current report data source to the .xsd file. For example, to edit the data source outside the report
designer.

The [Objects for Report] window will open by clicking the [Data] button.

NOTE

Before start the [Select Object] command, select a custom bpm’online package in the [Package] report property. The report
will be saved to this package. For example, this can be the [Custom] package.

The [Objects for Report] window

The [Objects for Report] window (Fig. 4) is used to add configuration object columns to the report data source.

Fig. 4. [Objects for Report] window

Bpm’online developer guide 149

The [Available objects] area

The [Available objects] area contains a list of system objects, the information from which can be used to build the report.

The string under the [Title] and [Name] is used for search of the objects. Enter a part of the name or a title to filter objects (Fig. 5).
Filter conditions that were applied to the area will be displayed in a separate string.

Fig. 5. the [Available objects] area with applied filter

To configure filter conditions click the [Edit filter] link. To disable filter without deleting filter conditions, disable the filter checkbox.
Click the button to clear the filter.

The [Selected objects] area

The [Selected objects] area displays structure of object columns that were added to the current report.

Click the button to add an object to the [Selected objects] area or click the to remove the object. For each object you need to
specify columns to be added to the report data structure.

Enable the checkbox at the left of the object column to add it to the data source.

Fig. 6. Adding object column to the report data source

Bpm’online developer guide 150

For example, if the report will contain names and main contact addresses, you need to add the [Contact] object and enable
checkboxes for the [Name] and [Address] columns in the [Selected objects] area.

The data structure tree in the [Selected objects] area contains information of the connected data. If an object column connects it
with other object, it will contain all structure of columns of the connected object and will be marked in the structure of the current

object with the icon. For example, for the [Contact] object it will be the [Owner] column.

Report designer features

Introduction
Building a report includes two main components: creating a data report structure and a layout of the report page.
Use the [Data] toolbar to create data source structure.

ATTENTION

When creating the report, the mechanism for filling out reports with data must be manually set by editing the
data source of the report.

The page layout is created by adding lines, columns and other report elements to the workspace. Description of the
functional elements of the report designer can be found in the “Report designer workspace” article.

Report page layout
Layout of the report page is performed with bands that correspond to the page report area and displays elements
within it (Fig. 1). Elements placed on headers and footers are displayed on each page of the report and the elements
placed on the [Report Header] band will be displayed only on the first page of the report.

Fig. 1. Report page layout example

Bpm’online developer guide 151

NOTE

To add a line, right-click the workspace and click the [Insert Band] command. Then select the band type.

The [Detail] band is used to display a table in the report and is considered a table row template. One report can only
have one [Detail] band.

To add more tables, place nested reports to the report. For example, to display a table with the account name and
the account’s primary contact, place two columns on the [Detail] band.

Creating a data report structure
1. Click the [Data] button on the control panel (Fig. 2).

Fig. 2. Adding data to a report

2. Add all objects the data of which will be used in the report to the [Selected objects] area, and enable checkboxes
for them (Fig. 3).

Fig. 3. Adding objects to a report

Bpm’online developer guide 152

3. Select object columns by enabling or disabling checkboxes on the [Selected objects] area.

Fig. 4. Selecting columns to use in the report

4. Click the [OK] button.

Added objects and their columns will be displayed in the [Data] window.

Adding connected data
You can add to the report columns of any available object and columns of connected objects.

For example, the [Contact] object is connected with the [Account] object via the [Primary contact] column. By
adding the [Account] object to the [Selected objects] area, you can add columns of the [Contact] connected object
(e.g., [Full name], [Email], etc.). (Fig. 5).

Fig. 5. Adding a connected object column to the report data source

Bpm’online developer guide 153

ATTENTION

When you add connected data, enable the checkbox for the object the field of which you would like to use.
Otherwise the added data will not be connected.

Columns of the connected object that were added this way will display the information connected with
corresponding record of the main object. For example, the [Job] column will display the job of the contact connected
with the account by the [Primary contact] column.

Adding data to the report page

Report data structure is displayed in the [Data] window. You can move the columns from the data area to the report
designer workspace. Column moved to the workspace is a text object (Fig. 6).

Fig. 6. Text object connected with the object column of the report data

While generating the report, the data from the corresponding database column will be displayed in the place of this
object. For example, place a [Full name] column on the designer workspace to display a contact name in the report.

You can place a column on the other report text object. I this case, a variable displaying data of this column will be
added to the text of the object (Fig. 7).

Fig. 7. Text object with the added variable

Editing the report data source

Edit the data source manually to fill the report with data from the database and for the advanced report
configuration. For example, you can use columns that are not enabled in the system database in the report.

To edit the report data source in the third-party application, you need to save it in the separate file. To do this:

1. Add all necessary data from the system database to the report.

Bpm’online developer guide 154

2. Save the report data structure in the .xsd file with the [Data] > [Save to file] menu command (Fig. 8).

Fig. 8. Saving the data source to the .xsd file

3. Open the .xsd file in the third-party application (for example, Microsoft Visual Studio) and preform the required
modifications in it.

4. Load edited data source from the .xsd file to the report with the [Data] > [Load from file] menu command.

As a result, all changes made in .xsd file via the third-party application will be imported to the report.

Development in the file system

Introduction
Using an Integrated Development Environment (IDE) maximizes development speed. Examples of the IDE include
Visual Studio, WebStorm and other tools. An IDE usually enables you to create, modify and compile the source code,
debug it, run team development, use version control systems, etc. IDEs usually use text files stored in the file system
to work with the source code.

NOTE

For development in the file system, you can use Microsoft Visual Studio Community, Professional and
Enterprise version 2017 (with latest updates) and higher.

You can configure bpm’online configuration packages in the file system. With this mechanism, you can export
the packages from the database to a set of files, edit the package content using an IDE and upload the updated
packages back to the database. Using Visual Studio, you can debug custom source code of the schemas of the “Source
code” (SourceCodeSchema) type.

Use bpm'online built-in tools if there is no need or possibility to develop in the file system.

Main limitations of development in the file system
When the development in the file system mode is enabled, a full-fledged development is supported only for schemas
of the “Source code” (SourceCodeSchema) and “Client schema” (ClientUnitSchema) types.

For other package elements (such as resources and SQL scripts), the following rules are used:

When exporting packages from the database to the file system, the package elements that are stored in the
database will replace the corresponding items in the file system. The source code schemas and client
schemas will not be replaced.
When uploading packages to the database, source code schemas and client schemas will replace the
corresponding items in the database. The application will keep using source code schemas and client
schemas from the file system.

ATTENTION

Bpm’online developer guide 155

https://en.wikipedia.org/wiki/Integrated_development_environment

Starting with version 7.11.2, when the file system development mode is enabled, resources of these schemas
are also saved in the file system after saving client schemas (ClientUnitSchema) and source code schemas
(SourceCodeSchema) in the corresponding designers (see the [Configuration] section).

Integration with the version control system (SVN) with enabled development in the file system is performed with
third-party tools. Bpm'online built-in mechanism of working with SVN is not used. It is still possible to install
packages from the SVN repository in the [Configuration] section (this simplifies working with related packages). Use
third-party utilities, such as TortoiseSVN to install separate packages.

NOTE

To use the built-in capabilities of working with the SVN repository, disable the development mode in the file
system.

Application settings for development in the file system
To enable development in the file system, edit the Web.config file (located in the root folder with the installed
application) and set the enabled attribute of the fileDesignMode element to true.

<fileDesignMode enabled="true"/>

After enabling the development in the file system, two buttons will appear on the [Actions] tab in the
[Configuration] section.

[Download packages to file system] – exports the packages from the database to the following folder:
[path to the installed application]\Terrasoft.WebApp\Terrasoft.Configuration\Pkg.
[Update packages from file system] – uploads the packages to the database from the following folder:
[path to the installed application]\Terrasoft.WebApp\Terrasoft.Configuration\Pkg.

Fig. 1 Actions of the [Configuration] section for development in the file system

To integrate the application with the configuration project, grant full access to the [path to the installed
application]\Terrasoft.WebApp\Terrasoft.Configuration\Pkg folder for the OS user, who runs the IIS application
pool (Fig. 2). Usually, this is the built-in IIS_IUSRS user.

Fig. 2 Setting up access rights for the Terrasoft.Configuration folder

Bpm’online developer guide 156

https://tortoisesvn.net/

Terrasoft.Configuration package
A configuration project is a Visual Studio solution supplied with bpm'online setup files. The solution can be found
here: [path to the installed application\Terrasoft.WebApp\Terrasoft.Configuration.

To start development in the file system, open the following file in Visual Studio: [path to the installed application]\
Terrasoft.WebApp\Terrasoft.Configuration\Terrasoft.Configuration.sln.

The configuration project structure is available in table 1.

Table 1. Configuration project structure

Folder Purpose

Lib The folder where package-bound third-party class libraries are exported.

Autogenerated\Src The folder with files that contain auto-generated source code of the preset package
schemas. These files cannot be edited.

Pkg The folder where the packages for development in the file system are exported from the
database.

bin A folder for compiled configuration and third-party libraries.

Getting Started with the configuration
Creating a package

If you do not intend using SVN in the development process, then the process of creating a package is the file system
development mode is the same as that in the normal mode. For more information on creating packages please refer
to the Creating and installing a package for development article.

Attention!

Bpm’online developer guide 157

The working with SVN mode is enabled in the bpm'online by default. If the [Version control system
repository] field is empty when creating a package, then the package will not be bound to the repository. The
versioned development of this package can be performed only after manually binding it to the repository from
the file system.

More information about creating a custom package and binding it to the SVN repository can be found in the
"Creating a package in the file system development mode” article.

Working with new package elements

It is recommended to add new elements (schema or resource) to the package only from the [Configuration]
section. To create and edit a new item in a custom package:

Select a custom package in the [Configuration] section and add a new element in it (see Creating a
custom client module schema, “Creating the [Source code] schema”).
Add resources (such as localized strings) to the schema if needed.
Click [Download packages to file system] (Fig. 1).
Use an IDE (such as Visual Studio) to edit the source code of the schema or localized resource in the files
(located in the [Path to the installed application]\Terrasoft.WebApp\Terrasoft.Configuration\Pkg\
[Package name] folder). The package properties are described in the "Package structure and
contents” article.
Click [Update packages from file system] to upload changes to the application database (Fig. 1).

Attention!

Changes made in client schemas are available in the application immediately, without uploading to the
database. You only need to update the page in the browser.

If you changed a source code schema, then you must compile the application.

NOTE

When developing source code schemas in C #, compile them directly in Visual Studio. More information about
compilation and debugging in Visual Studio can be found in the "Working with the server side source
code in Visual Studio” article.

See also
Visual Studio settings for development in the file system
Working with the client code in the file system
Working with the server side source code in Visual Studio
Developing the configuration server code in the user project
Automatic displaying of changes in the development of the custom logic
Working with SVN in the file system
Packages file content
Localization of the file content
How to create Unit-tests via NUnit and Visual Studio
How to use TypeScript when developing custom functions

Visual Studio settings for development in the file system

Introduction

Bpm’online developer guide 158

Using an Integrated Development Environment (IDE), Microsoft Visual Studio maximizes development speed. Microsoft Visual
Studio IDE usually enables you to create, modify and compile the source code, debug it, run team development, use version
control systems, etc.

Development in Microsoft Visual Studio became possible after the implementation of the configuration packages in the file
system mechanism in bpm'online. With this mechanism, you can export the packages from the database to a set of files, edit the
package source code using an IDE and upload the updated packages back to the database.

NOTE

For development in the file system, you can use Microsoft Visual Studio Community, Professional and Enterprise version
2017 (with latest updates) and higher.

The WorkspaceConsole utility integrated into Visual Studio is used to compile applications. The WorkspaceConsole has the
following benefits:

Significantly speeds up the compilation process, because the whole configuration assembly is split into independently
compiled modules. Only the modules that contain modified packages are compiled.
Compilation does not require exiting the debugging mode or disconnecting from the IIS process.

Attention!

You can also compile the configuration project using the Visual Studio compiler. However, it may not take into account the
dependencies and the position of packages.

Visual Studio settings for development in the file system:

1. Enable compilation mode in the IDE.
2. Configure the WorkspaceConsole to compile the application.
3. Configure Microsoft Visual Studio.

Visual Studio configuration steps
1. Enable compilation mode in the IDE

To enable compilation mode in the IDE, edit the Web.config file (located in the root folder with the installed application) and set
the enabled attribute of the fileDesignMode element to true.

<fileDesignMode enabled="true" />

Attention!

Enable the development mode in the file system to compile in the Visual Studio.

Attention!

Currently, the development in the file system is no compatible with getting client content from preliminary generated files.
For the correct work of the development in the file system you need to disable getting static client content from the file
system. Set the “false” for the UseStaticFileContent flag in the Web.config file to disable this functions.

<fileDesignMode enabled="true" />
...
<add key="UseStaticFileContent" value="false" />

Attention!

If the development mode in the file system is enabled, IIS will use the Terrasoft.Configuration.dll library only from the file
system.

After switching to the file system development mode for the first time, upon logging in, the user is redirected to the
"Configuration" section. At this time, "The "Default" workspace assembly is not initialized" error appears. To eliminate this
error, run the "Compile all items" action.

2. Configure the WorkspaceConsole to compile the application.

Configuration projects are compiled via the WorkspaceConsole utility, which is included in the application setup files. The
utility should be configured before using. In addition to the settings covered in the "WorkspaceConsole settings” article, you
must also enable the development mode in the file system in the Terrasoft.Tools.WorkspaceConsole.exe.config configuration file.

Bpm’online developer guide 159

https://ru.wikipedia.org/wiki/Интегрированная_среда_разработки

<fileDesignMode enabled="true" />

To speed up the compilation by splitting the configuration assembly into independent compiled modules, set the
CompileByManagerDependencies setting to “true” in the “internal” Web.Config (located in the Terrasoft.WebApp directory) and
in the Terrasoft.Tools.WorkspaceConsole.exe.config file of the WorkspaceConsole utility.

<appSettings>
 ...
 <add key="CompileByManagerDependencies" value="true" />
 ...
 </appSettings>

3. Configure Microsoft Visual Studio

To use the WorkspaceConsole utility for compilation in Visual Studio, set up External Tools. To do this, execute the Tools >
External Tools... command in the Visual Studio (Fig. 1).

Fig. 1 Adding external tools in the Visual Studio

In the opened dialog window (Fig 2), add and set up three commands for calling the WorkspaceConsole utility. The Build
Workspace and Rebuild Workspace commands initiate compilation of changes and full compilation of configuration projects.
The Update Workspace Solution command updates the Visual Studio solution of the configuration package from the application
database. It applies all changes made by the users within the application. The properties and arguments of commands are
available in tables 1, 2 and 3. Select the Use Output window checkbox (Fig. 2) for all three commands.

Fig. 2 Setting properties and arguments for an external Visual Studio command

Bpm’online developer guide 160

Table 1. Update Workspace Solution command properties

Title Update Workspace Solution

Command [Path to the catalog with installed
application]\Terrasoft.WebApp\DesktopBin\WorkspaceConsole\Terrasoft.Tools.WorkspaceConsole.exe

Example:

C:\bpmonline710\Terrasoft.WebApp\DesktopBin\WorkspaceConsole\Terrasoft.Tools.WorkspaceConsole.exe

Arguments --operation=UpdateWorkspaceSolution --workspaceName=Default --webApplicationPath="[Path to the
catalog with installed application]\Terrasoft.WebApp\"

Example:

--operation=UpdateWorkspaceSolution --workspaceName=Default --
webApplicationPath="C:\bpmonline710\Terrasoft.WebApp\"

Table 2. Build Workspace command properties

Title Build Workspace

Command [Path to the catalog with installed
application]\Terrasoft.WebApp\DesktopBin\WorkspaceConsole\Terrasoft.Tools.WorkspaceConsole.exe

Example:

C:\bpmonline710\Terrasoft.WebApp\DesktopBin\WorkspaceConsole\Terrasoft.Tools.WorkspaceConsole.exe

Arguments --operation=BuildWorkspace --workspaceName=Default --webApplicationPath="[Path to the catalog with
installed application]\Terrasoft.WebApp\"

Example:

--operation=BuildWorkspace --workspaceName=Default --
webApplicationPath="C:\bpmonline710\Terrasoft.WebApp\"

Table 3. Rebuild Workspace command properties

Title Rebuild Workspace

Bpm’online developer guide 161

Command [Path to the catalog with installed
application]\Terrasoft.WebApp\DesktopBin\WorkspaceConsole\Terrasoft.Tools.WorkspaceConsole.exe

Example:

C:\bpmonline710\Terrasoft.WebApp\DesktopBin\WorkspaceConsole\Terrasoft.Tools.WorkspaceConsole.exe

Arguments --operation=RebuildWorkspace --workspaceName=Default --webApplicationPath="[Path to the catalog with
installed application]\Terrasoft.WebApp\"

Example:

--operation=RebuildWorkspace --workspaceName=Default --
webApplicationPath="C:\bpmonline710\Terrasoft.WebApp\"

To prevent the debugger from accessing the source code that is disabled in the project, execute the Debug > Options... menu
command and enable the Enable Just My Code option in the opened dialog (Fig. 3). For more information about the Enable Just
My Code, please refer to this page.

Fig. 3 Enable Just My Code option

After the configuration is compiled, the application is automatically restarted. The Enable Edit and Continue option is not
supported and should be disabled (Fig. 4).

Fig. 4 Edit and Continue option

Bpm’online developer guide 162

https://msdn.microsoft.com/en-us/library/dn457346.aspx

For the debugger to stop correctly on breakpoints, make sure that the Suppress JIT optimization on module load option is
enabled (Fig. 5).

Fig. 5 Suppress JIT optimization on module load

Working with the server side source code in Visual Studio

Bpm’online developer guide 163

Introduction
Bpm'online has the ability to debug program code using the integrated functions of the Visual Studio development
environment. The Visual Studio debugger enables developers to freeze the execution of program methods, check
variable values, modify them and monitor other activities performed by the program code.

The general procedure for bpm’online development in Visual Studio is as follows:

1. Perform preliminary settings in bpm'online and Visual Studio.
2. Create, obtain or update a package from the SVN repository.
3. Create a [Source code] schema for development.
4. Perform development in Visual studio.
5. Save, compile and debug the source code.

ATTENTION

After successful compilation, the resulting Terrasoft.Configuration.dll assembly will be placed to the Bin
catalog, while IIS will automatically use it in bpm'online application.

General procedures for developing bpm'online solutions in
Visual Studio
1. Perform preliminary settings

Bpm'online and Visual Studio setup for development in the file system is described in the “Development in the
file system” and “Visual Studio settings for development in the file system” articles.

NOTE

For development in the file system, you can use Microsoft Visual Studio Community, Professional and
Enterprise version 2017 (with latest updates) and higher.

2. Create, obtain or update a package from the SVN repository

Creating a custom package with or without SVN is described in the “Creating and installing a package for
development” and “Creating a package in the file system development mode” articles. Installing and
updating packages is described in the “Installing packages from repository” and “Updating package from
repository” articles.

NOTE

We recommend using Tortoise SVN or Git for working with version control repositories.

3. Create a [Source code] schema

Learn more about the process of creating the [Source code] schema in the “Creating the [Source code] schema”
article.

4. Conduct development in the Visual Studio

Before you start development in Visual Studio, make sure that you export existing schemas from the database to the
file system.

Fig. 1 The [Download packages to file system] action

Bpm’online developer guide 164

https://tortoisesvn.net/
https://git-scm.com/

For example, if the [Source code] schema with the name UsrGreetingService was created in the
sdkPackageInFileSystem package, the file of the source code of the UsrGreetingService.cs schema appears in the
file system in the Pkg\sdkPackageInFileSystem\Schemas\ directory (Fig. 2). In this case, the system generated
UsrGreetingServiceSchema.sdkPackageInFileSystem_Entity.cs file will be placed in the Autogenerated\Src
directory.

Fig. 2 The source code schema file

NOTE

To add a schema to SVN, you must add the entire UsrGreetingService directory, including the JSON files.

Open the Terrasoft.Configuration.sln solution in Visual Studio to start the development (see “Development in
the file system”). In Visual Studio Solutions Explorer, enable the display of all file types (Fig. 3, 1), open the

Bpm’online developer guide 165

UsrGreetingService.cs file (Fig. 3, 2) and add the required source code (Fig. 3, 3).

Fig. 3 Working with the schema file in Visual Studio

Below is an example of source code implementation, which must be added to the contents of the
UsrServiceGreeting.cs file, using Visual Studio:

namespace Terrasoft.Configuration
{
 using System.ServiceModel;
 using System.ServiceModel.Activation;
 using System.ServiceModel.Web;
 // Class that implements configuration service.
 [ServiceContract]
 [AspNetCompatibilityRequirements(RequirementsMode =
AspNetCompatibilityRequirementsMode.Required)]
 public class UsrGreetingService : System.Web.SessionState.IReadOnlySessionState
 {
 // Service operation.
 [OperationContract]
 [WebInvoke(Method = "GET", UriTemplate = "Hello")]
 public string TestHello()
 {
 return "Hello!";
 }
 }
}

For more information about the purpose of the attributes of the class that implements configuration services, please
refer to the “How to create custom configuration service”.

5. Save, compile and debug source code

After modifying the source code, and before compiling and debugging it, be sure to save the code. Normally, this is

Bpm’online developer guide 166

done by Visual Studio automatically, but since Visual Studio compiler is not used, the developer must save the code
manually.

After saving, the source code must be compiled with the “Build Workspace” or “Rebuild Workspace” commands (see
“Visual Studio settings for development in the file system”). If the compilation is successful, the code
becomes available. In the example described previously, the service will become available at the following address
(Fig. 4):

http://[Application URL]/0/rest/UsrGreetingService/Hello

Fig. 4 Checking service workability

To begin debugging, attach to the IIS server process, where the application runs. Execute the Debug > Attach to
process menu command (Fig. 5).

Fig. 5 The [Attach to process] command

In the opened window, select the working IIS process in the list of processes, where the application pool is running
(Fig. 6).

Fig. 6 Attaching to an IIS process

NOTE

The name of the working process can be different, depending on the configuration of the IIS server being used.
With a regular IIS, the process is w3wp.exe, but with IIS Express, the process name is iisexpress.exe.

Bpm’online developer guide 167

By default, the IIS working process is run under the account whose name matches the name of the application
pool. To display processes of all users, set Show processes from all users checkbox (Fig. 6).

After attaching to a working IIS process, execute compilation one more time. After that, begin the debugging process
using the Visual Studio debugger. For example, you can set the stop points, view variable values, call stacks, etc. For
more information on the Visual Studio debugger, please refer to the corresponding documentation.

For example, after setting up the breakpoint on the return line from the TestHello() method, and re-compiling the
application and executing the service request, the debugger will stop the program execution on the breakpoint (Fig.
7).

Fig. 7 Stopping an application on the breakpoint

ATTENTION

The debugging feature depends on the correct configuration of Visual Studio.

Working with the client code in the file system

Introduction
The updated method of working with the client code in the file system enables better development flexibility.
Download the client schema source code from the database to *.js files and LESS module styles into *.less files for
working with them in the Integrated Development Environment (IDE) (e.g. WebStorm, Visual Studio Code, Sublime

Bpm’online developer guide 168

https://msdn.microsoft.com/ru-ru/library/sc65sadd.aspx

Text, etc.).

General outline:

1. Pre-configure bpm'online.
2. Create, obtain or update a package from the SVN repository.
3. Create a [Source code] schema.
4. Save the database content to the file system.
5. Carry out the development of the schema source code in IDE.
6. Save, compile and debug the source code.

General outline:
1. Pre-configure bpm'online

Setting up bpm’online for development in the file system is described in the “Development in the file system”
article.

ATTENTION

The UseFileContent attribute of the clientUnits element in the Web.config file (located in the application
folder) was used to upload the client module source code to the file system up until bpm’online version 7.10.0.
Since version 7.10.0, the UseFileContent attribute has been removed from the Web.Config file. Use the method
described in the “Development in the file system” to upload the client module source code from pre-
installed packages (the Autogenerated\Src folder description).

2. Create, obtain or update a package from the SVN repository

Creating a custom package with or without SVN is described in the “Creating and installing a package for
development" and “Creating a package in the file system development mode” articles. Installing and
updating packages is described in the “Installing packages from repository” and “Updating package from
repository” articles.

NOTE

We recommend using Tortoise SVN or Git to work with version control repositories.

3. Create a custom schema for development

Learn more about custom schemas in the “Creating a custom client module schema” article.

4. Upload the schema from the database to the file system

To do this, use the [Download packages to file system] command (Fig. 1) in the [Configuration] section.

Fig. 1. The [Download packages to file system] command

Bpm’online developer guide 169

https://tortoisesvn.net/
https://git-scm.com/

For example, if you created a replacing ContactPageV2 schema ([Display schema - Contact card]) in a custom
sdkPackageInFileSystem package, the files in the Pkg\sdkPackageInFileSystem\Schemas\ContactPageV2 folder
will contain the source code files of the ContactPageV2.js schema and ContactPageV2.less styles (Fig. 2).

Fig. 2. The source code schema file

5. Carry out the development of the schema source code in IDE

To perform the development, open the file with the schema source code in the preferred IDE (or any text editor) and
add the necessary source code (Fig. 3).

Fig. 3. Editing a schema file in Visual Studio Code

Bpm’online developer guide 170

For example, add the following source code to the ContactPageV2.js file to hide the [Full job title] field from the
contact edit page:

define("ContactPageV2", [],
 function() {
 return {
 entitySchemaName: "Contact",
 diff: /**SCHEMA_DIFF*/[
 {
 "operation": "remove",
 "name": "JobTitleProfile"
 }
]/**SCHEMA_DIFF*/
 };
 });

6. Save, compile and debug the source code

The [Full job title] will be removed from the contact edit page upon saving the ContactPageV2.js file and refreshing
the page (Fig. 4).

Fig. 4. Contact page without the [Full job title] field

Bpm’online developer guide 171

Debug the code if you encounter any errors (see: “Client code debugging”).

ATTENTION

To return to built-in bpm’online development tools, do the following:

1. Update packages from file system.
2. Disable the file system development mode by setting the enabled="false" attribute of the

fileDesignMode element of the Web.config configuration file (see “Development in the file
system”).

Working with SVN in the file system

Introduction
Subversion (SVN) is a centralized system designed for collaborative work. It is based on a repository that contains
data in form of a “tree” hierarchy of files and folders. Users can connect to the repository to browse, view or modify
files. Their modifications are available to all other users, and vice versa.

All modifications are documented in SVN, including the information about added, deleted, and moved files and
folders. Users can access SVN files and folders at any given moment. Additionally, they can view all other versions of
all files and folders.

Learn more about configuring and using Subversion in this article.

General outline:
Repository – a central database, usually located on a file server that contains versioned files with their full history. A
repository can be accessed through various network protocols or from a local disk.

Bpm’online developer guide 172

http://svnbook.red-bean.com/en/1.7/index.html

Working copy – a folder located on the developer’s computer. A developer can get the latest version of the files from
the repository, work with them locally, and commit these files back to the repository when they are done. A working
copy does not include the project’s history, but does contain the copies of files that were located in the repository
prior to any changes made by the developer. This enables complete visibility over any changes made to the files.

ATTENTION

Detailed changes are only documented for text files. SVN documents only the general information about
changes made to binary files.

Revision – a documented state of the file hierarchy. In the repository, each commit is treated as an atomic
transaction. Developers can modify several files, create, delete, rename and copy files and folders, and commit the
entire set of changes as a single “revision”.

In SVN, all revisions are stored in form of file system “trees” - an array of revision numbers starting with 0 and
“growing” from left to right (Fig. 1). Each number corresponds to a file system tree. And each tree is a "snapshot" of
the storage state after each commit.

Fig. 1. Revisions in the repository

NOTE

Unlike other version control systems, revision numbers in Subversion refer to whole trees instead of individual
files.

Versioning models
File-sharing problems

While working in SVN, there may be a problem where two (or more) developers are using the same file to implement
different functionality. In this case, if one of the developers commits their changes a few seconds before the other,
their changes may be overwritten. And while the system documents all changes, their work may still be lost in the
latest version of the file, if the other developer accidentally overwrites the same file.

The following versioning models are used to avoid such problems:

The “Lock-Modify-Unlock” solution
The “Copy-Modify-Merge” solution

The “Lock-Modify-Unlock” solution

Bpm’online developer guide 173

This versioning model only enables a single user to modify a specified file. A user may “block” the file for all other
users, and they will not be able to commit their changes until the lock is released.

Disadvantages:

Locking may cause administrative problems, e.g. when the first developer locks a file and forgets to release
the lock.
Locking may cause unnecessary serialization. If the developers are working on two separate parts of the
same document which do not overlap (e.g., the beginning and the end), the changes can be properly
merged together if the file is not locked.
Locking may create a false sense of security. Two separate files that depend on each other may be locked
by two different developers, which means the changes made to each locked file are semantically
incompatible, but the two developers may think they are beginning a safe, insulated task. Thus, this model
inhibits the two developers from discussing their incompatible changes early on.

This model is more appropriate when the two separate files can not be merged. For example, if two users are editing
an image at the same time, they will not be able to merge their changes.

The “Copy-Modify-Merge” solution

In this model, each user's client reads the repository and creates a personal working copy of the file or project. Users
then work in parallel, modifying their private copies. Finally, the private copies are merged together into a new, final
version. The version control system often assists with the merging, but the user is responsible for making it happen
correctly.

A conflict will happen if the changes overlap when two users work on the same file simultaneously. In this case, the
user who commits the changes should select the necessary revision from the list of files in a conflict state. Upon
resolving the conflict, the merged file can be committed to the repository.

The chance of semantic and syntactic conflicts increases if there is no communication between users.

Determining the state of the working copy file
Subversion records information about the following properties in the .svn service folder of a working copy for each
file:

the revision, which the file in the working copy is based on (working revision of the file)
date and time of the latest file update from the repository

Based on this information, Subversion can determine the state of the working copy file:

1. Not modified and not outdated. Not modified in the working copy. The repository did not document any
changes to this file since its working revision. The update or the commit procedures will not be executed.

2. Modified locally and not outdated. Modified in the working copy. The repository did not document any
changes to this file since its base revision. The update will not be executed. The system will commit the
changes successfully.

3. Not modified, outdated. Not modified in the working folder, modified in the repository. The file must be
updated to match the current public revision. The update will not be executed. The system will commit the
changes successfully.

4. Modified locally and outdated. Modified in the working folder and in the repository. The commit procedure
will fail. The file must first be updated by attempting to merge the changes published by another developer
with the local changes. The user must resolve the conflict if Subversion can not merge the files.

Working copy used in bpm’online
If the file system development mode is enabled, bpm’online will use a custom working copy of each user
package with connected versioning. These working copies are located in the folder specified in the
defPackagesWorkingCopyPath element of the ConnectionStrings.config configuration file (see “How to deploy
bpm'online on-site”).

If the file system development mode is enabled, the working copy can be created manually in the [Installed
application path]\Terrasoft.WebApp\Terrasoft.Configuration\Pkg\[Package name] folder (see: “Creating a
package in the file system development mode”).

Bpm’online developer guide 174

Using an application to work in SVN
We recommend using TortoiseSVN (version 1.9 and higher) to work with Subversion (SVN) in the file system. Once
installed, the application will be built in in the Windows UI. Learn more about TortoiseSVN in this article.

See also
Creating a package in the file system development mode
How to install an SVN package in the file system development mode
How to bind existing package to SVN
Updating and committing changes to the SVN from the file system
Creation of the package and switching to the file system development mode

Creating a package in the file system development mode

Introduction
If you do not intend to use SVN in the development process, then the process of creating a package is the file system
development mode is the same as that in the normal mode. For more information on creating packages please refer
to the “Creating and installing a package for development” article.

Attention!

The working with SVN mode is enabled in the bpm'online by default. If the [Version control system
repository] field is empty when a package is created, then the package will not be bound to the repository. The
versioned development of this package can be performed only after you manually bind it to the repository
from the file system.

When the file system development mode is enabled, the SVN integration mechanism is turned off. The
packages from the SVN repository can be only installed and updated with built-in tools. It is recommended to
create a package with built-in tools and bind it to the repository with the external utilities like TortoiseSVN.

Attention!

Ensure that application is configured to access the SVN repository before binding the package to the
SVN repository when development mode in the file system is enabled.

Package creation process
1. Create a package in the application

Select the [Add] action in the context menu of the [Packages] tab in the [Configuration] section (Fig. 1).

Fig. 1 Adding a package in the [Configuration] section

Bpm’online developer guide 175

https://tortoisesvn.net/
https://tortoisesvn.net/docs/release/TortoiseSVN_en/index.html
https://tortoisesvn.net/

Fill out the main package properties fields in the package edit page (Fig. 2). Please see the "Creating and
installing a package for development” article for details. Specify the repository name to which the package will
be bound.

Attention!

The repository name in the package edit page indicates that the package will be created by third-party tools in
this repository. This allows updating the package from the [Configuration] section in future.

Fig. 2 Package summary

2. Download created package to file system

Click [Download packages to file system] (Fig. 3).

Fig. 3 [Download packages to file system] action

Bpm’online developer guide 176

As a result, the empty package will be downloaded to the [Path to the installed
application]\Terrasoft.WebApp\Terrasoft.Configuration\Pkg\sdkPackageInFileSystem folder (Fig. 4).

Fig. 4 Package in the file system

NOTE

When the file system development mode is enabled, the package must be manually added to the repository.

3. Create necessary folders for the packages in the SVN repository

Go to the repository specified in the package edit page to create folders for the package via SVN client (such as
TortoiseSvn). Create a folder in the repository with the name that matches the name of the package created in the
application.

Attention!

This is a brief example of working with SVN via TortoiseSvn. More information about working with SVN
repository via TortoiseSvn can be found in the documentation.

Bpm’online developer guide 177

https://tortoisesvn.net/
https://tortoisesvn.net/support.html

Fig. 5 Creating a folder in the SVN repository

Create branches and tags sub-folders in the created folder to replicate the bpm’online flat package structure.
Finally, create a folder with the name that matches the package version number (7.10.0) in the branches folder
(Fig.6).

Fig. 6 Flat package structure in the repository

Bpm’online developer guide 178

4. Create a working copy of the package version branch

To create a working copy of the package version branch, execute SVN checkout from the repository folder with the
name that matches the package version number, to the package folder in the file system (Fig. 7) and confirm the
download to the existing folder (Fig. 8).

Fig. 7 Obtaining the working copy of the package version branch from the repository

Bpm’online developer guide 179

Fig. 8 Confirmation of the SVN checkout operation to the existing folder.

As a result the [Path to the installed
application]\Terrasoft.WebApp\Terrasoft.Configuration\Pkg\sdkPackageInFileSystem package folder will be
bound to the branch of the 7.10.0 version of the package in the repository (Fig. 9).

Fig. 9 Visual mapping of the bound of the folder with the SVN repository

Bpm’online developer guide 180

5. Commit the package folder in the repository

To commit the package folder, add all the contents of the following folder to the repository: [Path to the installed
application]\Terrasoft.WebApp\Terrasoft.Configuration\Pkg\sdkPackageInFileSystem. After adding the folder to
the repository, execute the “Commit” command (Fig. 11).

Fig. 10 Adding a folder to the repository

Fig. 11 Committing changes to the repository

Bpm’online developer guide 181

See also
Working with SVN in the file system
How to install an SVN package in the file system development mode
How to bind existing package to SVN
Updating and committing changes to the SVN from the file system
Creation of the package and switching to the file system development mode

How to install an SVN package in the file system development mode

Introduction
Package installation from the SVN repository in the file system development mode is considerably different
from package setup in the [Configuration] section (see “ Installing packages from repository”). The main
difference is that the interaction with the SVN repository (installing, committing, updating packages) is performed
only from the file system.

The procedure for installing an SVN package in the file system development mode is as follows:

1. Install the package in the file system.

2. Install the package in the application.

3. Generate source codes.

4. Compile the changes.

5. Update the database structure.

6. Install SQL scripts and bound data, if necessary.

Bpm’online developer guide 182

ATTENTION

To apply all necessary changes automatically, after the package is installed, enable the automatic mechanisms
that apply changes. To do this, edit the ..\Terrasoft.WebApp\Web.config file and set the following appSettings
element keys to true:

<add key="AutoUpdateOnCommit" value="true" />
<add key="AutoUpdateDBStructure" value="true" />
<add key="AutoInstallSqlScript" value="true" />
<add key="AutoInstallPackageData" value="true" />

The AutoUpdateOnCommit key is responsible for automatic updating of packages from the SVN before
committing. If this key is set to false, then the application will notify the user that an update is required if the
package schemas have been modified. The AutoUpdateDBStructure, AutoInstallSqlScript,
AutoInstallPackageData keys are responsible for automatic database structure update, SQL script installation
and installation of bound data respectively.

If the mechanism for auto-applying the changes is enabled, then steps 3—6 can be skipped. The mode must be
enabled before the package is installed.

ATTENTION

If you need to interact with the SVN repository both from the [Configuration] section and the file system, then:

1. Install the package from the repository in the [Configuration] section (see “ Installing packages from
repository”).

2. Export the package to the file system using the [Download packages to file system] action.

Repeat steps 3—6 from the package installation sequence.

Case description
In the file system development mode, install the package from the SVN repository under the following URL:

http://svn-server:8050/SDKPackages/sdkCreateDetailWithEditableGrid/branches/7.8.0

NOTE

The package in this particular example contains a detail with editable list, which was created according to this
article: “Adding a detail with an editable list”.

Case implementation algorithm
1. Installing the package in the file system

Open the application catalog ...\Terrasoft.WebApp\Terrasoft.Configuration\Pkg in Windows Explorer and execute
[SCN Checkout] (Fig. 1).

Fig. 1. Running the [SVN Checkout] action

Bpm’online developer guide 183

NOTE

We recommend using the TortoiseSVN client (v.1.8 and up) for working with Subversion. This client is a
Windows shell extension and is built into the Explorer context menu. For more information see TortoiseSVN
documentation.

In the checkout window (Fig. 2), specify the package repository address (1) and the export catalog for the package
contents (2).

Fig. 2. TortoiseSVN Checkout window

Bpm’online developer guide 184

https://tortoisesvn.net/
https://tortoisesvn.net/docs/release/TortoiseSVN_ru/index.html
https://tortoisesvn.net/docs/release/TortoiseSVN_ru/index.html

ATTENTION

The checkout catalog name must be the same as the package name (Fig. 2).

After the checkout is complete (Fig. 3), the ..\Terrasoft.WebApp\Terrasoft.Configuration\Pkg catalog will contain a
local working copy of the package (Fig. 4).

Fig. 3. Checkout operation log

Fig. 4. Package working copy

Bpm’online developer guide 185

2. Installing the package in the application

To install a package from the file system, go to the [Configuration] section and execute the [Update packages from
file system] action (Fig. 5).

Fig. 5. The [Update packages from file system] action

As a result, the package will be added to the application (Fig. 6, Fig. 7).

Fig. 6. Message with the package importing status

Bpm’online developer guide 186

Fig. 7. The package on the [Packages] tab

ATTENTION

If the repository name is missing from the package name, then all changes can be committed to the repository
from the file system only.

3. Generating source codes

Execute the [Generate where it is needed] action in the [Configuration] section to generate source core. For more on
source code actions, see “The [Configuration] section”.

4. Compiling the changes

To compile the changes, execute the [Compile modified items] action. For more on configuration actions, see “The
[Configuration] section”.

NOTE

The requirement for updating the database structure and installing SQL scripts is indicated by the [Database
update required] and [Needs to be installed in the database] columns. Please refer to the [Last error message
text] column in case of errors during the database structure update and SQL script installation.

Not all these columns display in the list of the [Schemas], [SQL scripts] and [Data] tabs of the
[Configuration] section by default. Right-click the list and select the [Set up columns] command to add
these columns to view.

5. Updating the database structure

After the compilation is complete, run the [Update where it is needed] action. For more on database structure
actions, see “The [Configuration] section”.

Bpm’online developer guide 187

6. Installing SQL scripts and bound data

If the package contains bound SQL scripts and data, you will need to run additional actions. For more on the

SQL script and data actions, see “The [Configuration] section”.

After all the setup actions have been completed, the package functions will become available. In this case, it is a
custom detail with editable list (Fig. 8).

Fig. 8. Custom detail with editable list

NOTE

Users may need to update the page and clear browser cache to access the new functions.

See also
Working with SVN in the file system
Creating a package in the file system development mode
How to bind existing package to SVN
Updating and committing changes to the SVN from the file system
Creation of the package and switching to the file system development mode

How to bind existing package to SVN

ATTENTION

You can bind an existing package to SVN only in an on-site application. Working with such a package is

Bpm’online developer guide 188

possible only in the file system development mode.

NOTE

After binding a package to SVN in the file system, it can be installed in a different application using
bpm’online built-in tools (“Installing packages from repository”).

Introduction
Simple custom functions can be developed by a single developer. The package in which the development is
performed often is not connected to the version control repository (SVN).

As the complexity grows, more developers are required to work with the package, which makes it necessary to bind
the package to SVN.

The general sequence for binding a package to the repository is as follows:

1. Switch to the file system development mode

2. Export the package to the file system.

3. Create the catalogs for the package in the SVN repository.

4. Create a working copy of the package branch.

5. Commit the package catalog in the repository.

As an alternative, you can use direct SQL queries to the database for binding packages to the repository. To do this:

1. Add information about the SVN repository in the [Configuration] section.

2. Bind the repository to the package. To do this:

In the SysRepository table, read the record ID, which contains the SVN repository address.
In the SysPackage table, add the obtained Id to the SysRepositoryId for the unbound package.

Case description
Bind the custom UsrUnboundPackage package (Fig. 1) to the repository.

Fig. 1. Custom package properties

Bpm’online developer guide 189

You can obtain SVN access via the following URL:

http://svn-server:8050/SDKPackages

Case implementation algorithm
1. Switch to the file system development mode.

For more information about the file system development mode, see the “Development in the file system”
article.

2. Export the package to the file system.

In the [Configuration] section, run the [Download packages to file system] command (Fig. 2).

Fig. 2. The [Download packages to file system] command

Bpm’online developer guide 190

As a result, the package will be exported to the following catalog:
...\Terrasoft.WebApp\Terrasoft.Configuration\Pkg\UsrUnboundPackage (Fig. 3).

Fig. 3. The package in the file system

3. Create the catalogs for the package in the SVN repository.

To create the package catalogs using an SVN client (such as TortoiseSvn), go to the repository and add a catalog (Fig.
4) with the same name as the package.

ATTENTION

This article contains only general instructions for working with the SVN client. For in-depth instructions on
working with the repository via TortoiseSvn are available in the official TortoiseSvn documentation.

Fig. 4. Creating a catalog in the SVN repository

Bpm’online developer guide 191

https://tortoisesvn.net/
https://tortoisesvn.net/support.html

Create the branches and tags sub-folders in the package catalog, i.e., reproduce bpm’online flat package
structure. In the branches catalog, create a package version catalog, i.e., 7.11.0 (Fig. 5).

Fig. 5. Flat package structure in the repository

Bpm’online developer guide 192

NOTE

Reproducing the flat package structure is required only if you plan on using bpm’online built-in tools for
working with SVN.

4. Create a working copy of the package branch.

To create a working copy if the version-controlled package branch, export the catalog whose name matches the
package version number (the [SVN Checkout...] command, Fig. 6) to the package's catalog in the file system.

Fig. 6. Running the [SVN Checkout] action

Bpm’online developer guide 193

Fig. 7. Exporting working copy of a version-controlled package branch

Bpm’online developer guide 194

Fig. 8. Confirming the export to an existing catalog

As a result, the package catalog in the file system
(...\Terrasoft.WebApp\Terrasoft.Configuration\Pkg\UsrUnboundPackage) will become a working copy of a 7.11.0
package in the repository (Fig. 9).

Fig. 9. A catalog, connected to the SVN repository

5. Commit the package catalog in the repository.

To commit the contents of a package catalog to the repository, run the TortoiseSVN [Add...] command (Fig. 10 and
11), then run the [SVN Commit...] command (Fig. 12).

Fig. 10. The [Add] command

Bpm’online developer guide 195

Fig. 11. Dialog for selecting items to add to the repository

Fig. 12. Committing to the repository

Bpm’online developer guide 196

As a result, all package contents will be bound to the SVN repository (Fig. 13).

Fig. 13. A package in SVN

NOTE

Repeat step 5 to commit new package schemas in the SVN repository.

Alternative implementation
1. Add information about the SVN repository in the [Configuration] section.

If the information about the needed repository has not been added in the [Configuration] section:

1. Run the [Open list of repositories] command (Fig. 14).

Fig. 14. The [Open list of repositories] command

Bpm’online developer guide 197

2. In the opened [List of repositories], use the [Add] command (Fig. 15, 1) to add necessary repository (Fig. 15, 2).
After this, repository information will display in the [List of repositories] window (Fig. 15, 3). Select the string with
information on the repository anf perform authentication (Fig. 15, 4).

Fig. 15. The actions of the [Open list of repositories] window

2. Bind the repository to the package.

Execute repository binding SQL query. Example of the SQL query to binding repository to a package is as follows:

UPDATE SysPackage
SET
 [SysRepositoryId] =
 (
 select top 1 Id from SysRepository
 where Name = 'SDKPackages'-- Repository name.
)
where [Name]='UsrUnboundPackage'-- Name of the custom package.

In this query, “SDKPackages” is the repository name (Fig. 15, 2), and "UsrUnboundPackage” is the name of the
custom package.

ATTENTION

To apply the changes in the repository, log out from the application and then log back in.

Bpm’online developer guide 198

3. Export the package to the file system.

In the [Configuration] section, run the [Download packages to file system] command (Fig. 2). As a result, the
bound package will be exported to the following catalog:
...\Terrasoft.WebApp\Terrasoft.Configuration\Pkg\UsrUnboundPackage (Fig. 9).

See also
Working with SVN in the file system
Creating a package in the file system development mode
How to install an SVN package in the file system development mode
Updating and committing changes to the SVN from the file system
Creation of the package and switching to the file system development mode

Updating and committing changes to the SVN from the file system

Introduction
Different developers can use the SVN to develop the functionality in the same file. The possible situation when one
of the developers modifies the file first and the next developer could overwrite file with a new version and the
modifications of the first developer will be lost. The modifications of the first developer are saved by the system, but
these modifications will be lost in the last revision of the file. To avoid this, use one of the following versioning
models: “Lock-Modify-Unlock” or “Copy-Modify-Merge” (see ”Working with SVN in the file system”).

Regardless of the chosen solution, the actions for updating and committing changes to the SVN are almost the same.

Case description
The sdkPackageInFileSystem custom package is implemented in the bpm'online configuration (see “Creating a
package in the file system development mode”). Update the package in the file system development mode
and after that commit it to the SVN.

Updating the package
To get the latest package revision select the corresponding package in the
..\Terrasoft.WebApp\Terrasoft.Configuration\Pkg folder and perform the [SVN Update] action (Fig.1).

Fig. 1. Running the [SVN Update] action

Bpm’online developer guide 199

After the action is executed, the window with update results will be displayed (Fig. 2).

Fig. 2. Update results

As a result the descriptor.json file (the package modification date has changed) and the UsrGreetingService schema
were modified. The source code of the schema is available below:

namespace Terrasoft.Configuration
{
 using System.ServiceModel;
 using System.ServiceModel.Activation;
 using System.ServiceModel.Web;
 [ServiceContract]
 [AspNetCompatibilityRequirements(RequirementsMode =
AspNetCompatibilityRequirementsMode.Required)]
 public class UsrGreetingService : System.Web.SessionState.IReadOnlySessionState
 {
 [OperationContract]
 [WebInvoke(Method = "GET", UriTemplate = "Hello")]
 public string TestHello()
 {

Bpm’online developer guide 200

 return "Hello!";
 }
 }
}

ATTENTION

To implement changes to the application database, execute the [Update packages from file system] action in
the [Configuration] section. If the schemas of an object or a source code were modified, execute steps 3 – 6
of the “How to install an SVN package in the file system development mode” article to apply
changes.

Package contents modifications
After updating the package you can modify its contents. For example, add the TestHelloWorld() method to the
source code of the UsrGreetingService.cs schema.

namespace Terrasoft.Configuration
{
 using System.ServiceModel;
 using System.ServiceModel.Activation;
 using System.ServiceModel.Web;
 [ServiceContract]
 [AspNetCompatibilityRequirements(RequirementsMode =
AspNetCompatibilityRequirementsMode.Required)]
 public class UsrGreetingService : System.Web.SessionState.IReadOnlySessionState
 {
 [OperationContract]
 [WebInvoke(Method = "GET", UriTemplate = "Hello")]
 public string TestHello()
 {
 return "Hello!";
 }

 [OperationContract]
 [WebInvoke(Method = "GET", UriTemplate = "HelloWorld")]
 public string TestHelloWorld()
 {
 return "Hello world!";
 }
 }
}

Committing a package to storage
To commit the modifications in the SVN select the corresponding package in the
..\Terrasoft.WebApp\Terrasoft.Configuration\Pkg folder and perform the [SVN Commit...] action. (Fig. 1).

After that the revision properties window with modified files (1) will be displayed (Fig. 3). In this window you can
add the log message with description of changes for the current revision (2). Click the [OK] button to start
committing.

Fig. 3. Revision properties window

Bpm’online developer guide 201

Committing process is displayed in the information window (Fig. 4).

Fig. 4. Result of committing

See also
Working with SVN in the file system
Creating a package in the file system development mode
How to install an SVN package in the file system development mode
How to bind existing package to SVN
Creation of the package and switching to the file system development mode

Bpm’online developer guide 202

Creation of the package and switching to the file system development
mode

Introduction
After performing the [Download packages to file system] action in the development in the file system mode all
custom packages will be uploaded to the ..\Terrasoft.WebApp\Terrasoft.Configuration\Pkg folder. The content of
the custom package uploaded to the file system will not be bound to the SVN storage even if the package is bound to
the storage in the [Configuration] section.

Fill out the [Revision control system storage] field to bind a package to the SVN storage (see “Creating and
installing a package for development”). A working copy of the package will be created in the file system. A path
to the folder where the work copies of the packages are being created is specified in the
defPackagesWorkingCopyPath setting in the ConnectionStrings.config file (see “What parameters are used in
ConnectionStrings.config”).

This feature can be used to create a package bound to SVN and used for development in the file system. If you
specify a path to the ..\Terrasoft.WebApp\Terrasoft.Configuration\Pkg folder in the
defPackagesWorkingCopyPath setting, the package will be automatically bound to the SVN storage after it is
uploaded to the file system.

To do this:

1. Specify a path to the ..\Terrasoft.WebApp\Terrasoft.Configuration\Pkg. folder in the
defPackagesWorkingCopyPath setting.

2. In the development mode, use the built-in tools to create a package in the [Configuration] section bound to the
SVN storage.

3. Commit the package in the storage in the [Configuration] section.

4. Switch to the file system development mode

5. Export the package to the file system.

6. Add new elements of the package to the SVN storage.

Case description
In the development mode, use the built-in tools to create a custom package in the [Configuration] section bound to
the SVN storage. Configure the bpm’online so that the content of the package in the development mode was bound
to the SVN storage after the package upload.

ATTENTION

The case requires understanding of the difference between development modes. In general: in the
development mode in the file system, it is necessary to work with the SVN storage only from the file system,
and in the development mode using the built-in tools it is necessary to work with SVN only via the built-in
tools of the [Configuration] section.

Case implementation algorithm
1. Modify the defPackagesWorkingCopyPath setting

Specify a path to the ..\Terrasoft.WebApp\Terrasoft.Configuration\Pkg. folder in the
defPackagesWorkingCopyPath setting of the ConnectionStrings.config file. Example:

Bpm’online developer guide 203

https://academy.terrasoft.ru/documents/sales-enterprise/7-11/chasto-zadavaemye-voprosy-po-ustanovke-bpmonline#XREF_90698_ConnectionStrings
https://academy.terrasoft.ru/documents/sales-enterprise/7-11/chasto-zadavaemye-voprosy-po-ustanovke-bpmonline#XREF_90698_ConnectionStrings

<?xml version="1.0" encoding="utf-8"?>
<connectionStrings>
 ...
 <add name="defPackagesWorkingCopyPath"
connectionString="C:\bpmonline7.11.2\Terrasoft.WebApp\Terrasoft.Configuration\Pkg/>
 ...
</connectionStrings>

This modification enables to combine the folder with working copies of custom packages with the folder in which the
packages will be uploaded in the development in the file system mode.

2. Create a custom package

In the development mode, create a custom package in the [Configuration] section bound to the SVN storage via the
built-in tools. Please refer to “Creating and installing a package for development” for any details. Specify the
name, storage and version of the created package (Fig. 1).

Fig. 1. Package properties

ATTENTION

After creation of the package add necessary dependencies form the base packages (see “Package
dependencies. Basic application packages”).

3. Commit a package to storage

To commit a package to the storage perform the [Commit package to repository] action (Fig. 2). In the dialog box
(Fig. 3) add the description of changes (1) and press the [OK] button. After the commit is complete, the
corresponding message will appear (3).

Fig. 2. The [Commit package to storage] action

Bpm’online developer guide 204

Fig. 3. Commit properties window

After the commit is complete, the ..\Terrasoft.WebApp\Terrasoft.Configuration\Pkg catalog will contain a local
working copy of the package (Fig. 4).

Fig. 4. Package working copy

Bpm’online developer guide 205

4. Switch to the file system development mode.

To enable the development in the file system mode, edit the Web.config file in the application root folder and set
enabled attribute of the fileDesignMode element to true.

<fileDesignMode enabled="true"/>

ATTENTION

Disable the using of the static content (see “Client static content in the file system”).

After the development in the file system mode is enabled, two buttons will appear on the [Actions] tab in the
[Configuration] section (Fig. 1):

[Download packages to file system] – exports the packages from the application database to the following
directory: ...\Terrasoft.WebApp\Terrasoft.Configuration\Pkg.
[Update packages from file system] – imports the packages from the following catalog:
...\Terrasoft.WebApp\Terrasoft.Configuration\Pkg to the database.

Fig. 5. Actions in the [Configuration] section for development in the file system

Bpm’online developer guide 206

5. Export the package to the file system.

NOTE

If the package content was not changed after committing to the storage, this action is optional.

Perform the [Download packages to file system] action to download packages to the file system. As a result, all
elements of the package that were created or modified via built-in tools in the [Configuration] section will be
downloaded to the file system to the ..\Terrasoft.WebApp\Terrasoft.Configuration\Pkg folder.

ATTENTION

Since in the development in the file system mode the built-in tools for working with SVN are disabled, the new
elements of the package will not be bound to the storage.

6. Add new elements of the package to the SVN storage

To add the new elements of the package to the storage, select the folder of the package working copy and perform
the [Add...] command of the SVN application (for example, TortoiseSVN) (Fig. 6).

Fig. 6. Command of adding the elements to the storage

After this the dialog box with selection of the elements to add will be displayed (Fig. 7). Select the necessary

Bpm’online developer guide 207

elements and click the [OK] button, after that the window with the results of command execution will be displayed
(Fig. 8).

Fig. 7. Selection dialog box

Fig. 8. Information window

Added elements will be marked as bound but not committed to the SVN storage (Fig. 9).

Fig. 9. Displaying of the added but not committed package elements

Bpm’online developer guide 208

Perform the [SVN Commit...] command to commit all modified elements of the package in the storage. (Fig. 10).

Fig. 10. Command of adding the elements to the storage

NOTE

More information about committing the elements in the storage can be found in the “Updating and
committing changes to the SVN from the file system” article.

Bpm’online developer guide 209

See also
Working with SVN in the file system
Creating a package in the file system development mode
How to install an SVN package in the file system development mode
How to bind existing package to SVN
Updating and committing changes to the SVN from the file system

Developing the configuration server code in the user project

Introduction
Before the 7.11.1 version, only the preconfigured Visual Studio solution which is distributed with bpm’online, was
used to develop configuration server code in the file system More information about the Terrasoft.Configuration.sln
solution and development of the server code in the file system is given in the "Development in the file system"
and "Working with the server side source code in Visual Studio" articles.

This development approach is inconvenient because of low performance connected with recompilation of all
bpm’online configuration (Terrasoft.Configuration.dll). This is significantly if the application contains several
bpm'online products. In addition, the development of server code in the file system could only be performed by
interacting with the database of the application deployed on-site.

Due to the described inconveniences, this approach can be efficiently used to perform complex configuration
revision of the bpm'online. It is more efficient to use the built-in bpm'online development tools to develop a simple
server code (see the "Built-in development tools" article). But the built-in development tools do not support full
IDE functions: debugging, IntellSense, Refactoring, etc.

Starting with version 7.11.1 the bpm’online you can develop simple server code in the Visual Studio custom projects.

To develop and debug separate classes or small blocks of server functionality, you can create a separate class library
project and configure it. Then, connect corresponding bpm’online class libraries (for example, Terrasoft.Core) and
perform development and debugging of the server code. To debug and test the development result you can use a
local database (use the WorkspaceConsole utility to connect to the database) or an application located in the cloud
by connecting to it via the Executor utility.

Advantages of this approach:

High speed of testing modifications, compiling and execution
Full usage of the Visual Studio functions
Ability of using any tools for Continuous Integration, for example Unit testing.
Simplicity of configuration – you do not need configuration source codes
You can use the database of an application deployed on-site or in Cloud.

Preliminary settings
For connecting the libraries of the bpm'online classes, deploying the local database from an archive copy and
working with the WorkspaceConsole utility, you can use the bpm'online installed locally. In all examples of this
article used the bpm’online installed to the C:\bpmonline7.11.1 local folder.

The Executor utility located in the C:\Executor folder is used as an example of working with the bpm’online Cloud
service. You can use following link to download the utility configured for processing the example.

Development of the configuration server code for on-site

Bpm’online developer guide 210

https://en.wikipedia.org/wiki/Continuous_integration
https://academy.terrasoft.ru/sites/default/files/documents/downloads/SDK/Executor.zip

application
If you have an access to the bpm’online local database, to develop configuration server logic do the following:

1. Restore the database from a backup (if need)

The process of restoring the bpm’online database from backup is described in the "Installing bpm’online
application" article. Backup of the application database is located in the db folder of the application (for example,
C:\bpmonline7.11.1\db).

2. Configure the WorkspaceConsole utility

To operate with the database, you need to configure the WorkspaceConsole utility using the application files. More
information about configuration of the utility is described in the "WorkspaceConsole settings" article. To
configure the utility:

Open the Terrasoft.WebApp\DesktopBin\WorkspaceConsole folder of the application (for example,
C:\bpmonline7.11.1\Terrasoft.WebApp\DesktopBin\WorkspaceConsole).
Execute one of the .bat files: PrepareWorkspaceConsole.x64.bat or PrepareWorkspaceConsole.x86.bat,
depending on the Windows version.

NOTE

Ensure that the SharpPlink-xXX.svnExe and SharpSvn-DB44-20-xXX.svnDll files were copied to the
Terrasoft.WebApp\DesktopBin\WorkspaceConsole folder from the corresponding folder (x64 and x86) after
executing the .bat file.

Specify parameters of connection to the database in the Terrasoft.Tools.WorkspaceConsole.exe.config file
from the Terrasoft.WebApp\DesktopBin\WorkspaceConsole folder of the application (for example,
C:\bpmonline7.11.1\Terrasoft.WebApp\DesktopBin\WorkspaceConsole). For example, if the
bpmonline7.11.1DB database is deployed on the dbserver server, the connection string will be as follows:

<connectionStrings>
<add name="db" connectionString="Data Source=dbserver; Initial
Catalog=bpmonline7.11.1DB; Persist Security Info=True; MultipleActiveResultSets=True;
Integrated Security=SSPI; Pooling = true; Max Pool Size = 100; Async = true;
Connection Timeout=500" />
</connectionStrings>

3. Create and configure Visual Studio project

For this, create standard class library project (Fig. 1). More information about creating a new Visual Studio solution
and managing projects is described in the "Solutions and Projects in Visual Studio" Microsoft documentation article.

Fig. 1. Creating the solution and project of the classes library in the Visual Studio

Bpm’online developer guide 211

https://academy.bpmonline.com/documents/sales-enterprise/7-11/installing-bpmonline-application
https://academy.bpmonline.com/documents/sales-enterprise/7-11/installing-bpmonline-application
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio

On the [Debug] tab of the properties window of the created class library project, specify the full path to the
configured WorkspaceConsole utility in the [Start external program] property (Fig. 2). The WorkspaceConsole is
used as the external application for debugging the developed program logic.

Fig. 2. The [Debug] tab properties

In the [Command line arguments] properties specify following launch arguments of the WorkspaceConsole.

filename – full path to the debug version of developed class library.
typeName – full name of the class in which the program logic (including the names of all namespaces) is
being developed. For example, BpmonlineCustomServerLogic.MyContactCreator.
Operation – WorkspaceConsole operation. The "ExecuteScript" value should be specified.
workspaceName – the workspace name. The "Default" value should be specified.

The example of the WorkspaceConsole launch arguments:

Bpm’online developer guide 212

-
filename="C:\Projects\BpmonlineCustomServerLogic\BpmonlineCustomServerLogic\bin\Debug
\BpmonlineCustomServerLogic.dll" -
typeName=BpmonlineCustomServerLogic.MyContactCreator -operation=ExecuteScript -
workspaceName=Default

More information can be found in the "WorkspaceConsole parameters" article.

ATTENTION

In the properties of the Visual Studio project that operates with the bpm'online 7.11.0 or higher, you need to
specify the version of the .NET Framework 4.7 (the [Target framework] property of the [Application] tab).

To work with the classes of the server side of bpm’online core, set the dependencies from the necessary bpm’online
class libraries in the created project. For example, add the dependency from the Terrasoft.Core.dll library (Fig. 3).
More information about adding the dependencies can be found in the "Managing references in a project" Microsoft
documentation article.

Fig. 3. Terrasoft.Core library in the project dependencies

Class libraries of the bpm’online namespace can be found in the Terrasoft.WebApp\DesktopBin\WorkspaceConsole
folder of the application.

NOTE

Class libraries are being copied to the Terrasoft.WebApp\DesktopBin\WorkspaceConsole folder when
executing the .bat files (see Step 2. Configure the WorkspaceConsole utility").

4. Develop the functions

For this, add a new class to the created class library project. The name of the class should match the name specified
in the typeName launch argument of the WorkspaceConsole (for example,
BpmonlineCustomServerLogic.MyContactCreator). Class should implement the Terrasoft.Core.IExecutor
interface.

The implementation of the class is available below:

using System;
using Terrasoft.Core;

Bpm’online developer guide 213

https://docs.microsoft.com/en-us/visualstudio/ide/managing-references-in-a-project

namespace BpmonlineCustomServerLogic
{
 public class MyContactCreator : IExecutor
 {
 public void Execute(UserConnection userConnection)
 {
 // Getting an instance of the [Contacts] schema.
 var schema =
userConnection.EntitySchemaManager.GetInstanceByName("Contact");
 var length = 10;
 for (int i = 0; i < length; i++)
 {
 // Create a new contact.
 var entity = schema.CreateEntity(userConnection);
 // Set contact properties.
 entity.SetColumnValue("Name", string.Format("Name {0}", i));
 entity.SetDefColumnValues();
 // Save the contact to the database.
 entity.Save(false);
 }
 // Output message to the console.
 Console.WriteLine($"{length} contacts created");
 }
 }
}

After running the project (F5 key) the WorkspaceConsole window with the corresponding message will be displayed
(Fig. 4).

Fig. 4. Displaying the result of running the program in the WorkspaceConsole window.

You can also set a breakpoint on any line of the source code and view the current values of variables at the time of
program execution (ie, debuging). More information about breakpoints in the Visual Studio can be found in the Use
Breakpoints in the Visual Studio Debugger" Microsoft documentation article.

The result of execution the above code can be found in the [Contacts] section of the bpm'online application (Fig. 5)
or by executing the request to the database (Fig. 6).

Fig. 5. Added contacts

Bpm’online developer guide 214

https://docs.microsoft.com/en-us/visualstudio/debugger/using-breakpoints
https://docs.microsoft.com/en-us/visualstudio/debugger/using-breakpoints

Fig. 6. Request to the table of contacts of the database

Development of the configuration server code for Cloud
application
To develop configuration server logic without direct access to the bpm’online database:

1. Create class library project.

Create standard class library project (Fig. 1). More information about creating a new Visual Studio solution and
managing projects is described in the "Solutions and Projects in Visual Studio" Microsoft documentation article. Set
the name of the project (for example, "BpmonlineCustomServerLogic.Cloud").

To work with the classes of the server side of bpm’online core, set the dependencies from the necessary bpm’online
class libraries in the created project. For example, add the dependency from the Terrasoft.Core.dll library (Fig. 3).
More information about adding the dependencies can be found in the "Managing references in a project" Microsoft
documentation article.

NOTE

Class libraries of the bpm’online namespace can be found in the bin folder of the application. Class libraries
are being copied to the Terrasoft.WebApp\DesktopBin\WorkspaceConsole folder when executing the .bat
files (see Step 2. Configure the WorkspaceConsole utility" of the example of configuration server code
development for on-site application).

Bpm’online developer guide 215

https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/managing-references-in-a-project

In the created class library project, specify the full path to the configured Executor utility in the [Post-build event
command line] property on the [BuildEvents] tab of the properties window (Fig. 7), for example
C:\Executor\Executor.exe. Also, you must select the condition for starting the library build event on this tab.

NOTE

The configuration process is given below on the Step "3. Executor utility configuration".

Fig. 7. [Build Events] tab properties

2. Develop the functions

For this, add the class that will implement the Terrasoft.Core.IExecutor interface to the created library project. The
implementation of the class is available below:

using System;
using System.Web;
using Terrasoft.Core;
using Terrasoft.Core.Entities;

namespace BpmonlineCustomServerLogic.Cloud
{
 public class MyContactReader : IExecutor
 {
 public void Execute(UserConnection userConnection)
 {
 // Getting an instance of the [Contacts] schema.
 var entitySchema =
userConnection.EntitySchemaManager.GetInstanceByName("Contact");
 // Create an instance of the query class.
 var esq = new EntitySchemaQuery(entitySchema);

Bpm’online developer guide 216

 // Adding all the columns of the schema to the query.
 esq.AddAllSchemaColumns();
 // Getting the collection of records in the [Contacts] section.
 var collection = esq.GetEntityCollection(userConnection);
 foreach (var entity in collection)
 {
 // The output in the http-response of the request from the Executor
utility of the necessary values.
 HttpContext.Current.Response.Write(entity.GetTypedColumnValue<string>
("Name"));
 HttpContext.Current.Response.Write(Environment.NewLine);
 }
 }
 }
}

3. Executor utility configuration

NOTE

You can use following link to download the utility configured for processing the example.

Open the Executor utility folder, for example, C:\Executor. Then, specify the values for the following configuration
items in the configuration file:

Loader – URL of the bpm’online application loader. Usually this is the URL of the bpm’online site, for
example "https://mycloudapp.bpmonline.com".
WebApp – URL of the bpm’online application. Usually this is a path to default configuration of
bpm’online, for example "https://mycloudapp.bpmonline.com/0".
Login – the name of the bpm’online user, for example, "Supervisor".
Password – the password of bpm’online user.
LibraryOriginalPath – the path to the initial copy of the class library. Usually, this is the path by which a
class library is created after compilation in Visual Studio, for example,
"C:\Projects\BpmonlineCustomServerLogic\BpmonlineCustomServerLogic.Cloud\bin\Debug\Bpmonline
CustomServerLogic.Cloud.dll".
LibraryCopyPath – the path by which a copy of the class library will be created for work with the remote
server. This can be a temporary folder that contains the Executor utility, for example,
"C:\Executor\BpmonlineCustomServerLogic.Cloud.dll".
LibraryType – full name of the class in which the developed program logic is implemented, including the
names of all namespaces. For example, "BpmonlineCustomServerLogic.Cloud.MyContactReader".
LibraryName – name of the class library, for example, "BpmonlineCustomServerLogic.Cloud.dll".

4. Run the developed program code

The result of execution the development program code can be observed in the [Output] window of the Visual Studio
after successful building of the class library (Fig. 8).

Fig. 8. Result of program code execution

To launch the building process use the [Build Solution] and [Rebuild Solution] menu commands (Fig. 9).

Bpm’online developer guide 217

https://academy.terrasoft.ru/sites/default/files/documents/downloads/SDK/Executor.zip
https://mycloudapp.bpmonline.com/
https://mycloudapp.bpmonline.com/0

Fig. 9. [Build] menu commands

Automatic displaying of changes in the development of the custom
logic

Introduction
When developing configuration server code in the file system, each time after making changes to the source code of
the custom schema you need to refresh the browser page on which the application is opened. This reduces the
development performance.

To avoid this, we developed the new functionality of automatic browser page reload after changes. This functionality
works in a following way.

When the application starts, it creates an object that tracks the changes of the .js file with the source code of the
developed module in the file system. If the changes have made, a message is sent to the client bpm'online
application. In the client application, a specific object which is signed to this message defines dependent objects of
the changed module, destroys them, registers new paths to the modules and tries to load the modified module again.
After that, all the pre-initialized modules will be requested by the browser via new paths and load changes from the
file system. It does not take time to interpret and load other modules. Separate development page enables to avoid
loading of additional modules (for example left or right panel, communication panel, etc.). This reduces the number
of requests to the server.

This approach reveals the connectivity of the modules and detects unnecessary dependencies to eliminate them.

Known issues
1. If there is a syntax error in the source code of the module, the page will not automatically refresh. The page

will need to be forcibly refreshed (for example, by pressing the F5 key). If the error is corrected, the page will
return to the operable status.

2. Not all bpm'online modules can be downloaded separately. The main reason is the effect of strong coupling of
modules.

Configuration steps
1. Install the JavaScriptOnlineLoader package

Bpm’online developer guide 218

https://en.wikipedia.org/wiki/Coupling_(computer_programming)
https://en.wikipedia.org/wiki/Coupling_(computer_programming)

Enable the development mode in the file system and add the JavaScriptOnlineLoader folder with corresponding
package to the [Path to the installed application]\Terrasoft.WebApp\Terrasoft.Configuration\Pkg folder (Fig. 1).

Fig. 1. The JavaScriptOnlineLoader package in the file system

More information about the development mode in the file system can be bound in the “Development in the file
system” article.

The package is available on the GitHub (https://github.com/vladimir-
nikonov/pngstore/tree/master/JavaScriptOnlineLoader). Also the archive with the package can be
downloaded by the link.

Load the package to the configuration with the [Update packages from file system] action (Fig. 2).

Fig. 2. The [Update packages from file system] action

As a result, the package will be displayed on the [Packages] tab (Fig. 3).

Fig. 3. The package in the [Configuration] section

Bpm’online developer guide 219

https://github.com/vladimir-nikonov/pngstore/tree/master/JavaScriptOnlineLoader
https://github.com/vladimir-nikonov/pngstore/tree/master/JavaScriptOnlineLoader
https://academy.terrasoft.ru/sites/default/files/documents/downloads/SDK/JavaScriptOnlineLoader.zip

2. Open the page of the developed module in the browser

To do this, open the ViewModule.aspx page with the added parameter with the following format:

?vm=DevViewModule#CardModuleV2/<Module name>

For example, the KnowledgeBasePageV2 replacing schema (the schema of the [Knowledge base] section edit page)
is added to the custom package. The page with the functions of automatic displaying of changes will be available at
the following URL:

http://localhost/bpmonline/0/Nui/ViewModule.aspx?
vm=DevViewModule#CardModuleV2/KnowledgeBasePageV2

The http://localhost/bpmonline is a URL of the bpm’online application deployed on-site.

After clicking this URL, the ViewModule.aspx page will be displayed with the loaded module (Fig. 4).

Fig. 4. The ViewModule.aspx page with the loaded module

Bpm’online developer guide 220

3. Change the source code of the developed schema

The source code of the developed schema can be changed in any text editor (for example, the Notepad). After saving
the changes, the page opened in the browser will be automatically refreshed.

For example, the KnowledgeBasePageV2 replacing schema (the schema of the [Knowledge base] section edit page)
is added to the sdkAutoUpdateClientLogicDev custom package. After loading to the file system, the schema code
will be available in the ..\Pkg\sdkAutoUpdateClientLogicDev\Schemas\KnowledgeBasePageV2 folder.

If the following source code will be added to the KnowledgeBasePageV2.js file and save it, the browser page will be
automatically refreshed. The changes will be displayed immediately (Fig. 5).

define("KnowledgeBasePageV2", [],
 function() {
 return {
 entitySchemaName: "KnowledgeBase",
 diff: /**SCHEMA_DIFF*/[
 {
 "operation": "insert",
 "parentName": "Header",
 "propertyName": "items",
 "name": "SomeField",
 "values": {
 "layout": {"column": 0, "row": 0, "colSpan": 24},
 "caption": "SomeField"
 }
 }
]/**SCHEMA_DIFF*/

Bpm’online developer guide 221

 };
 });

Fig. 5. Page with changes

Packages file content

Introduction
Starting with version 7.11.3 you can add file content (.js, .css files, images, etc.) to the custom packages.

File content of packages is a number of any files used by the application. File content is static and is not processed by
the web server (see “Client static content in the file system”). This increases application performance.

ATTENTION

File content is an integral part of the bpm’online and is always stored in the
...\Terrasoft.WebApp\Terrasoft.Configuration\Pkg\<Package name>\Files folder.

NOTE

Any files can be added to the package, but only the files needed for the client part of bpm'online will be used.

ATTENTION

You need to generate auxiliary files (see “Generation of auxiliary files” below) to use file content.

Recommended file storage structure

To use file content the Files folder was added to the package structure (see “Package structure and contents”).
It is recommended to keep following structure of the Files folder:

-PackageName

Bpm’online developer guide 222

 ...
 -Files
 -src
 -js
 bootstrap.js
 [other *.js files]
 -css
 [*.css files]
 -less
 [*.less files]
 -img
 [image files]
 -res
 [resource files]
 descriptor.json
 ...
descriptor.json

Here

js – folder with .js files of JavaScript source codes

css – folder with *.css style files

less – folder with *.less style files

img – folder with images

res – folder with resource files

descriptor.json – descriptor of the file content.

How to add a new file content to the package

Copy a file to the corresponding subfolder of the Files folder of specific package. The Files folder will be available by
the ...\Terrasoft.WebApp\Terrasoft.Configuration\Pkg\<Package name>\Files path.

Descriptor of the file content

Information about bootstrap files of the package is stored in the descriptor.json file of the Files folder. The has
following structure:

{
 "bootstraps": [
 ... // An array of strings containing relative paths to bootstrap files.
]
}

Example of descriptor.json:

{
 "bootstraps": [
 "src/js/bootstrap.js",
 "src/js/anotherBootstrap.js"
]
}

Bootstrap files of the package

The .js files that enable to manage loading of client configuration logic. The file does not have a clear structure.

(function() {
 require.config({
 paths: {
 "Module name ":" A link to the file content",
 ...

Bpm’online developer guide 223

 }
 });
})();

Example of bootstrap.js:

(function() {
 require.config({
 paths: {
 "MyPackage1-ContactSectionV2": Terrasoft.getFileContentUrl("MyPackage1",
"src/js/ContactSectionV2.js"),
 "MyPackage1-Utilities": Terrasoft.getFileContentUrl("MyPackage1",
"src/js/Utilities.js")
 }
 });
})();

ATTENTION

All bootstrap files are loaded asynchronously after the core is loaded, but before loading the configuration.

Loading of the bootstrap files

For correct loading of bootstrap files, the _FileContentBootstraps.js auxiliary file is generated in the static content
folder (see “Generation of auxiliary files” below). This file contains information about bootstrap files of all packages.

Example of the _FileContentBootstraps.js:

var Terrasoft = Terrasoft || {};
Terrasoft.configuration = Terrasoft.configuration || {};
Terrasoft.configuration.FileContentBootstraps = {
 "MyPackage1": [
 "src/js/bootstrap.js"
]
};

File content versioning

For correct versioning of the file content, the _FileContentDescriptors.js auxiliary file is generated in the static
content folder (see “Generation of auxiliary files” below). This file contains information about the files in the file
content of all packages in the "key-value” collection view. Each key (file name) corresponds to a unique hash code.
This guarantees downloading of the up to date version of the file to the browser.

NOTE

After installing the file content, there is no need to clear the browser cache.

Example of the _FileContentDescriptors.js file:

var Terrasoft = Terrasoft || {};
Terrasoft.configuration = Terrasoft.configuration || {};
Terrasoft.configuration.FileContentDescriptors = {
 "MyPackage1/descriptor.json": {
 "Hash": "5d4e779e7ff24396a132a0e39cca25cc"
 },
 "MyPackage1/Files/src/js/Utilities.js": {
 "Hash": "6d5e776e7ff24596a135a0e39cc525gc"
 }
};

Generation of auxiliary files

Execute the BuildConfiguration operation in the WorkspaceConsole:

Bpm’online developer guide 224

Terrasoft.Tools.WorkspaceConsole.exe -operation=BuildConfiguration -
workspaceName=Default -destinationPath=Terrasoft.WebApp\ -
configurationPath=Terrasoft.WebApp\Terrasoft.Configuration\ -
useStaticFileContent=false -usePackageFileContent=true -autoExit=true

In this code:

operation – operation name. BuildConfiguration – operation of configuration compilation.
useStaticFileContent – a flag of using static content. Should be false.
usePackageFileContent – a flag of using file content of the packages. Should be true.

Other WorkspaceConsole parameters are described in the "WorkspaceConsole parameters” article.

As a result the _FileContentBootstraps.js and _FileContentDescriptors.js auxiliary files will be generated in the
folder with the static content ...\Terrasoft.WebApp\conf\content.

ATTENTION

Also the generation of auxiliary files is performed at installation of packages from SVN and executing
compilation action in the [Configuration] section.

Transition of modifications between environments

File content is an integral part of the package. The content is stored in the SVN store with all package content. The
content can be transferred to another development environment via SVN (see “Working with SVN in the file
system”).

ATTENTION

It is recommended to use bpm’online built-in tools to transfer on test and production environments
(see”Exporting packages from the application interface” and “Installing marketplace
applications from a zip archive”).

Localization of the file content

Introduction
Starting with version 7.11.3 you can add file content (.js, .css files, images, etc.) to the custom packages.

File content of packages is a number of any files used by the application. File content is static and is not processed by
the web server (see “Client static content in the file system”). This increases application performance.

More information about file content can be found in the “Packages file content”.

Localization with configuration resources
To translate the resources it is recommended to use separate module with localizable resources created via internal
bpm’online tools in the [Configuration] section. The complete source code of this module is available below:

define("Module1", ["Module1Resources"], function(res) {
 return res;
});

To include localizable resources to the module that is defined in the file content of the package you need to define
the module with resources. Example:

Bpm’online developer guide 225

define("MyPackage-MyModule", ["Module1"], function(module1) {
 console.log(module1.localizableStrings.MyString);
});

Localization via i18n plugin
i18n is a plugin for AMD loader (for example, RequireJS) used for loading lcoalizable string resources. The source
code of the plugin can be found in the https://github.com/requirejs/i18n storage. Documentation is available by the
http://requirejs.org/docs/api.html#i18n link.

To localize file content with RequireJS i18n plugin, perform the following steps:

1. Add the plugin to the folder with the source code .js files:
..\Terrasoft.WebApp\Terrasoft.Configuration\Pkg\MyPackage1\content\js\i18n.js.

MyPackage1 – working folder of the MyPackage1 package (see “Packages file content”).

2. Create the ..\MyPackage1\content\nls folder and put there one or several .js files with localizable resources. File
names can be arbitrary. File content – AMD modules with objects of the following structure:

The “root” field contains the key-value collection where the “key” is the name of a localizable string and
the “value” is localizable string of the default language. The value will be used if the requested language is
not supported.
Fields with the names of standard cultures (for example, “en-US”, “de-DE”) and the boolean value. The
value is true if the supported culture is enabled and false if it is disabled.

For example the added ..\MyPackage1\content\js\nls\ContactSectionV2Resources.js file with the following
content:

define({
 "root": {
 "FileContentActionDescr": "File content first action (Default)",
 "FileContentActionDescr2": "File content second action (Default)"
 },
 "en-US": true,
 "ru-RU": true
});

3. In the ..\MyPackage1\content\nls folder, create folders with the names corresponding to the cultures of the
localization files that will be put in these folders (for example, “en-US”, “de-DE”). For example, if the German and
English culture are supported the folder structure will be following:

content
 nls
 en-US
 ru-RU

4. In each created localization directory put the same number of .js files as in the ..\MyPackage1\content\nls root
folder. File content is the AMD modules with objects of the key-value collections, where the “key” is the name of a
localizable string and the “value” is a string of the language corresponding to the name of the folder (the code of the
culture).

For example, if the German and English culture are supported you need to create two ContactSectionV2Resources.js
files. The content of the ..\MyPackage1\content\js\nls\en-US\ContactSectionV2Resources.js, file corresponding to
English culture:

define({
 "FileContentActionDescr": "File content first action",
 "FileContentActionDescr2": "File content second action"
});

The content of the ..\MyPackage1\content\js\nls\de-DE\ContactSectionV2Resources.js, file corresponding to
German culture:

Bpm’online developer guide 226

https://github.com/requirejs/i18n
http://requirejs.org/docs/api.html#i18n

define({
 "FileContentActionDescr": "Die erste Aktion des Dateiinhalts"
});

ATTENTION

As the translation of the "FileContentActionDescr2" string is not specified for the German culture the default
value ("File content second action (Default)”) will be used.

5. Edit the bootstrap.js file.

Connect the i18n plugin by specifying its name as the "i18n” alias in the RequireJS path configuration and
specifying corresponding path to the plugin in the paths propertiy.
For the plugin specify a culture that is current for the user. Set the object with the i18n property to the
config property of the configuration object of the RequireJS library. Set the object with the locale property
and the value received from the Terrasoft.currentUserCultureName (the code of the current culture) to
the the object with the i18n property.
For each file with localization resources set corresponding aliases and paths in the RequireJS path
configuration. The alias must be a URL-path relative to the nls directory.

Example of the ..\MyPackage1\content\js\bootstrap.js file content:

(function() {
 require.config({
 paths: {
 "MyPackage1-Utilities": Terrasoft.getFileContentUrl("MyPackage1",
"content/js/Utilities.js"),
 "MyPackage1-ContactSectionV2": Terrasoft.getFileContentUrl("MyPackage1",
"content/js/ContactSectionV2.js"),
 "MyPackage1-CSS": Terrasoft.getFileContentUrl("MyPackage1",
"content/css/MyPackage.css"),
 "MyPackage1-LESS": Terrasoft.getFileContentUrl("MyPackage1",
"content/less/MyPackage.less"),
 "i18n": Terrasoft.getFileContentUrl("MyPackage1", "content/js/i18n.js"),
 "nls/ContactSectionV2Resources":
Terrasoft.getFileContentUrl("MyPackage1",
"content/js/nls/ContactSectionV2Resources.js"),
 "nls/ru-RU/ContactSectionV2Resources":
Terrasoft.getFileContentUrl("MyPackage1", "content/js/nls/ru-
RU/ContactSectionV2Resources.js"),
 "nls/en-US/ContactSectionV2Resources":
Terrasoft.getFileContentUrl("MyPackage1", "content/js/nls/en-
US/ContactSectionV2Resources.js")
 },
 config: {
 i18n: {
 locale: Terrasoft.currentUserCultureName
 }
 }
 });
})();

6. Use the resources by specifying the corresponding module of resources with the "i18n!” alias in the dependency
array. For example, to use the FileContentActionDescr (see steps 2,4) string as a title for the new action in the
[Contacts] section, add the following content to the ..\MyPackage1\content\js\ContactSectionV2.js file:

define("MyPackage1-ContactSectionV2", ["i18n!nls/ContactSectionV2Resources",
 "css!MyPackage1-CSS", "less!MyPackage1-LESS"], function(resources) {
 return {
 methods: {
 getSectionActions: function() {
 var actionMenuItems = this.callParent(arguments);

Bpm’online developer guide 227

 actionMenuItems.addItem(this.getButtonMenuItem({"Type":
"Terrasoft.MenuSeparator"}));
 actionMenuItems.addItem(this.getButtonMenuItem({
 "Click": {"bindTo": "onFileContentActionClick"},
 "Caption": resources.FileContentActionDescr
 }));
 return actionMenuItems;
 },
 onFileContentActionClick: function() {
 console.log("File content clicked!")
 }
 },
 diff: /**SCHEMA_DIFF*/[]/**SCHEMA_DIFF*/
 }
});

How to create Unit-tests via NUnit and Visual Studio

Introduction
Unit-testing (module testing) is a software development process for verifying the operation capacity of the isolated
program components (see “Module testing”). The tests are usually written by developers for every advanced method
of the developed class. This allows to quickly reveal the source code recession – errors in the tested program
components.

One of the NET-application Unit-testing frameworks is NUnit – Unit-testing environment with an open source code.
A special adapter has been developed to integrate it with Visual Studio. Such adapter can be installed as a Visual
Studio extension or as a project NuGet package with the implemented Unit-tests. Use this link to access the 3.x
version framework documentation.

To create Unit-tests for methods or bpm'online custom package class properties:

1. Install NUnit Visual Studio adapter

2. Switch to the file system development mode

3. Set up the Unit-test project

4. Create the tests

5. Perform testing

Case description
Add tests for the custom class, implemented in the [Source code] type UsrNUnitSourceCode schema of the
bpm'online application sdkNUnit custom package.

Source code
You can access the custom class implementation package at sdkNUnit repository at Github.

Case implementation algorithm

1. Install NUnit Visual Studio adapter

You can install NUnit Visual Studio adapter either as a Visual Studio extension or as a NuGet package.

Installing NUnit adapter as a Visual Studio extension

Bpm’online developer guide 228

https://en.wikipedia.org/wiki/Unit_testing
http://nunit.org/
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/bpmonline-academy/sdkNUnit

The advantage of installing NUnit adapter as a Visual Studio extension is its availability for any test project since the
adapter becomes part of IDE. Another advantage is the automatic extension update. The disadvantage is the
necessity to install it for every test project team member.

To install NUnit adapter:

1. Download extension from Visual Studio Marketplace *.VSIX-file.

2. Double-click the *.VSIX-file and run the installation. Select the needed Visual Studio versions during installation.

NOTE

As an alternative, you can install NUnit adapter via the Tools > Extensions and Updates menu. Select [Online]
filter (Fig. 1. 1) and indicate “NUnit 3 Test Adapter” (2) in the search string. Select NUnit 3 Test Adapter
extension in the search results and click [Download]. The extension installation starts automatically.

Fig. 1. Extension search by Visual Studio built-in tools

Installing NUnit adapter as a NuGet package

The advantage of NUnit adapter installation as a NuGet-package is that in this case it becomes part of Visual Studio
project and is available for access to all developers who use the project. The disadvantage is the necessity to install it
for all Unit-test projects.

To install NUnit adapter:

1. Right-click the test project (for instance, Terrasoft.Configuration.Tests.csproj) and select the [Manage NuGet
Packages...] command.

2. Indicate “NUnit3TestAdapter” (1) in the search string of the opened NuGet package manager tab (Fig.2). Select
the package in the search results (2) and install it (3).

Fig. 2. Installing NUnit3TestAdapter package in the NuGet package manager

Bpm’online developer guide 229

https://marketplace.visualstudio.com/items?itemName=NUnitDevelopers.NUnit3TestAdapter

NOTE

You can find detailed description of NuGet-package installation into Visual Studio projects in the “Package
Manager UI” Microsoft article.

2. Switch to the file system development mode

Creating Unit-tests for .NET classes, implemented in bpm’online packages is only possible in the file system
development mode. You can find more information about the bpm’online configuration development in the file
system, setting up Visual Studio and the server code operation case in “Development in the file system”,
“Visual Studio settings for development in the file system” and “Working with the server side source
code in Visual Studio”.

The sdkNUnit custom package containing [Source code] type UsrNUnitSourceCode schema is used in this case. The
UsrNUnitSourceCode С# class containing methods that require writing tests is implemented in this schema source
code.

ATTENTION

You can access the custom class implementation package at sdkNUnit repository at Github.

The sdkNUnit custom package has the following view (see Fig.3) after it has been uploaded to the file system:

Fig. 3. The sdkNUnit package structure

Bpm’online developer guide 230

https://docs.microsoft.com/en-us/nuget/tools/package-manager-ui
https://docs.microsoft.com/en-us/nuget/tools/package-manager-ui
https://github.com/bpmonline-academy/sdkNUnit

Class source code for testing:

namespace Terrasoft.Configuration
{
 public class UsrNUnitSourceCode
 {
 // String property.
 public string StringToTest
 {
 get
 {
 return "String to test";
 }
 }
 // The method that verifies the equality of the two strings.
 public bool AreStringsEqual(string str1, string str2)
 {
 return str1 == str2;
 }
 }
}

3. Set up the Unit-test project

The Terrasoft.Configuration.Tests.csproj pre-configured project is used for creating Unit-tests in this case. It is
delivered with the Terrasoft.Configuration.sln solution (see “Server code operation in Visual Studio”).

Add the NUnit NuGet-package in the project dependency to use NUnit framework for creating tests in the
Terrasoft.Configuration.Tests.csproj project. To do this:

1. Right-click the Terrasoft.Configuration.Tests test project in Solution Explorer and select the [Manage NuGet
Packages...] command.

2. Indicate “NUnit” (1) in the search string of the opened NuGet package manager tab (Fig.4), select the package in
the search results (2) and install it (3).

Fig. 4. Installing NUnit package in the NuGet package manager

Bpm’online developer guide 231

4. Create the tests

NOTE

It is common practice that the test-containing class name must have the tested class name with “Tests” word
in it. It is also convenient to place tests in catalogs to group them in a project. The catalog name should match
the tested package name and have “.Tests” ending in it.

To create tests for UsrNUnitSourceCode class:

1. Create sdkNUnit.Tests catalog in the Terrasoft.Configuration.Tests.csproj project.

2. Create the new UsrNUnitSourceCodeTests.class in the sdkNUnit.Tests catalog. This class source code will be
stored in the UsrNUnitSourceCodeTests.cs file (Fig.5).

Fig. 5. Test project structure

3. Add the implementation test methods to the UsrNUnitSourceCodeTests class:

using NUnit.Framework;

namespace Terrasoft.Configuration.Tests.sdkNUnitTests

Bpm’online developer guide 232

{
 [TestFixture]
 class UsrNUnitSourceCodeTests
 {
 // The tested class instance.
 UsrNUnitSourceCode objToTest = new UsrNUnitSourceCode();
 // Testing string.
 string str = "String to test";

 [Test]
 public void ClassReturnsCorrectStringProperty()
 {
 // Testing the string property value.
 // The value must be populated and match the required value.
 string res = objToTest.StringToTest;
 Assert.That(res, Is.Not.Null.And.EqualTo(str));
 }

 [Test]
 public void StringsMustBeEqual()
 {
 // Testing the value equality of the two strings.
 bool res = objToTest.AreStringsEqual(str, "String to test");
 Assert.That(res, Is.True);
 }

 [Test]
 public void StringsMustBeNotEqual()
 {
 // Testing the value inequality of the two strings.
 // This test will fail since the values are equal.
 bool res = objToTest.AreStringsEqual(str, "String to test");
 Assert.That(res, Is.False);
 }
 }
}

The UsrNUnitSourceCodeTests class is decorated by the [TestFixture] attribute, which marks it as a test-containing
class. Every method testing a specific functionality must be decorated by the [Test] attribute. You can find the
description of the NUnit framework attributes in the “Attributes” NUnit article.

The testing is performed via the Assert.That() method that accepts the tested value and such value limiting objects
as arguments. You can find more information about the assertions, Assert.That() method and limiting model in the
“Assertions” and “Constraint Model” NUnit articles.

5. Testing

To perform testing, execute the [Test] > [Windows] > [Test Explorer] menu command to open the [Test Explorer]
window in Visual Studio (Fig.6).

Fig. 6. [Test Explorer] window

Bpm’online developer guide 233

https://github.com/nunit/docs/wiki/Attributes
https://github.com/nunit/docs/wiki/Assertions
https://github.com/nunit/docs/wiki/Constraint-Model

Execute the [Run All] command to run the tests. The successfully passed tests will be moved to the [Passed Test]
group, the failed tests will be moved to the [Failed Test] group (Fig.7).

Fig. 7. Passed and Failed tests

You can find more information about the [Test Explorer] window functionality in the “Run unit tests with Test
Explorer” Visual Studio article.

How to use TypeScript when developing custom functions

Introduction
Starting with version 7.11.3 you can add file content (.js, .css files, images, etc.) to the custom packages.

File content of packages is a number of any files used by the application. File content is static and is not processed by
the web server (see “Client static content in the file system”). This increases application performance.

More information about file content can be found in the “Packages file content”.

File content enables to use languages which can be compiled to JavaScript (for example TypeScript) in custom
functions development. More information about TypeScript can be found at https://www.typescriptlang.org.

Bpm’online developer guide 234

https://docs.microsoft.com/en-us/visualstudio/test/run-unit-tests-with-test-explorer
https://docs.microsoft.com/en-us/visualstudio/test/run-unit-tests-with-test-explorer
https://www.typescriptlang.org/

TypeScript installation
One way to install the TypeScript tools is to use the NPM package manager for the Node.js. For this, run the
following command in the Windows console:

npm install -g typescript

ATTENTION

Check the Node.js execution environment in your system, before installing TypeScript via the NMP. Download
the installer by the https://nodejs.org link.

Case description
When saving an account record, display the message about the correctness of filling the [Also known as] field for the
user. The field should contain only letters. Implement the validation logics in the TypeScript language.

Source code
You can download the package with case implementation using the following link.

Case implementation algorithm
1. Switch to the file system development mode

For more information about entering the file system development mode, see the “Development in the file
system” article.

2. Create the structure of the file content storage

Recommended structure of the file content storage is described in the “Packages file content” article. For this:

1. Create the Files folder in the custom package loaded to the file system.

2. Add the src folder with the js subfolder to the Files folder.

3. Add the descriptor.json file with following content to the Files folder:

{
 "bootstraps": [
 "src/js/bootstrap.js"
]
}

4. Add the bootstrap.js file with the following content to the Files\src\js folder:

(function() {
 require.config({
 paths: {
 "LettersOnlyValidator": Terrasoft.getFileContentUrl("sdkTypeScript",
"src/js/LettersOnlyValidator.js")
 }
 });
})();

NOTE

The LettersOnlyValidator.js file specified in the bootstrap.js will be compiled at the step 4.

3. Implement the validation class in the TypeScript language

Bpm’online developer guide 235

https://www.npmjs.com/
https://nodejs.org/
https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkTypeScript_18.05.09_15.53.19.zip

Create the Validation.ts file in the Files\src\js folder and declare the StringValidator interface in this file:

interface StringValidator {
 isAcceptable(s: string): boolean;
}
export = StringValidator;

Create the LettersOnlyValidator.ts file in this folder. Declare the LettersOnlyValidator class in this file. The class
will implement the StringValidator interface:

// Import the module in which the StringValidator interface is implemented.
import StringValidator = require("Validation");

// The created class must belong to the Terrasoft (module) namespace.
module Terrasoft {
 // Declaring the class of value validation.
 export class LettersOnlyValidator implements StringValidator {
 // A regular expression that allows the use of only letter characters.
 lettersRegexp: any = /^[A-Za-z]+$/;
 // Validating method.
 isAcceptable(s: string) {
 return !Ext.isEmpty(s) && this.lettersRegexp.test(s);
 }
 }
}
// Creating and exporting an instance of a class for require.
export = new Terrasoft.LettersOnlyValidator();

4. Compile the TypeScript source codes to the JavaScript source codes.

Add the tsconfig.json configuration file to the Files\src\js folder to set up the compilation:

{
 "compilerOptions":
 {
 "target": "es5",
 "module": "amd",
 "sourceMap": true
 }
}

Go to the Files\src\js folder via the Windows console and execute the tsc command (Fig. 1).

Fig. 1. Execution of the tsc command

As a result of compilation the JavaScript version of the Validation.ts and LettersOnlyValidator.ts files and the .map
files facilitating debugging in the browser will be created in the Files\src\js folder (Fig. 2).

Fig. 2. Result of the tsc command execution

Bpm’online developer guide 236

The content of the LettersOnlyValidator.js file that will be used in the bpm’online (automatically generated):

define(["require", "exports"], function (require, exports) {
 "use strict";
 var Terrasoft;
 (function (Terrasoft) {
 var LettersOnlyValidator = /** @class */ (function () {
 function LettersOnlyValidator() {
 this.lettersRegexp = /^[A-Za-z]+$/;
 }
 LettersOnlyValidator.prototype.isAcceptable = function (s) {
 return !Ext.isEmpty(s) && this.lettersRegexp.test(s);
 };
 return LettersOnlyValidator;
 }());
 Terrasoft.LettersOnlyValidator = LettersOnlyValidator;
 })(Terrasoft || (Terrasoft = {}));
 return new Terrasoft.LettersOnlyValidator();
});
//# sourceMappingURL=LettersOnlyValidator.js.map

5. Perform the generation of auxiliary files

To generate the _FileContentBootstraps.js and FileContentDescriptors.js auxiliary files (see “Packages file
content”):

1. Enter the [Configuration] section.

2. Load the package to the configuration with the [Update packages from file system] action.

3. Click the [Compile all items].

NOTE

Perform this step to apply changes in the bootsrtap.js file. You can also use the WorkspaceConsole utility
(“Packages file content”).

6. Use validator in the bpm’online schema

In the [Configuration] section:

1. Load the package to the configuration with the [Update packages from file system] action.

2. Create replacing schema of the edit page of the account record (Fig. 3).

Fig. 3. Properties of the replacing schema

Bpm’online developer guide 237

3. Export the package to the file system using the [Download packages to file system] action.

4. Modify the ..\sdkTypeScript\Schemas\AccountPageV2\AccountPageV2.js file in the following way:

// Declaration of the module and its dependencies.
define("AccountPageV2", ["LettersOnlyValidator"], function(LettersOnlyValidator) {
 return {
 entitySchemaName: "Account",
 methods: {
 // Validation method.
 validateMethod: function() {
 // Determining the correctness of filling the AlternativeName column.
 var res =
LettersOnlyValidator.isAcceptable(this.get("AlternativeName"));
 // Output of the result to the user.
 Terrasoft.showInformation("Is 'Also known as' field valid: " + res);
 },
 // Overriding the method of the parent schema that is called when the
record is saved.
 save: function() {
 // Calling the validation method.
 this.validateMethod();
 // Calling the basic functions.
 this.callParent(arguments);
 }
 },
 diff: /**SCHEMA_DIFF*/ [] /**SCHEMA_DIFF*/
 };
});

When the file with the schema source code is saved and the system web-page is updated, the warning message will
be displayed on the account edit page when the page is saved (Fig.4, Fig. 5).

Fig. 4. Incorrectly populated field

Bpm’online developer guide 238

Fig. 5. Correctly populated field

NOTE

Field validation is described in the “How to add the field validation” article.

Working with WorkspaceConsole

Contents
WorkspaceConsole settings

Bpm’online developer guide 239

WorkspaceConsole parameters
Exporting packages from database
Saving packages to the database
Saving SVN packages

WorkspaceConsole settings

Introduction
The WorkspaceConsole utility is designed for working with bpm'online packages. Use the utility to:

Export packages from development environments and migrate them to test environments or production
environments (the packages are saved as archives).
Install new packages when upgrading or migrating from development environments.
Import and export schema resources and data for localization.
Work with configuration schemas.

The utility executable file (Terrasoft.Tools.WorkspaceConsole.exe) is located in the bpm'online application
directory:

[Path to the catalog with installed
application]\Terrasoft.WebApp\DesktopBin\WorkspaceConsole\

The build version of the utility must match the build version of the application.

ATTENTION

When updating the application, the build version of WorkspaceConsole must correspond to the target build
version. For example, if the current version of the bpm’online build is 7.11.1.1794, and you need to update the
packages to 7.11.2.1658, then you must use WorkspaceConsole version 7.11.2.1658.

Setting up the utility
WorkspaceConsole works directly with the bpm'online application database. Thus, it is necessary to specify database
connection string in the configuration file (Terrasoft.Tools.WorkspaceConsole.exe.config) for the utility to work
properly.

Recommended sequence:

1. Check the connectionStringName attribute of the <db> element of the configuration file for the connection string
name. In the current example, the connectionStringName attribute value is “db”.

<terrasoft>
 ...
 <db>
 <general connectionStringName="db"
securityEngineType="Terrasoft.DB.MSSql.MSSqlSecurityEngine, Terrasoft.DB.MSSql" ...
/>
 </db>
 ...
</terrasoft>

2. Find the connection string in the <connectionStrings> element of the configuration file. The name attribute will

Bpm’online developer guide 240

match the connectionStringName attribute of the <db> element. In the current example, the name attribute value is
“db”.

<connectionStrings>
 ...
 <add name="db" ... />
 ...
</connectionStrings>

NOTE

By default, the configuration file contains two connection strings. The "db” string is used for connecting to the
MS SQL Server database. The "dbOracle” string is used for connecting to the Oracle database.

3. Modify the value of the connectionString attribute, so that it matches the value used in the connection string of
the application's ConnectionStrings.config file (or simply is set to the correct database). For more information on
modifying the settings in ConnectionStrings.config file, as well as their purpose, please refer to the "Bpm’online
setup FAQ" article. Example of the <connectionStrings> section:

<connectionStrings>
 <add name="db" connectionString="Data Source=dbserver\MSSQL2016; Initial
Catalog=YourDBName; Persist Security Info=True; MultipleActiveResultSets=True;
Integrated Security = true; Pooling = true; Max Pool Size = 100" />
 <add name="dbOracle" connectionString="Data Source=(DESCRIPTION = (ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = dbOracleServer.yourdomain.com)(PORT = 1521)))
(CONNECT_DATA = (SERVICE_NAME = TSOra10) (SERVER = DEDICATED)));User
Id=BPMonlineUser;Password=BPMonlineUserPassword;" />
 </connectionStrings>

NOTE

To perform a one-time operation with WorkspaceConsole, run the utility with the webApplicationPath
parameter. Specify the path to the application directory in this parameter. In this case, the utility will
independently determine all necessary database connection settings from the ConnectionStrings.config file.
The database connection parameters in the Terrasoft.Tools.WorkspaceConsole.exe.config file will be ignored.

4. Run one of the two pre-installed .cmd files to install the proper bit version of the utility. For 32-bit operating
systems, run PrepareWorkspaceConsole.x86.bat. For 64-bit operating systems, run
PrepareWorkspaceConsole.x64.bat.

ATTENTION

If you plan on using WorkspaceConsole for operations with SVN, then copy the following files from the
...\Terrasoft.WebApp\DesktopBin\WorkspaceConsole\x86 catalog (for 32-bit operating systems) or
...\Terrasoft.WebApp\DesktopBin\WorkspaceConsole\x64 catalog (for 64-bit operating systems):

SharpPlink-x64.svnExe;
SharpSvn.dll;
SharpSvn-DB44-20-x64.svnDll.

Place these files in the ...\Terrasoft.WebApp\DesktopBin\WorkspaceConsole catalog.

WorkspaceConsole parameters

Introduction

Bpm’online developer guide 241

https://academy.bpmonline.com/documents/sales-enterprise/7-11/bpmonline-setup-faq
https://academy.bpmonline.com/documents/sales-enterprise/7-11/bpmonline-setup-faq

The WorkspaceConsole utility is designed to work with bpm'online packages. Use the utility to:

Export packages from development environments and migrate them to test environments or production
environments (the packages are saved as archives).
Install new packages when upgrading or migrating from development environments.
Import and export schema resources and data for localization.
Create and transfer workspaces between applications.
Work with configuration schemas.

Because the WorkspaceConsole utility is multifunctional, it must be run with certain parameters. Parameter values
are passed as command-line arguments when the utility starts. Parameters are used to configure WorkspaceConsole
to perform specific operations. Utility parameters are not case sensitive.

WorkspaceConsole parameters
The -help parameter

Run WorkspaceConsole with this parameter to see the full list of parameters with their brief description. If you
specify other parameters, they will be ignored.

The -operation parameter

Specify the required operation name here. This parameter is required. The default value is LoadLicResponse.
Possible method parameters are listed in table 1.

Table 1. WorkspaceConsole parameters

Operation Description
LoadLicResponse Saves licenses to the database (specified in the connection string). The only

operation that does not require the -workspaceName parameter.

SaveRepositoryContent Saves the contents of zip archives specified in the -contentTypes parameter
from the directory specified in the -sourcePath parameter to the directory
specified in the -destinationPath parameter.

SaveDBContent Saves database content to the file system. Content type is determined by the
contentTypes parameter value. The destinationPath parameter is used to
specify the path in a file system. One of the following parameters must be
specified: -webApplicationPath or -configurationPath.

SaveVersionSvnContent Saves the package hierarchy (zip-archives) to the destinationPath directory
from several SVN repositories, separated by commas in the sourcePath
parameter.

RegenerateSchemaSources Performs the regeneration of source codes and their compilation.

InstallFromRepository Saves the latest version of the SVN structure and metadata into the
database. Bound SQL-scripts, source code regeneration, and bound data
installation are performed if necessary. This parameter only works with new
or modified packages and their elements. One of the following parameters
must be specified: -webApplicationPath or -configurationPath.

InstallBundlePackages Installs the set of comma-separated packages specified in the -
packageName parameter to the workspace specified in the -
workspaceName parameter. One of the following parameters must be
specified: -webApplicationPath or -configurationPath.

PrevalidateInstallFromRepository Checks if zip archive package installation is available.

ConcatRepositories Merges multiple repositories.

ConcatSVNRepositories Merges multiple SVNrepositories.

ExecuteProcess Starts the business process execution in the configuration (if the process is
found).

Bpm’online developer guide 242

UpdatePackages Updates the packages (the -packageName parameter) that are located in the
product package hierarchy (the -productPackageName parameter) in the
application database. One of the following parameters must be specified: -
webApplicationPath or -configurationPath.

BuildWorkspace Compiles the workspace (configuration). Used for developing schemas in
VisualStudio (see: “Working with the server side source code in
Visual Studio”).

ReBuildWorkspace Compiles the workspace (configuration) entirely. Used for developing
schemas in VisualStudio (see: “Working with the server side source
code in Visual Studio”).

UpdateWorkspaceSolution Updates the Visual Studio project solution and files (see: “Working with
the server side source code in Visual Studio”).

BuildConfiguration Generates static content in the file system (see: "Client static content in
the file system"). Uses the following parameters: -workspaceName, -
destinationPath, -webApplicationPath, -logPath, -force. If the -force
parameter is set to “true”, static content is generated for all schemas. If the -
force parameter is set to “false”, static content is generated for modified
schemas only. One of the following parameters must be specified: -
webApplicationPath or -configurationPath.

The -user parameter

Authorization username. Only specified if this information is missing from the configuration utility file or if it is
necessary to perform the operation on behalf of another user.

The - password parameter

Authorization password. Only specified if this information is missing from the configuration utility file or if it is
necessary to perform the operation on behalf of another user.

The -workspaceName parameter

The name of the workspace (configuration) used to perform the operation.

The -autoExit parameter

Used to automatically terminate the utility process after the operation is completed. Available values – true or false.
Default value – false.

The -processName parameter

The name of the process that needs to start.

The -repositoryUri parameter

The SVN directory path for storing the package structure and metadata (optional). Overrides the same configuration
property specified in the -workspaceName parameter.

The -sourceControlLogin parameter

SVN repository username.

The -sourceControlPassword parameter

SVN repository password.

The -workingCopyPath parameter

Local directory of working package copies, stored in SVN.

The -contentTypes parameter

Bpm’online developer guide 243

Content type (for example, resources) extracted from packages. Possible values are listed in table 2.

Table 2. Possible content type values

Content type Description
SystemData System diagram data in JSON format. All system schemas and their columns are

saved (except for those specified in the -excludedSchemas parameter).

ConfigurationData Configuration schema data in JSON format. All system schemas and their columns
are saved (except for those specified in the -excludedSchemas parameter).

Resources Resources of localizable configuration schemas in XML format.

LocalizableData Resources of localizable configuration schemas in XML format. Only text columns
are saved. Additional restrictions are specified in the -excludedSchemas and
-excludedSchemaColumns parameters.

Repository Workspace data in zip format.

SqlScripts Package SQL scripts.

Data Both system and configuration data in JSON format. A combination of the
SystemData and ConfigurationData values.

LocalizableSchemaData Localizable object data.

All All content types.

The -sourcePath parameter

Local disk catalog path with the necessary data (e.g. packages, schemas, resources). This paramater can take several
comma-separated values for the ConcatRepositories and SaveVersionSvnContent operations.

The -destinationPath parameter

Local disk catalog path for the necessary data (e.g. packages, schemas, resources).

The -webApplicationPath parameter

The bpm’online application path. This path is used by the ConnectionStrings.config file to read database connection
data. If this parameter has not been indicated, the connection to the database specified in the connection string of
the utility configuration file will be established. If this parameter has been indicated, the connection will be
established with the database specified in the ConnectionStrings.config file of the bpm'online application.

Attention

For BuildWorkspace, ReBuildWorkspace, and UpdateWorkspaceSolution operations, the -
webApplicationPath parameter must contain the path to the Terrasoft.WebApp folder.

The -configurationPath parameter

Path to the Terrasoft.Configuration subfolder in the application folder. For example,
C:\bpmonline7.11.1\Terrasoft.WebApp\Terrasoft.Configuration. In this folder, source codes and resources of
custom package schemas are exported in the file system development mode.

The -filename parameter

File name. This parameter is required for the LoadLicResponse operation.

The -excludedSchemas parameter

Names of excluded schemas.

The -excludedSchemaColumns parameter

Names of excluded schema columns.

Bpm’online developer guide 244

The -excludedWorkspaceNames parameter

Names of excluded workspaces.

The -includedSchemas parameter

Names of forcibly used schemas.

The -includedSchemaColumns parameter

Names of forcibly used schema columns.

The -cultureName parameter

The language culture code. Required if you use the Resources and/or LocalizableData values of the -contentTypes
parameter.

The -schemaManagerNames parameter

Names of schema managers. Default value – EntitySchemaManager.

The -packageName parameter

The workspace package name (optional parameter). The package is specified in the -workspaceName parameter.
Please note that all dependent packages will used as well. If this parameter has not been indicated, all workspace
packages will be used.

The -clearWorkspace parameter

Indicates whether the workspace needs to be cleared before updating. Available values – true or false. Default value
– false.

The -installPackageSqlScript parameter

Indicates the need to execute SQL scripts before and after saving the packages. Available values – true or false.
Default value – true.

The -installPackageData parameter

Indicates the need to install bound data before and after saving the packages. Available values – true or false.
Default value – true.

The -updateDBStructure parameter

Indicates the need to update the database structure before and after saving the packages. Available values – true or
false. Default value – true.

The -regenerateSchemaSources parameter

Indicates the need to regenerate source codes after saving the packages. Available values – true or false. Default
value – true.

The -continueIfError parameter

Indicates the need to abort the installation process upon encountering the first error. If the parameter value is true,
the user will receive the error list once the installation is complete. Available values – true or false. Default value –
false.

ATTENTION

The InstallFromSvn and InstallFromRepository operations work with new or modified packages and their
elements. The system compares the new and modified package structures to identify modified element. If the
user runs a command (e.g. InstallFromSvn) without specifying the continueIfError=true key and receives an
error, the command will restart for same configuration without errors, but also without modifying the

Bpm’online developer guide 245

database. This happens because the previous operation synchronized the package structures and storage of the
specified configuration, and the current operation does not have any modified elements.

The -skipCompile parameter

Indicates the need to perform a compilation phase. Works only if the -updateDBStructure parameter value is false.
Available values – true or false. Default value – false.

The -autoUpdateConfigurationVersion parameter

Updates the configuration version valuw to the bpm'online application version in the database. Available values –
true or false. Default value – false.

The -warningsOnly parameter

The WorkspaceConsole utility only reports detected errors. Available values – true or false. Default value – false.

Exporting packages from database

Introduction
To transfer custom packages between non-shared environments (e.g. development and test environments), you
must first export these packages to the file system. To save packages from the database, use the SaveDBContent
operation of the WorkspaceConsole utility. Learn more about the WorkspaceConsole utility in the
“WorkspaceConsole parameters” article.

NOTE

Make sure the settings of the WorkspaceConsole utility are correct before you run it. Please refer to the
“WorkspaceConsole settings” article for more details.

To save packages from the database, run the WorkspaceConsole utility with the following parameter values:

Table 1. WorkspaceConsole utility parameters for saving database packages

Parameter Value Description
operation SaveDBContent Saves database content to the file system. Content type is

determined by the contentTypes parameter value. The
destinationPath parameter is used to specify the path in a file
system.

contentTypes Repository Type of content uploaded to a file system. The Repository value is
used to upload the workspace to a catalog specified in the
destinationPath parameter. The name of the workspace is
specified in the workspaceName parameter.

workspaceName [Workspace name] The name of the workspace (configuration) with the saved
packages. By default, all users work in the Default workspace.

destinationPath [Path to local
directory]

Path to a local directory in the file system. Packages with the *.gz
format are saved in this directory.

webApplicationPath [Path to local
directory]

The bpm’online application path. This path is used by the
ConnectionStrings.config file to read database connection data. If
this parameter has not been indicated, the connection to the

Bpm’online developer guide 246

database specified in the connection string of the utility
configuration file will be established. If this parameter has been
indicated, the connection will be established with the database
specified in the ConnectionStrings.config file of the bpm'online
application.

configurationPath [Path to local
directory]

Path to the Terrasoft.Configuration subfolder in the application
folder. For example,
C:\bpmonline7.11.1\Terrasoft.WebApp\Terrasoft.Configuration.
In this folder, source codes and resources of custom package
schemas are exported in the file system development mode.

All workspace packages are saved in the process. It may take up to 10 minutes to complete this operation.

NOTE

Check data binding properties before saving. This includes system settings, lookups, section data etc.

Please refer to the “Binding data to package” article for more details.

Command signature for Windows command prompt that will export packages from the database:

[WorkspaceConsole path]\Terrasoft.Tools.WorkspaceConsole.exe -operation=SaveDBContent
-contentTypes=Repository -workspaceName=[Workspace name] -destinationPath=[Local
directory path] -webApplicationPath=[Path to application directory]

NOTE

We recommend using batch files (*.bat) to create and save commands.

Uploading packages to a file system
Case description

The bpm’online application is installed in the C:\bpmonline7.12.2 directory. Export all Default workspace packages
into the C:\SavedPackages directory.

Case implementation:

Use any text editor to create a batch command file (*.bat or *.cmd) with a command that will launch the
WorkspaceConsole utility. Enter the following command in the file:

C:\bpmonline7.12.4\Terrasoft.WebApp\DesktopBin\WorkspaceConsole\Terrasoft.Tools.Works
paceConsole.exe -operation=SaveDBContent -contentTypes=Repository -
workspaceName=Default -destinationPath=C:\SavedPackages -
webApplicationPath=C:\bpmonline7.12.4 --logPath=C:\Logs
pause

Upon saving the batch file and running it, a console window will appear, and the WorkspaceConsole execution
process with specified parameter values will be displayed (Fig. 1).

Fig. 1. WorkspaceConsole execution

Bpm’online developer guide 247

https://academy.terrasoft.ru/documents/technic-sdkmp/7-9/privyazka-dannyh-k-paketu

Zip-archives containing all Default configuration packages will be exported to the C:\SavedPackages directory (Fig.
2).

Fig. 2. Zip-archives with bpm'online packages exported to the file system

Saving packages to the database

Bpm’online developer guide 248

Introduction
Saving packages from the file system to the application database is performed when transferring custom packages
between non-shared environments (e.g. development and test environments). Usually, packages are saved from the
development environment, and loaded into the test and production environments. Learn more about saving packages in
the “Exporting packages from database” and “Saving SVN packages” articles.

To load packages to the database, run the WorkspaceConsole utility with the following parameters:

Table 1. WorkspaceConsole utility parameters for loading packages to the database

Parameter Value Description
operation InstallFromRepository It saves the contents of packages from archives in the database.

Bound SQL-scripts, source code regeneration, and bound data
installation are performed if necessary. The InstallFromSvn and
InstallFromRepository operations work with new or modified
packages and their elements.

packageName [Package Name] The name of the package specified in the workspaceName
configuration parameter. All dependent packages are used as
well. This parameter is optional. This parameter is optional. The -
clearWorkspace parameter

workspaceName [Workspace name] The name of the workspace (configuration) with the saved
packages. By default, all users work in the Default workspace.

sourcePath [Path to local
directory]

Path to a local directory in the file system. This directory should
include the required packages in the *.gz format.

destinationPath [Path to local
directory]

Path to a local directory in the file system. The packages from the
directory specified in the sourcePath parameter will be saved
here.

skipConstraints false The option to skip foreign key creation in database tables.
Available values – true, false.

skipValidateActions true The option to skip the process of table index creation verification
when updating the database structure. Available values – true or
false.

regenerateSchemaSources true Indicates the need to regenerate source codes after saving the
packages. Available values – true, false.

updateDBStructure true Indicates the need to update the database structure before and
after saving the packages. Available values – true, false.

updateSystemDBStructure true Indicates the need to update the database structure before and
after saving the packages. Creates all missing system table
indexes. Available values – true, false.

installPackageSqlScript true Indicates the need to execute SQL scripts before and after saving
the packages. Available values – true, false.

installPackageData true Indicates the need to install bound data before and after saving
the packages. Available values – true, false.

continueIfError true Indicates the need to abort the installation process upon
encountering the first error. If the parameter value is true, the
user will receive the error list once the installation is complete.
Available values – true, false.

logPath [Path to local
directory]

Path to to the operation log. The log name contains the start date
and time of the operation.

Bpm’online developer guide 249

webApplicationPath [Path to local
directory]

The bpm’online application path. This path is used by the
ConnectionStrings.config file to read database connection data. If
this parameter has not been indicated, the connection to the
database specified in the connection string of the utility
configuration file will be established. If this parameter has been
indicated, the connection will be established with the database
specified in the ConnectionStrings.config file of the bpm'online
application.

configurationPath [Path to local
directory]

Path to the Terrasoft.Configuration subfolder in the application
folder. For example,
C:\bpmonline7.11.1\Terrasoft.WebApp\Terrasoft.Configuration.
In this folder, source codes and resources of custom package
schemas are exported in the file system development mode.

Command signature for Windows command prompt that will export packages from the database:

[The WorkspaceConsole utility path]\Terrasoft.Tools.WorkspaceConsole.exe -packageName=
[Package name] -workspaceName=Default -operation=InstallFromRepository -sourcePath=[Path
to package archives] -destinationPath=[Archive extraction path] -skipConstraints=false -
skipValidateActions=true -regenerateSchemaSources=true -updateDBStructure=true -
updateSystemDBStructure=true -installPackageSqlScript=true -installPackageData=true -
continueIfError=true -webApplicationPath=[Path to application folder] -logPath=[Log path]

ATTENTION

The WorkspaceConsole utility makes direct changes to the database, and therefore they become available only after
restarting the application in IIS.

ATTENTION

Packages loaded into the application using WorkspaceConsole are considered pre-installed and can not be
modified (see: "Package structure and contents").

Best practices of loading packages with enabled development
mode in the file system
If the WorkspaceConsole is used for loading packages to the application with the development mode in the file
system enabled (fileDesignMode=true), the installation of the packages works in a special way. Source code of the
modified schemas will be modified in the database but will remain unchanged in th file system. In this regard, if you open
the schema in the designer, the unchanged source code from the file system will be displayed. At the same time, the
schema modification date is changed, which brings more confusion, as the schema transfer looks completed.

Due to this, it is not recommended to use the InstallFromRepository operation for transferring changes from the
application with enabled development mode in the file system (fileDesignMode=true). If this operation is required, then
you will need to perform the [Download packages to file system] action to upload source codes to the file system after
operation is complete.

Saving packages to the database
Case description

The bpm’online application is installed in the C:\bpmonline7.12.4 directory. Save the userPackage package to the Default
workspace. The package archive is located in the C:\SavedPackages directory. Extract package contents to the
C:\TempPackages directory. Save the operation log file to the C:\Log directory.

Case implementation:

Use any text editor to create a batch command file (*.bat or *.cmd) with a command that will launch the
WorkspaceConsole utility. Enter the following command in the file:

C:\bpmonline7.12.4\Terrasoft.WebApp\DesktopBin\WorkspaceConsole\Terrasoft.Tools.Workspace

Bpm’online developer guide 250

Console.exe -packageName=sdkBookExample -workspaceName=Default -
operation=InstallFromRepository -sourcePath=C:\SavedPackages -
destinationPath=C:\TempPackages -skipConstraints=false -skipValidateActions=true -
regenerateSchemaSources=true -updateDBStructure=true -updateSystemDBStructure=true -
installPackageSqlScript=true -installPackageData=true -continueIfError=true -
webApplicationPath=C:\bpmonline7.12.4 -logPath=C:\Log
pause

Upon saving the batch file and running it, a console window will appear, and the WorkspaceConsole execution process
with specified parameter values will be displayed (Fig. 1).

Fig. 1. Saving a package to the application database

Run the command to load the sdkBookExample package to the Default configuration.

Fig. 2. The package in the [Configuration] section

Saving SVN packages

Bpm’online developer guide 251

Introduction
To transfer custom packages between non-shared environments (e.g. development and test environments), you
must first export these packages to the file system. To save packages from the SVN repository, use the
SaveVersionSVNContent operation of the WorkspaceConsole utility. Learn more about the WorkspaceConsole
utility in the “WorkspaceConsole parameters” article.

NOTE

Make sure the settings of the WorkspaceConsole utility are correct before you run it. Please refer to the
“WorkspaceConsole settings” article for more details.

To save SVN packages, run the WorkspaceConsole utility with the following parameter values:

Table 1. WorkspaceConsole utility parameters for saving SVN packages

Parameter Value Description
operation SaveVersionSvnContent Saves the package hierarchy (zip-archives) to the

destinationPath directory from several SVN
repositories, separated by commas in the sourcePath
parameter.

destinationPath [Path to local directory] Path to a local directory in the file system. Packages
with the *.gz format are saved in this directory.

workingCopyPath [Path to local directory] Local directory of working package copies, stored in
SVN.

sourcePath [SVN repository path] The SVN directory path for storing the package
structure and metadata. Separate the values with a
comma to specify multiple directories.

packageName [Package Name] The name of the repository package used in the
operation. All dependent packages are used as well.

packageVersion [Package version] The version of the repository package used in the
operation.

sourceControlLogin [SVN username] SVN repository username.

sourceControlPassword [SVN password] SVN repository password.

cultureName [Language culture] The language culture code. For example, es-ES.

excludeDependentPackages true or false This checkbox identifies whether the packages need to
be saved. The package specified in the packageName
parameter depends on this checkbox.

logPath [Path to local directory] The path to the directory in which the operation log
file will be saved (optional).

Command signature for Windows command prompt that will export packages from the SVN:

[Path to WorkspaceConsole]\Terrasoft.Tools.WorkspaceConsole.exe -
operation=SaveVersionSvnContent -destinationPath=[Path to local folder] -
workingCopyPath=[Path to local folder] -sourcePath=[Path to SVN storage] -
packageName=somePackage -packageVersion=7.8.0 -sourceControlLogin=User -
sourceControlPassword=Password -logPath=[Path to local folder] -cultureName=ru-RU -
excludeDependentPackages=true

Uploading packages to a file system

Bpm’online developer guide 252

Case description

Save the userPackage package to the C:\SavedPackages directory from the SVN repository, found at http://server-
svn:8050/svn/Packages. Language culture - Russian. Save the operation log file to the C:\Log directory. Place the
working copy of the package in the C:\WorkingCopy folder. SVN username – “User”. SVN password – “Password”.
The bpm’online application is installed in the C:\bpmonline7.12.0 directory.

Case implementation:

Use any text editor to create a batch command file (*.bat or *.cmd) with a command that will launch the
WorkspaceConsole utility. Enter the following command in the file:

C:\bpmonline7.12.0\Terrasoft.WebApp\DesktopBin\WorkspaceConsole\Terrasoft.Tools.Works
paceConsole.exe -operation=SaveVersionSvnContent -destinationPath=C:\SavedPackages\ -
workingCopyPath=C:\WorkingCopy\ -sourcePath=http://server-svn:8050/svn/Packages -
packageName=userPackage -packageVersion=7.8.0 -sourceControlLogin=User -
sourceControlPassword=Password -logPath=C:\Log -cultureName=ru-RU -
excludeDependentPackages=true
pause

Upon saving the batch file and running it, a console window will appear, and the WorkspaceConsole execution
process with specified parameter values will be displayed (Fig. 1).

Fig. 1. The process of saving a package from the repository

The userPackage package will be exported to the C:\SavedPackages directory (Fig. 2).

Fig. 2. Saved zip-archive with userPackage package

Bpm’online developer guide 253

http://server-svn:8050/svn/Packages
http://server-svn:8050/svn/Packages

Client code debugging

Introduction
The client part of the bpm'online application is represented by configuration schemas (modules), described in
JavaScript language. Debugging of the source code of configuration schemas is executed directly from the browser.
Developer tools that provide for debugging for all browsers, supported by bpm'online, are used for this purpose.

To run tools for client debugging, execute the following command in a browser:

Chrome: F12 or Ctrl + Shift + I.
Firefox: F12.
Internet Explorer: F12.

Possibilities for debugging of bpm'online client code
All supported browsers provide mostly similar capabilities for debugging client code. Most common and frequently
used debugging methods are listed below. For more details about debugging with browser tools, see the following
documentation:

Chrome developer tools
Firefox developer tools
Internet Explorer developer tools

Scripts and breakpoints

Bpm’online developer guide 254

https://developer.chrome.com/devtools
https://developer.mozilla.org/en-US/docs/Tools/Tools_Toolbox
https://msdn.microsoft.com/library/bg182326(v=vs.85)

You can view the full list of scripts, connected to the page and downloaded to a content by means of developer tools.
Open any script to set a breakpoint in the place where you want to stop execution of a source code. In the stopped
code, you can view current values of variables, execute commands etc.

To set a viewpoint, take the following actions:

open necessary script file (for example, execute name lookup by combination of buttons Ctrl+O and
Ctrol+P);
go to code string where you want to set a breakpoint (for example, execute script lookup on the basis of
method name);
set a breakpoint by one of the following methods: click string name, press F9 button or select "Add
breakpoint" item in right-click menu (cursor should be in the string, to which you want to add breakpoint).

You can also set a conditional breakpoint, for which you should set a condition for activation of the breakpoint.

You can also break an execution process directly from the code by the debugger command:

function customFunc (args) {
 ...
 debugger; // <-- debugger stops here.
 ...
}

Execution control

The debugging process is reduced to breaking of code execution at the breakpoint, verification of variable values and
call stack. Code tracing is executed further for detection of fragments where program behavior deviates from
predicted behavior.

The following command is used in browser debuggers for code-based turn-by-turn navigation (figure 1, figure 2 and
figure 3):

suspend/continue script execution (1);
perform step whithout entering the function (2);
perform step whith entering the function (3);
perform step before exiting from current function (4).

Fig. 1. — Navigation panel in Chrome browser debugger

Fig. 2. — Navigation panel in Firefox browser debugger

Fig. 3. — Navigation panel in Internet Explorer browser debugger

Chrome browser provides an additional two commands for execution control:

deactivate all breakpoints (5);
deactivate/activate automatic break in case of error (6).

For more information about possibilities and commands of navigation panel for a browser, see corresponding
documentation.

Browser console use

In the course of debugging, you can execute JavaScript commands, display debugging, trace information, execute

Bpm’online developer guide 255

measurements and code profiling. The console object is used for this purpose.

JavaScript commands calling

To start operation of the browser console, you should open it by going to the [Console] tab or opening it in addition
to the debugger, using the [Esc] button. You can then enter commands in javaScript and start their execution by
pressing [Enter].

Debug information output

You can enable debugging information of a different nature, i.e. info messages, warnings and error messages, in the
console. For this purpose you can use corresponding console object methods (table 1).

Table 1. — Console methods for output of debug messages.

Method Description Chrome Firefox Internet
Explorer

console.log(object [,
object, ...])

Outputs arguments in console and
separate them with comma. Used for
enabling different general messages.

+ + +

console.info(object [,
object, ...])

Similar to log() method but outputs
messages in other style (figure 4) and
emphasizes their significance.

+ + +

console.warn(object
[, object, ...])

Outputs warning message in console. + + +

console.error(object
[, object, ...])

Outputs error message in console. + + + (8+)

An individual style is used for each type of outputted message (figure 4).

Fig. 4. — Styles of different types of console messages

The represented console methods support formatting of outputted messages. This means that you can use special
controlling sequences (templates) that will be replaced by corresponding values (arguments, additionally transferred
to the function).

Console methods support the following formation templates (table 2).

Table 2. — Console message formation templates

Template Data type Example of use
%s String console.log("%s is one of flagship products of a company %s", "bpm'online

sales", "Terrasoft");

%d, %i Number console.log("Platform %s was issued for the first time ever in %d year",
"bpm'online", 2011);

%f Float console.log("Pi character is equal to %f", Math.PI);

Bpm’online developer guide 256

%o DOM-item (it is not
supported by IE)

console.log("DOM-View of item <body/>: %o",
document.getElementsByTagName("body")[0]);

%O JavaScript Object (is
not supported by IE
and Firefox)

console.log("Object: %O", {a:1, b:2});

%c CSS style (is not
supported by IE)

console.log("%cGreen text, %cRed Text on a blue background, %cCapital
letters, %cPlain text", "color:green;", "color:red; background:blue;", "font-
size:20px;", "font:normal; color:normal; background:normal");

Tracing and validations

Table 3 shows console methods for tracing and verification of expressions.

Table 3. — Console methods for tracing and verification

Method Description Chrome Firefox Internet
Explorer

console.trace() Outputs call stack from code
point where method was called.
Call stack includes file names,
string numbers and also call
counters of trace() method from
one and the same point.

+ + + (11+)

console.assert(expression[,
object, ...])

Verified expression, transferred
as an expression parameter and,
if the expression is false, outputs
error with (console.error ()) call
stack in the console, otherwise it
outputs nothing.

+ + (28+) +

Console.trace() method outputs informative stack-trace with full list of functions and their arguments at the
moment of call.

Due to the console.trace() method you can comply with rules in the code and ensure that code execution results meet
expectations. Using console.assert () you can execute code testing, i.e. if execution result is unsatisfactory, the
corresponding value will be discarded.

An example of the console.assert() method for testing of results:

var a = 1, b = "1";
console.assert(a === b, "A is not equal to B");

Profiling and measurement

You can measure code execution time with browser console methods (table 4).

Table 4. — Console methods for measurement of code execution time

Method Description Chrome Firefox Internet
Explorer

console.time(label) Starts counter (milliseconds) with
label.

+ + + (11+)

console.timeEnd(label) Stops counter (milliseconds) with
label and plans result in console.

+ + + (11+)

An example of console.time() and console.timeEnd() methods in code:

var myArray = new Array();
// Starts counter with Initialize myArray tag.
console.time("Initialize myArray");

Bpm’online developer guide 257

myArray[0] = myArray[1] = 1;
for (i = 2; i<10; i++)
{
 myArray[i] = myArray[i-1] + myArray[i-2];
}
// Stops counter with Initialize myArray tag.
console.timeEnd("Initialize myArray");

You also can execute code profiling and output profiling stacks that contain detailed information about how much
time was spent by a browser for definite operations.

Table 5. — Console methods for code profiling

Method Description Chrome Firefox Internet
Explorer

console.profile(label) Runs Java Script profiler and
displays results, marked with label.

+ + (when
DevTools
panel is
opened)

+ (10+)

console.profileEnd(label) Stops Java Script profiler. + + (when
DevTools
panel is
opened)

+ (10+)

You can view profiling results in:
Chrome — Profiles tab:
Firefox — Performance tab;
Internet Explorer — Profiler tab.

Server code debugging

Introduction
During the development process on the bpm'online platform, developers often need to create the source code for the
server schemas of the "source code" type. These may be, for example, existing base schemas, custom configuration
classes, web services or business process scripts written in C #. Debug such code is easiest with integrated debugging
features of the development environment, for example, Visual Studio. The Visual Studio debugger enables
developers to freeze the execution of program methods, check variable values, modify them and monitor other
activities performed by the program code.

To begin debugging an application, you need to perform a number of steps:

1. Export the bpm'online configuration source code to the local directory files
2. Create a new Visual Studio project for debugging
3. Add the exported files with the source code to the Visual Studio project
4. From the project, attach to the working process of the IIS server and start debugging.

ATTENTION

Debugging the code using the method described in this article is only possible for applications deployed
on-site.

ATTENTION

Debugging the code using the method described in this article is only possible if the development in the file

Bpm’online developer guide 258

system mode is turned off (see: “Development in the file system”).

ATTENTION

Enable the [Suppress JIT Optimization] checkbox (the [Options] menu, the [Debugging] > [General] tabs) to
be able to get the values of variables during the debugging. More information about optimized and
unoptimized code during debugging can be found in the "JIT Optimization and Debugging" Visual Studio
guide.

1. Exporting the configuration source code
To do this, perform the application setup.

In the Web.config file located in the root of the application (“external” Web.config), set the “true” value for the
debug attribute of the compilation element.

<compilation debug="true" targetFramework="4.5" />

Save the schema to apply changes.

In the Web.config file located in the Terrasoft.WebApp directory of the application (“nternal” Web.config), specify
the values for the following items:

To configure IncludeDebugInformation, specify the “true” value.
To configure CompilerSourcesTempFolderPath, specify the path to the directory where the source files
will be exported.
To configure ExtractAllCompilerSources, set the value to “true” if you want to export all schemas when
performing the [Compile modified items] action in the [Configuration] section. To export only the
modified schemas, set the value to “false” (the default value).

<add key="IncludeDebugInformation" value="true" />
<add key="CompilerSourcesTempFolderPath" value="Path_to_local_catalog” />
<add key="ExtractAllCompilerSources" value="false" />

Save the schema to apply changes.

To export the files with server schema source code, perform the [Compile all items] (Fig. 1) action in the
[Configuration] section.

Fig. 1 [Compile all items] action

Bpm’online developer guide 259

https://docs.microsoft.com/en-us/visualstudio/debugger/jit-optimization-and-debugging

At the time of compilation, the source code files for the application's configuration schemas, as well as configuration
libraries, their modules and debug files (* .pdb) will be exported to the folder specified in the
CompilerSourcesTempFolderPath configuration of the "internal" Web.config. The schema source code will be
exported again every time you compile the application.

NOTE

When compiling, the source code files of the schemas of the work space under which compilation was started
will be exported. The files of the downloaded source codes of configuration schemas are named in a certain
format: [Name of the schema in the configuration].[Package name]_[Schema type].cs.

For example: Contact.Base_Entity.cs, ContractReport.Base_Report.cs.

2. Creating a Visual Studio project for debugging

ATTENTION

Creating a Visual Studio project is unnecessary to debug the source code – opening the necessary files in
Visual Studio is sufficient. However, if debugging is performed frequently, or you need to work with a large
number of files at the same time, creating a project will make it easier.

To create a project for debugging an application in Visual Studio, execute the File > New > Projectmenu command
(Fig. 2).

Fig. 2 Creating a new project in Visual Studio

In the properties window of the created project, select the [Class Library (.NET Framework)] project type (class

Bpm’online developer guide 260

library for the classic Windows application), and specify the name and location of the project (Fig. 3).

Fig. 3 Visual Studio project properties

After creating the project, you need to remove an extra file from it (by default, the file Class1.cs is added to the new
project) and save the project.

3. Adding the exported files with the source code to the Visual
Studio project
To do this, select Add > Existing Item from the project's context menu in the solution explorer. In the dialog box
that appears, you must go to the directory with the downloaded files with the source code and select all files (Fig. 4).

Fig. 4 Adding files to a project

Bpm’online developer guide 261

NOTE

Add only the files needed for debugging to the Visual Studio project. However, the transition between methods
during debugging will be limited only by the methods of classes implemented in the files added to the project.

Save the project after adding the files.

4. Attaching to the IIS process for debugging
To begin debugging, attach to the IIS server process, where the application runs. To do this, select the Debug >
Attach to process command in the Visual Studio menu (Fig. 5).

Fig. 5 Attaching to a process

Bpm’online developer guide 262

In the opened window, select the working IIS process in the list of processes, where the application pool is running
(Fig. 6).

Fig. 6 Attaching to an IIS process

Bpm’online developer guide 263

ATTENTION

The name of the working process can be different, depending on the configuration of the IIS server being used.
With a regular IIS, the process is w3wp.exe, but with IIS Express, the process name is iiexpress.exe.

By default, the IIS working process is run under the account whose name matches the name of the application pool.
To display processes of all users, set [Show processes from all users] checkbox (Fig. 6).

After you attach to the IIS process, you can start debugging. To do this, open the file with the desired source code
and set a breakpoint (Fig. 7).

Fig. 7 Breakpoint in the constructor of the [Account] object

Bpm’online developer guide 264

As soon as the method with the breakpoint is used, the program will be stopped and you can view the current state
of the variables (see Fig. 8).

Fig. 8 Interrupting the execution of the program on the breakpoint

Possible debugging issues

Bpm’online developer guide 265

After attaching to the IIS process, it is possible that the breakpoint symbol is displayed as a white circle bounded by
a red circle. A breakpoint is inactive and the application execution will not be interrupted because of it. When you
hover the cursor on the symbol of the inactive breakpoint, a hint will appear and notify you of the problem (Fig. 9).

Fig. 9 Inactive breakpoint Characters not loaded

If the hint contains a message that the symbol information was not loaded (Fig. 8), it is necessary to do the
following:

1. Finish debugging (Debug > Stop Debugging).
2. Close the source code file you are debugging.
3. Perform the [Compile all items] action in the [Configuration] section of the application (Fig. 1).
4. While compiling and re-exporting source files, attach to the IIS process again.
5. After the compliation is done, re-open the source code file you are debugging.

NOTE

In some cases, it may be helpful to re-compile without detaching and attaching to IIS.

After the file with the source code is reopened, a message about non-uniform end-of-line characters may appear
(Fig. 10).

Fig. 10 Message about non-uniforn end-of-line characters

Bpm’online developer guide 266

Press the [No] button If you accept the normalization of the characters (the [Yes] button), then the breakpoint may
become inactive again. The cause of the problem is displayed in the tooltip - file version mismatch (Fig. 10). The
options for solving the problem are also displayed in the tooltip.

Fig. 11 Inactive breakpoint. Version mismatch

Bpm’online developer guide 267

Bpm’online development cases

Contents
Section business logic
Page configuration
Adding details
Business processes
Typical customizations
Analytics
Working with data
Sales products customization
Lending product customization
Marketing product customization
Service products customization
Prediction

Section business logic

Contents
Creating a new section
Adding an action to the list
How to add a button to a section
How to highlight a record in the list in color
Adding quick filter block to a section

Creating a new section

Introduction
One of typical development tasks in bpm’online is that of adding a new section. Use section wizard to implement
this. The section wizard enables you to set up base properties of sections, pages, business rules and DCM cases.

The result of the performed settings will be object and section page schemas, added to the current custom package
(table 1.2).

Table 1. Object schemas created by the section wizrad

Naming rules Purpose Parent
[Section object name] Primary section object Base object (BaseEntity)

[Section object name] Folder Object group.

Utility object for the correct
groupage of section records. Forms
the overall section folder tree.

Base folder (BaseFolder)

[Section object name] InFolder Object in the group. Base element in the group

Bpm’online developer guide 268

https://academy.bpmonline.com/documents?product=enterprise&ver=7&id=1245

Utility object for the correct
operation of section record
groupage. Defines links between
the section records and folders they
belong to.

(BaseItemInFolder)

[Section object name] File Object for the [Attachments] detail. File (File)

[Section object name] Tag Section tag. Base tag (BaseTag)

[Section object name] InTag Tag in the section object. Base tag in the base object
(BaseEntityInTag)

Table 2. Client schemas created by the section wizard

Naming rules Purpose Parent
[Section object name] Section Section schema Base section schema

(BaseSectionV2)

[Section object name] Page Section edit page schema Section edit page base schema
(BaseModulePageV2)

Section wizard and the [Custom] package
Section wizard does not only create different schemas but also links data to the current package. However, it is
almost impossible to transfer the linked data to another custom package if your current package is the [Custom].
The [Custom] package is not used for committing to the version control system and transferring the changes to other
environments. That is why the [Custom] package is not recommended to use as the current custom package. Learn
more about the [Custom] package in the “Package [Custom]” article.

NOTE

To change the current package, use the [Current package] system setting (CurrentPackageId). We recommend
you to check this system setting value before you run the section wizard.

Sequence of actions for adding a section
1. Create a section using the section wizard and add the necessary workplace.
2. Add the necessary columns to the section object schema and display them on the record list, on the edit page

and in details.

Case description
Add a [Car showroom] workplace to the application. Add a [Trucks] custom section to the created workplace. The
“trucks” object schema must contain the following obligatory fields:

Name – a string.
Owner – the [Contact] lookup.
Organization – the [Account] lookup.
Price – a string.

Case implementation algorithm
1. Create a section using the section wizard and add it to the necessary workplace.

Creating a workplace is covered in the "Workplace setup” article. Indicate the [Name] – “Car showroom” for the
new workplace and add a group of users who will have access to the created workplace.

Section wizard operation is covered in the "Section wizard” article. Use the first section wizard step to create a new

Bpm’online developer guide 269

https://academy.terrasoft.ru/documents?product=enterprise&ver=7&id=1248
https://academy.bpmonline.com/documents?product=enterprise&ver=7&id=1245

section. The [Name] column with the“string’ type and columns inherited from the base object will be added to the
primary section object. For the initial section setup, populate the following values at the first wizard step:

[Code] – "UsrTruck";
[Title] – “Trucks”.

ATTENTION

The section object name populated in the [Code] field of the section wizard should not contain prefixes "Base",
"Sys" and "Vw". Neither should it contain suffixes "InFolder", "Lcz", "Lookup" and "Settings". Otherwise, you
will not be able to set up import from Excel for this object..

NOTE

If you work with bpm’online default settings, you will receive a notification that the value should start with the
“Usr” prefix when you populate the [Code] field. The prefix value is indicated in the [Prefix for object name]
system setting (SchemaNamePrefix). You can customize the prefix value if needed. We do not recommend to
use an empty string as a prefix because of possible name matches with other base configuration elements.

As a result, you will create all schemas that are necessary for section operation in the custom package (fig.1).

Fig. 1. – The [Trucks] section schemas in the custom package

2. Add the necessary columns to the section object schema and display them.

There are two ways to add new columns to the object schema:

1. Create a new column via the section wizard and add it to the edit page immediately. The column will be
automatically added to the section primary object schema. Setting up the section record edit page fields is covered in
the "How to set up page fields” article.

2. Add a column to the section primary object schema via object designer in the [Configuration] section. Add
columns to the page via the section wizard. You can learn more about the [Configuration] section capabilities in the
"The [Configuration] section” article.

Since the section wizard is involved in any case, using the first way is more convenient.

The [Name] column is created and added to the section pages automatically by the section wizard.

Populate the following properties for the rest of columns:

Column Type Title Name in DB
Owner The [Contact] lookup Owner UsrOwner

Organization The [Account] lookup Organization UsrOrganization

Bpm’online developer guide 270

https://academy.bpmonline.com/documents?product=enterprise&ver=7&id=1245
https://academy.bpmonline.com/documents?product=enterprise&ver=7&id=1399

Price Decimal Price, USD UsrPrice

Select the [Is required] checkbox for all columns.

New columns will be added to the UsrTruck object schema after you save the changes in the section wizard (fig.2)
and the corresponding configuration objects will be added to the diff modification array of the UsrTruckPage edit
page schema.

Fig. 2. – The [Trucks] section primary object schema.

Display the columns on the section record list. Select the [Select fields to display] command in the list’s [View] menu
to open the column setup page. Section column setup is covered in the "Setting up columns” article.

After you add new records, the section will look as follows (fig.3):

Fig. 3. – The [Trucks] section in the [Car showroom] workplace.

Adding an action to the list

Bpm’online developer guide 271

https://academy.terrasoft.ru/documents?product=enterprise&ver=7&id=1231

Overview
Bpm’online has the possibility to set up a list of actions from the [Actions] menu for selected records of a section.

The list of section actions is an instance of the Terrasoft.BaseViewModelCollection class. Each item of the actions list
is a view model.

An action is set up in the configuration object where the properties of the actions view model may be set both
explicitly and through the use of the base binding mechanism.

The base content of the [Actions] menu for a section page is implemented in the base class of the BaseSectionV2
section.
The list of section actions returns the getSectionActions protected virtual method from the BaseSectionV2 schema.

A separate action is added to the collection by calling the addItem method.

The getButtonMenuItem callback method is passed to it as a parameter. The method creates an instance of the
actions view model by the configuration object passed to it as a parameter.

Example 1. — Base implementation of an action addition

/**
* This returns the actions collection of the section in the list display mode
* @protected
* @virtual
* @return {Terrasoft.BaseViewModelCollection} Actions collection of the section
*/
getSectionActions: function() {
 // List of actions - Terrasoft.BaseViewModelCollection instance
 var actionMenuItems = this.Ext.create("Terrasoft.BaseViewModelCollection");
 // Adding an action to the collection. The method instantiating the action
 // model instance by the passed configuration object is passed as callback.
 actionMenuItems.addItem(
 this.getButtonMenuItem({
 // Configuration object of setting an action.
 })
);
 return actionMenuItems;
}

Below are the properties of the configuration object of the section action to be passed as a parameter to the
getButtonMenuItem method:

Type a type of the [Actions] menu item A horizontal line for separating the menu
blocks may be added to the action menu
using this property. For this purpose, the
Terrasoft.MenuSeparator string must be
specified as the property value. If no
property value is specified, the menu item
will be added by default.

Caption the title of the [Actions] menu item To set titles, the use of localizable schema
strings is recommended.

Click the action handler method is bound in this
property by the method name

Enabled a logic property controlling the menu item
availability

Visible a logical property controlling the menu item
visibility

Procedure for adding a custom action

Bpm’online developer guide 272

1. Override the getSectionActions method.
2. Add an action to the actions collection using the addItem method.
3. Pass a configuration object with the added action settings to the getButtonMenuItem callback method.

NOTE

When base sections are replaced in the getSectionActions method of the replacingmodule, the parent
implementation of this method must be called first to initialize actions of the parent section.

Examples of implementing an action addition
How to add a section action: handling the selection of a single record
How to add a section action: handling the selection of several records
Handling the selection of several records. Examples

See also:
Adding an action to the edit page

How to add a section action: handling the selection of a single record

Case description
Implement an action, which displays the order creation date in the message window for the [Orders] section list. The
action is only available for orders with the [In progress] status.

ATTENTION

The [Orders] section is available in bpm’online sales products.

NOTE

You can address the selected record via the ActiveRow section view model attribute, which gets the primary
column value of the selected record. This value can further be used for getting the values, downloaded into the
selected object field list, for instance, from a regular list data collection, which is stored in the GridData list
view model property.

Source code
Use this link to download the case implementation package.

Case implementation algorithm
1. Create a replacing page of the [Orders] section in the custom package

Create a replacing client module and specify the OrderSectionV2 schema as parent object (Fig. 1). The procedure for
creating a replacing page is described in the“Creating a custom client module schema” article.

Fig. 1. Properties of the [Orders] section replacing page

Bpm’online developer guide 273

https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkAddSectionAction_18.02.22_15.12.47.zip

2. Add a string with the [Actions] menu title to the localized string collection of the
section replacing schema

Create a new localized string (Fig.2).

Fig.2 – Adding the localized string to the schema

Populate the following values for the created string (Fig.3):

[Name] – "CreationDateActionCaption”
[Value] – “Show order creation date”

Fig. 3. Custom localized string properties

3. Add method implementation to the section view model method collection

isRunning() – verifies if the selected list order has the [In progress] status.
isCustomActionEnabled() – determines if the added menu option is enabled.
showOrderInfo() – the action handler method that displays the selected order estimated completion date
in the message window.
getSectionActions() – an overridden parent schema method that gets the section action collection.

The replacing schema source code is as follows:

define("OrderSectionV2", ["OrderConfigurationConstants"],

Bpm’online developer guide 274

 function(OrderConfigurationConstants) {
 return {
 // Section object schema name.
 entitySchemaName: "Order",
 // Section view model methods.
 methods: {
 // Verifies the order status.
 // activeRowId — the primary column value of the selected list record.
 isRunning: function(activeRowId) {
 // Getting the section list view data collection.
 var gridData = this.get("GridData");
 // Getting the selected order model accroding to the indicated
primary column value.
 var selectedOrder = gridData.get(activeRowId);
 // Getting the model property - the selected order status.
 var selectedOrderStatus = selectedOrder.get("Status");
 // The method gets true if the order status is [In Progress].
Otherwise it gets false.
 return selectedOrderStatus.value ===
OrderConfigurationConstants.Order.OrderStatus.Running;
 },
 // Determines if the menu option is enabled.
 isCustomActionEnabled: function() {
 // Attempt of getting the active (list selected) record identifier.
 var activeRowId = this.get("ActiveRow");
 // If the identifier is determined and the order status is
 // [In Progress], it gets true, otherwise - it gets false.
 return activeRowId ? this.isRunning(activeRowId) : false;
 },
 // Action handler method. Displays the order creation date in the message
window.
 showOrderInfo: function() {
 var activeRowId = this.get("ActiveRow");
 var gridData = this.get("GridData");
 // Getting the order creation date. The column must be added to the
list.
 var dueDate = gridData.get(activeRowId).get("Date");
 // Message window display.
 this.showInformationDialog(dueDate);
 },
 // Overriding the base virtual method that gets the section action
collection.
 getSectionActions: function() {
 // Calling of the method parent implementation for getting the
 // initiated action collection of the section.
 var actionMenuItems = this.callParent(arguments);
 // Adding a separator line.
 actionMenuItems.addItem(this.getButtonMenuItem({
 Type: "Terrasoft.MenuSeparator",
 Caption: ""
 }));
 // Adding a menu option to the section action list.
 actionMenuItems.addItem(this.getButtonMenuItem({
 // Linking the menu option title to the schema localized string.
 "Caption": {bindTo:
"Resources.Strings.CreationDateActionCaption"},
 // Action handler method linking.
 "Click": {bindTo: "showOrderInfo"},
 // Linking of the menu option enabling property to the value that
gets the isCustomActionEnabled method.
 "Enabled": {bindTo: "isCustomActionEnabled"}
 }));

Bpm’online developer guide 275

 // Getting the appended section action collection.
 return actionMenuItems;
 }
 }
 };
});

After you save the schema and update the application page with clearing the browser cache, a new action appears in
the [Orders] section. It will be active when you select an order with the [In progress] status (Fig.4).

Fig. 4. Case result

See also
Adding an action to the list
How to add a section action: handling the selection of several records
Handling the selection of several records. Examples

How to add a section action: handling the selection of several records

Introduction
The section single record mode is used by default. To select multiple active list records use the [Select multiple
records] option in the [Actions] button menu. The list visual view will change – you will see record selection
elements appear. To cancel the multiple record mode, click [Cancel multiple selection] in the [Actions] button menu.

Case description
Implement an action, which displays account names of several selected list orders in the message window for the
[Orders] section list.

ATTENTION

Bpm’online developer guide 276

The [Orders] section is available in bpm’online sales products.

NOTE

The primary column values of the selected records are stored in the SelectedRows property of the section view
model. These values can further be used for getting the values, downloaded into the selected object field list,
for instance, from a regular list data collection, which is stored in the GridData list view model property.

Source code
Use this link to download the case implementation package.

Case implementation algorithm
1. Create a replacing page of the [Orders] section in the custom package

Create a replacing client module and specify the OrderSectionV2 schema as parent object (Fig. 1). The procedure for
creating a replacing page is described in the “Creating a custom client module schema” article.

Fig. 1. Properties of the [Orders] section replacing page

2. Add a string with the [Actions] menu title to the localized string collection of the
section replacing schema

Create a new localized string (Fig.2).

Fig. 2 – Adding the localized string to the schema

Populate the following values for the created string (Fig.3):

[Name] – “AccountSectionAction”
[Value] – “Accounts for the selected orders”

Fig. 3. Custom localized string properties

Bpm’online developer guide 277

https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkAddSectionActionForMultipleRows_18.02.23_01.16.11.zip

3. Add method implementation to the section view model method collection

isCustomActionEnabled() – determines if the added menu option is enabled.
showOrderInfo() – the action handler method that displays the selected order account list in the message
window.
getSectionActions() – an overridden parent schema method that gets the section action collection.

The replacing schema source code is as follows:

define("OrderSectionV2", ["OrderConfigurationConstants"],
 function(OrderConfigurationConstants) {
 return {
 // Section schema name.
 entitySchemaName: "Order",
 // Section view model methods.
 methods: {
 // Determines if the menu option is enabled.
 isCustomActionEnabled: function() {
 // Attempt of getting the selected record identifier array.
 var selectedRows = this.get("SelectedRows");
 // If the array contains any elements (at least one list record is
selected),
 // it gets true, otherwise - it gets false.
 return selectedRows ? (selectedRows.length > 0) : false;
 },
 // Action handler method. Displays the account list in the message
window.
 showOrdersInfo: function() {
 // Getting the selected record identifier array.
 var selectedRows = this.get("SelectedRows");
 // Getting the list record data collection.
 var gridData = this.get("GridData");
 // Variable for stoarge of the selected order object model.
 var selectedOrder = null;
 // Variable for stoarge of the selected order account name.
 var selectedOrderAccount = "";
 // Variable for the message window text.
 var infoText = "";
 // Handling of the selected section record identifier array.
 selectedRows.forEach(function(selectedRowId) {
 // Getting the selected order object model.
 selectedOrder = gridData.get(selectedRowId);
 // Getting the selected order account name. The column must be
added to the list.
 selectedOrderAccount = selectedOrder.get("Account").displayValue;
 // Adding the account name to the message window text.
 infoText += "\n" + selectedOrderAccount;
 });
 // Message window display.
 this.showInformationDialog(infoText);

Bpm’online developer guide 278

 },
 // Overriding the base virtual method that gets the section action
collection.
 getSectionActions: function() {
 // Calling of the method parent implementation for getting the
 // initiated action collection of the section.
 var actionMenuItems = this.callParent(arguments);
 // Adding a separator line.
 actionMenuItems.addItem(this.getButtonMenuItem({
 Type: "Terrasoft.MenuSeparator",
 Caption: ""
 }));
 // Adding a menu option to the section action list.
 actionMenuItems.addItem(this.getButtonMenuItem({
 // Linking the menu option title to the schema localized string.
 "Caption": {bindTo: "Resources.Strings.AccountsSectionAction"},
 // Action handler method linking.
 "Click": {bindTo: "showOrdersInfo"},
 // Linking of the menu option enabling property to the value that
gets the isCustomActionEnabled method.
 "Enabled": {bindTo: "isCustomActionEnabled"}
 }));
 // Getting the appended section action collection.
 return actionMenuItems;
 }
 }
 };
});

After you save the schema and update the application page with clearing the browser cache, a new action appears in
the [Orders] section. It will be active when you select orders in the multiple record selection mode (Fig.4).

Fig. 4. Case result

See also
Adding an action to the list
How to add a section action: handling the selection of a single record
Handling the selection of several records. Examples

Bpm’online developer guide 279

Handling the selection of several records. Examples

Introduction
Before you start implementing cases it is recommended to study the "How to add a section action: handling
the selection of several records” article.

Example
Case description

Implement action for the [Activities] section list that will set the [Completed] status for several selected list
activities.

Source code

You can download the package with case implementation using the following link.

Case implementation algorithm

1. Create a replacing page of the [Activities] section in the custom package

The procedure for creating a replacing page is described in the“Creating a custom client module schema”
article.

2. Add a string with the [Actions] menu title to the localized string collection of the section
replacing schema

Populate the following values for the created string (Fig.1):

[Name] – "AllDoneCaption";
[Value] – "Mark as "Completed"”.

Fig. 1. Properties of the custom localizable string

3. Add the implementation of the following methods to the method collection of the section
view model

isCustomActionEnabled() – the method that determines if the added menu option is enabled.
setAllDone() – the action handler method that sets the [Completed] status for several selected list

Bpm’online developer guide 280

https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkAddSectionActionMultipleRowsHard1_18.02.26_01.53.33.zip

activities.
getSectionActions() – an overridden parent schema method that gets the section action collection.

The replacing schema source code is as follows:

define("ActivitySectionV2", ["ConfigurationConstants"],
 function(ConfigurationConstants) {
 return {
 // Section schema name.
 entitySchemaName: "Activity",
 // Section view model methods.
 methods: {
 // Defines if the menu option is enabled.
 isCustomActionEnabled: function() {
 // Attempt to receive the selected record indentifier array.
 var selectedRows = this.get("SelectedRows");
 // If the array contains some elements (at least one of the
records is selected from the list),
 // it returns true, otherwise — false.
 return selectedRows ? (selectedRows.length > 0) : false;
 },
 // Action handler method. Sets the [Completed] status for the
selected records.
 setAllDone: function() {
 // Receiving the selected record indentifier array.
 var selectedRows = this.get("SelectedRows");
 // The procession starts if at least one record is selected.
 if (selectedRows.length > 0) {
 // Creation of the batch query class instance.
 var batchQuery = this.Ext.create("Terrasoft.BatchQuery");
 // Update of each selected record.
 selectedRows.forEach(function(selectedRowId) {
 // Creation of the UpdateQuery class instance with the
Activity root schema.
 var update = this.Ext.create("Terrasoft.UpdateQuery", {
 rootSchemaName: "Activity"
 });
 // Applying filter to determine the record for update.
 update.enablePrimaryColumnFilter(selectedRowId);
 // The "Success" value is set to the Status column via
 // the ConfigurationConstants.Activity.Status.Done.
 update.setParameterValue("Status",
ConfigurationConstants.Activity.Status.Done,

this.Terrasoft.DataValueType.GUID);
 // Adding a record update query to the batch query.
 batchQuery.add(update);
 }, this);
 // Batch query to the server.
 batchQuery.execute(function() {
 // Record list update.
 this.reloadGridData();
 }, this);
 }
 },
 // Overriding the base virtual method, returning the section action
collection.
 getSectionActions: function() {
 // Calling of the parent method implementation,
 // returning the initialized section action collection.
 var actionMenuItems = this.callParent(arguments);
 // Adding separator line.

Bpm’online developer guide 281

 actionMenuItems.addItem(this.getButtonMenuItem({
 Type: "Terrasoft.MenuSeparator",
 Caption: ""
 }));
 // Adding a menu option to the section action list.
 actionMenuItems.addItem(this.getButtonMenuItem({
 // Binding the menu option title to the localized schema
string.
 "Caption": { bindTo: "Resources.Strings.AllDoneCaption" },
 // Binding of the action handler method.
 "Click": { bindTo: "setAllDone" },
 // Binding the menu option enable property to the value that
returns the isCustomActionEnabled method.
 "Enabled": { bindTo: "isCustomActionEnabled" }
 }));
 // Returning of the added section action collection.
 return actionMenuItems;
 }
 }
 };
 });

After saving the schema and updating the app page with clearing the cache you will be able to apply the [Completed]
status to several selected activities in the [Activities] section by using the new [Mark as Completed] action.

Fig. 2. Case result demonstration

Example 2

Case description
Implement action for the [Activities] section list that will call the record owner selection window and set the selected
value for several selected list activities.

Source code

You can download the package with case implementation using the following link.

Bpm’online developer guide 282

https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkAddSectionActionMultipleRowsHard2_18.02.26_02.50.19.zip

Case implementation algorithm

1. Create a replacing page of the [Activities] section in the custom package

The procedure for creating a replacing page is described in the“Creating a custom client module schema”
article.

2. Add a string with the [Actions] menu title to the localized string collection of the section
replacing schema

Populate the following values for the created string (Fig.3):

[Name] – "SetOwnerCaption";
[Value] – "Assign Owner”.

Fig. 3. Properties of the custom localizable string

3. Add the implementation of the following methods to the method collection of the section
view model

isCustomActionEnabled() – the method that determines if the added menu option is enabled.
setOwner() – the action handler method that calls opening of the [Contacts] lookup.
lookupCallback() – the callback-method that sets the lookup selected contact as the owner for the selected
list records.
getSectionActions() – an overridden parent schema method that gets the section action collection.

The replacing schema source code is as follows:

define("ActivitySectionV2", ["ConfigurationConstants"],
 function(ConfigurationConstants) {
 return {
 // Section schema name.
 entitySchemaName: "Activity",
 // Section view model methods.
 methods: {
 // Defines if the menu option is enabled.
 isCustomActionEnabled: function() {
 // Attempt to receive the selected record indentifier array
 var selectedRows = this.get("SelectedRows");
 // If the array contains some elements (at least one of the
records is selected from the list),
 // it returns true, otherwise — false.
 return selectedRows ? (selectedRows.length > 0) : false;
 },
 // Action handler method. Opens the [Contacts] lookup.
 setOwner: function() {
 // Defining the lookup configuration.
 var config = {

Bpm’online developer guide 283

 // The [Contact] Schema.
 entitySchemaName: "Contact",
 // Multiple selection is disabled.
 multiSelect: false,
 // The displayed column — [Name].
 columns: ["Name"]
 };
 // Opening of the lookup with certain configuration and call-back
function that is triggered
 // after you click [Select].
 this.openLookup(config, this.lookupCallback, this);
 },
 // Sets the lookup selected contact as the owner
 // for the selected list records.
 lookupCallback: function(args) {
 // The selected lookup record identifier.
 var activeRowId;
 // Receiving of the lookup selected records.
 var lookupSelectedRows = args.selectedRows.getItems();
 if (lookupSelectedRows && lookupSelectedRows.length > 0) {
 // Receiving of the first lookup selected record Id.
 activeRowId = lookupSelectedRows[0].Id;
 }
 // Receiving of the selected record identifier array.
 var selectedRows = this.get("SelectedRows");
 // The procession starts if at least one record is selected from
the list and the owner is selected
 // in the lookup.
 if ((selectedRows.length > 0) && activeRowId) {
 // Creation of the batch query class instance.
 var batchQuery = this.Ext.create("Terrasoft.BatchQuery");
 // Update of each selected record.
 selectedRows.forEach(function(selectedRowId) {
 // Creation of the UpdateQuery class instance with the
Activity root schema.
 var update = this.Ext.create("Terrasoft.UpdateQuery", {
 rootSchemaName: "Activity"
 });
 // Applying filter to determine the record for update.
 update.enablePrimaryColumnFilter(selectedRowId);
 // The [Owner] column is populated with the value that
equals to
 // the lookup selected contact id.
 update.setParameterValue("Owner", activeRowId,
this.Terrasoft.DataValueType.GUID);
 // Adding a record update query to the batch query.
 batchQuery.add(update);
 }, this);
 // Batch query to the server.
 batchQuery.execute(function() {
 // Record list update.
 this.reloadGridData();
 }, this);
 }
 },
 // Overriding the base virtual method, returning the section action
collection.
 getSectionActions: function() {
 // Calling of the parent method implementation,
 // returning the initialized section action collection.
 var actionMenuItems = this.callParent(arguments);
 // Adding separator line.

Bpm’online developer guide 284

 actionMenuItems.addItem(this.getButtonMenuItem({
 Type: "Terrasoft.MenuSeparator",
 Caption: ""
 }));
 // Adding a menu option to the section action list.
 actionMenuItems.addItem(this.getButtonMenuItem({
 // Binding the menu option title to the localized schema
string.
 "Caption": { bindTo: "Resources.Strings.SetOwnerCaption" },
 // Binding of the action handler method.
 "Click": { bindTo: "setOwner" },
 // Binding the menu option enable property to the value that
returns the isCustomActionEnabled method.
 "Enabled": { bindTo: "isCustomActionEnabled" }
 }));
 // Returning of the added section action collection.
 return actionMenuItems;
 }
 }
 };
 });

After saving the schema and updating the app page with clearing the cache you will be able to change the owner of
several selected activities in the [Activities] section by using the new [Assign Owner] action.

Fig. 4. Case result demonstration

See also
Adding an action to the list
How to add a section action: handling the selection of a single record
How to add a section action: handling the selection of several records

How to add a button to a section

Bpm’online developer guide 285

Introduction
During the process of section customization, you may need to create a custom action and add the appropriate button
to the section. For this, use the container of action buttons (ActionButtonsContainer) with the the new record button
and the button with drop-down action list. More information can be found in the “Section actions” article.

To add a custom button to the view model, you need to change the following properties:

diff array of configuration objects. Add a configuration object for setting up location of the component on
the edit page.
methods collection. Add an implementation of the handler method, that will be called on button click, and
other auxiliary methods necessary for the work of the control. These can be methods that will regulate the
visibility or availability of the control, depending on the conditions.

More information about button visualization can be found in the “Adding a button to the edit page” article.

Case description
Add a button to the [Accounts] section. The button should open the edit page of the primary contact of the account
selected in the list.

NOTE

Access to the selected record is performed through the ActiveRow attribute of the section view model, that
returns the value of the primary column of selected record. This value can be used to get values loaded into the
list of the fields of selected object, for example, from the list data collection that is stored in the GridData
property of the list view model.

Source code
You can download the package with case implementation using the following link.

Case implementation algorithm
1. Create a replacing edit page of the [Accounts] section

Create a replacing client module and specify the [Accounts section] schema as parent object (Fig. 1). The procedure
for creating a replacing page is covered in the “Creating a custom client module schema” article.

Fig. 1. Properties of the [Accounts] section replacing schema

Bpm’online developer guide 286

https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkAddButtonToSection_18.02.28_03.32.37.zip

2. Add a string with the button title to the collection of localizable strings of the
replacing schema

Create a new localizable string (Fig. 2).

Fig.2. Adding localizable string to the schema

For the created string specify (Fig. 3):

[Name] – “OpenPrimaryContactButtonCaption"
[Value] – "Primary Contact".

Fig. 3. Properties of the custom localizable string

3. Add the implementation of the following methods to the method collection of the
section view model

Bpm’online developer guide 287

isAccountPrimaryContactSet() – checks if the [Primary contact] field is filled.
onOpenPrimaryContactClick() – button click handler method. Opens the edit page of the primary contact.

4. Add a configuration object with the settings determining the button position in the
diff array

Add an object with the settings determining the button position on the page in the diff array.

The replacing schema source code is as follows:

define("AccountSectionV2", [], function() {
 return {
 // Name of the section object schema.
 entitySchemaName: "Account",
 // Method of the section view model.
 methods: {
 // Button click handler method.
 onOpenPrimaryContactClick: function() {
 // Getting the id of the selected record.
 var activeRow = this.get("ActiveRow");
 if (!activeRow) {
 return;
 }
 // Defining the id of the primary contact.
 var primaryId =
this.get("GridData").get(activeRow).get("PrimaryContact").value;
 if (!primaryId) {
 return;
 }
 // Creation of the address string.
 var requestUrl = "CardModuleV2/ContactPageV2/edit/" + primaryId;
 // Publication a message about updating the navigation history of
pages and
 // opening to the primary contact edit page.
 this.sandbox.publish("PushHistoryState", {
 hash: requestUrl
 });
 },
 // Checks if the [Primary Contact] field of the selected item is filled.
 isAccountPrimaryContactSet: function() {
 var activeRow = this.get("ActiveRow");
 if (!activeRow) {
 return false;
 }
 var pc = this.get("GridData").get(activeRow).get("PrimaryContact");
 return (pc || pc !== "") ? true : false;
 }
 },
 //Display button in the section.
 diff: /**SCHEMA_DIFF*/[
 // Metadata for adding a custom button to a section.
 {
 // The operation of adding a component to the page is in progress..
 "operation": "insert",
 // The meta name of the parent container to which the button is
added.
 "parentName": "ActionButtonsContainer",
 // The button is added to the parent component's collection.
 "propertyName": "items",
 // The meta-name of the button to be added.
 "name": "MainContactSectionButton",
 // Properties passed to the component's constructor.

Bpm’online developer guide 288

 "values": {
 // The type of the component to add is the button.
 itemType: Terrasoft.ViewItemType.BUTTON,
 // Bind the button header to the localizable string of the
schema.
 caption: { bindTo:
"Resources.Strings.OpenPrimaryContactButtonCaption" },
 // Bind the button click handler method.
 click: { bindTo: "onOpenPrimaryContactClick" },
 // Binding the button availability property.
 enabled: { bindTo: "isAccountPrimaryContactSet" },
 // Setting the location of the button.
 "layout": {
 "column": 1,
 "row": 6,
 "colSpan": 1
 }
 }
 }
]/**SCHEMA_DIFF*/
 };
});

After saving the schema, clearing the browser cache and updating the application page, the [Primary Contact]
button will be displayed in the [Accounts] section. The button will be enabled after selecting the account with the
specified primary contact (Fig. 4).

Fig. 4. Case result

How to highlight a record in the list in color

Introduction

Bpm’online developer guide 289

Bpm’online enables you to configure the layout of the record list by highlighting some records when a specific
condition is met. This setting helps to highlight the records that require special attention.

The display of the list record is controlled by the customStyle property of the record list.

The customStyle property is an object, which properties are similar to CSS properties and generate style of
displaying a list record. Example:

item.customStyle = {
 // The text color is white.
 "color": "white",
 // The background color is orange.
 "background": "orange"
};

Follow these steps to configure the display of individual list records:

1. Override the prepareResponseCollectionItem(item), base method in the replacing schema of the section.
This method modifies a data string before loading it to the list.

2. In the prepareResponseCollectionItem(item) method, implement the assigning of specific value to the
customStyle property for the necessary list records.

Case description
For the [Orders] section, implement highlighting the list records with the [In progress] status.

ATTENTION

The [Orders] section is available in bpm’online sales products.

Source code
You can download the package with case implementation using the following link.

Case implementation algorithm
1. Create a replacing page of the [Orders] section in the custom package

Create a replacing client module and specify the OrderSectionV2 schema as parent object (Fig. 1). The procedure for
creating a replacing page is covered in the “Creating a custom client module schema” article.

Fig. 1. Properties of the [Orders] section replacing page

2. Override the prepareResponseCollectionItem method

Add the prepareResponseCollectionItem() to the method collection of the created schema. The method overrides

Bpm’online developer guide 290

https://academy.terrasoft.ru/sites/default/files/documents/downloads/SDK/Packages/sdkRecolorGrid_18.03.05_03.01.28sdkRecolorGrid_18.03.05_03.01.28.zip

the base method, modifies the data string before uploading it to the list, and adds custom styles to the specific list
records.

The replacing schema source code is as follows:

define("OrderSectionV2", ["OrderConfigurationConstants"],
function(OrderConfigurationConstants) {
 return {
 // The name of the section scheme.
 entitySchemaName: "Order",
 // Methods of the section representation model.
 methods: {
 // Override the base method, which modifies the data string before it is
loaded into the list.
 prepareResponseCollectionItem: function(item) {
 // Calling the base method.
 this.callParent(arguments);
 item.customStyle = null;
 // Determining the order status.
 var running = item.get("Status");
 //If the status of the order is "In progress", the record style
changes.
 if (running.value ===
OrderConfigurationConstants.Order.OrderStatus.Running) {
 item.customStyle = {
 // The text color is white.
 "color": "white",
 // The background color is green.
 "background": "8ecb60"
 };
 }
 }
 }
 };
});

After saving the schema, clearing the browser cache and updating the application page, the orders in the [Orders]
section with the [In progress] status will be highlighted in green (Fig. 2).

Fig. 2. Case result

Adding quick filter block to a section

Bpm’online developer guide 291

Introduction
Filters are designed to search and filter records in sections. In bpm'online quick, standard and advanced filters and
folders are provided. More information can be found in the "Filters” article.

To add a block of quick filters to the section, override the initFixedFiltersConfig() method in the replacement
schema, create the fixedFilterConfig configuration object in this method with the following properties:

entitySchema – object schema.
filters – array of added filters.

Assign a reference to the created configuration object to the fixedFiltersConfig view model attribute:

this.set("FixedFilterConfig", fixedFilterConfig);

Case description
Add a block of quick filters to the [Contracts] section. Filter by the contract start date and owner.

Source code
You can download the package with case implementation using the following link.

Case implementation algorithm
1. Create a replacing schema of the [Contracts] section in the custom package.

Create a replacing custom module and populate its properties with (Fig.1):

[Parent object] – “Page schema – “Contracts” section”;
[Name] – ContractSectionV2.

The procedure for creating a replacing client schema is covered in the “Creating a custom client module
schema” article.

Fig. 1. Properties of the [Contracts] section replacing schema

2. Add localizable strings to the schema structure.

Create two new localizable strings (Fig.2) with the following properties:

Bpm’online developer guide 292

https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkAddFixedFilters_18.03.07_03.29.08.zip

Name Value
OwnerFilterCaption Owner

PeriodFilterCaption Period

Fig. 2. Adding localizable string to the schema

3. Add the implementation of the initFixedFiltersConfig() method to the method
collection of the section view model.

Create a configuration object with the PeriodFilter and OwnerFilter filter arrays in the initFixedFiltersConfig()
method, assign a reference to the created configuration object to the fixedFiltersConfig view model attribute .

The replacing schema source code is as follows:

define("ContractSectionV2", ["BaseFiltersGenerateModule"],
function(BaseFiltersGenerateModule) {
 return {
 // Name of the section schema
 entitySchemaName: "Contract",
 // Method collection of the section view model.
 methods: {
 // Initializes the fixed filters.
 initFixedFiltersConfig: function() {
 // Creating a Configuration Object.
 var fixedFilterConfig = {
 // The schema of the section object is specified as an object
schema for fixed filters.
 entitySchema: this.entitySchema,
 // Array of filters.
 filters: [
 // Start period filter.
 {
 // The name of the filter.
 name: "PeriodFilter",
 // Filter header.
 caption:
this.get("Resources.Strings.PeriodFilterCaption"),
 // The data type – date.
 dataValueType: this.Terrasoft.DataValueType.DATE,
 // Start date of the filtering period.
 startDate: {
 // Filter the data from the [Date] column.
 columnName: "StartDate",
 // Default value.
 defValue: this.Terrasoft.startOfWeek(new Date())
 },
 // Date of the filtering period completion.

Bpm’online developer guide 293

 dueDate: {
 columnName: "StartDate",
 defValue: this.Terrasoft.endOfWeek(new Date())
 }
 },
 // Owner filter.
 {
 // The name of the filter.
 name: "Owner",
 // Filter header.
 caption:
this.get("Resources.Strings.OwnerFilterCaption"),
 // Filter the data from the [Owner] column.
 columnName: "Owner",
 // Current user contact is specified as default value.
 // Value is received from the system setting.
 defValue: this.Terrasoft.SysValue.CURRENT_USER_CONTACT,
 // The data type – lookup.
 dataValueType: this.Terrasoft.DataValueType.LOOKUP,
 // Filter.
 filter: BaseFiltersGenerateModule.OwnerFilter
 }
]
 };
 // A link to the configurational object is assigned to the
[FixedFilterConfig] column.
 this.set("FixedFilterConfig", fixedFilterConfig);
 }
 }
 };
});

After saving the schema and restarting the system, a block of fixed filters will appear in the [Contracts] section.
These filters will enable you to filter contracts by start date and owner (Fig. 3).

Fig. 3. Case result

Page configuration

Bpm’online developer guide 294

Introduction
An edit page is a container having a number of fields for entering and changing the columns of section object schema
(see “Section list”). It opens when you add a new record to the section list, or when you edit the existing record.
Every section has one or several edit pages.

Business rules are one of the tools to setup page logic in bpm’online.

Business rules represent a standard bpm’online mechanism that enables you to set up the page field behavior by
configuring the view model columns.

Business rules enable you to:

hide and display fields
lock and unlock fields
make fields required or optional
filter the lookup field value depending on another field value

The primary control elements of a page include:

an input field
a button
an image field
a color button
a multicurrency field

Bpm’online enables you to add and edit standard control elements on the edit page as well as to create custom
control elements.

Page configuration options enable setting up the behavior of the existing control elements on the page:

add validation
set up calculated fields
apply filtration to lookup fields
setting default values for fields

Contents
Setting the edit page fields using business rules
Adding an action to the edit page
Control elements
Adding an action panel
Adding a new channel to the action panel
Adding calculated fields
How to set a default value for a field
How to add the field validation
Using filtration for lookup fields. Examples
Adding an action panel
Adding a new channel to the action panel
Displaying contact's time zone
How to display the difference between dates on edit page fields
How to block fields of the edit page

Setting the edit page fields using business rules

Bpm’online developer guide 295

Introduction
Business rules are one of the tools to setup page logic in bpm’online.

Business rules are a standard bpm’online mechanism that enables you to set up the page field behavior by
configuring the view model columns.

Business rules enable you to:

hide and display fields
lock and unlock fields
make fields required or optional
filter the lookup field value depending on another field value

You can add business rules in two ways:

1. Via section wizard or detail wizard.

Wizard generated business rules are added to the businessRules client module property.
The generated business rules have higher priority at execution.
BusinessRuleModule enumerations are not used when describing the generated business rules.

See the "Setting up business rules” article for more information on business rule setup via wizard. The manual setup
of the generated business rules is covered in the "Business rules. The businessRules property” article.

2. Via configuring the “rules” property of the client module schema.

The functions of business rules are implemented in the BusinessRuleModule client module. To use these functions,
add the BusinessRuleModule module to the list of user schema dependencies of the view model.

Case of declaring user module with using business rules

define("CustomPageModule", ["BusinessRuleModule"], function(BusinessRuleModule) {
 return {
 // View model schema implementation.
 };
});

NOTE

Capability of adding business rules by developer tools ensures compatibility with previous versions.

General requirements to business rule declaring in a client
module

All rules are described in the rules property of the page view model.
The rules are applied to view model columns and not to control elements.
Business rules are not supported on list pages.
Rules have names.
Rule parameters are set in its configuration object.

Examples of business rule declaring

// List of view model rules.
rules : {
 // Name of the column where the rule is added.
 "FirstColumnName" : {
 // FirstColumnName column list of rules.
 // Rule name.
 FirstRuleName : {
 // FirstRuleName configuration object.
 ruleType: <BusinessRuleModule.enums.RuleType enumeration value>

Bpm’online developer guide 296

https://academy.bpmonline.com/documents?product=enterprise&ver=7&id=1680

 // The rest of rule configuration properties.
 },
 SecondRuleName: {
 // SecondRuleName configuration object.
 ruleType: <BusinessRuleModule.enums.RuleType enumeration value>
 // The rest of rule configuration properties.
 }
 },
 "SecondColumnName" : {
 // SecondColumnName column list of rules.
 ...
 }
}

Business rule types
Rule types are defined in the RuleType enumeration of the BusinessRuleModule module.

Currently two rule types are used – BINDPARAMETER and FILTRATION.

BINDPARAMETER

This rule type is used for linking properties of a column to values of different parameters. For instance, for setting up
the visibility of a column or to enable a column depending on the value of another column. The main
BINDPARAMETER configuration object properties are described in table 1.

Table 1. – BINDPARAMETER configuring

Property Value

ruleType Type of the rule. It is defined by the BusinessRuleModule.enums.RuleType enumeration
value.

In this case BINDPARAMETER type is used.

property Control element property. Set by the BusinessRuleModule.enums.Property enumeration
value:

VISIBLE – column visibility
ENABLED – enabling of a column
REQUIRED – column populating is required
READONLY – column for reading only

conditions Condition array for rule application.

Every condition represents a configuration object, whose properties are described in table
2.

logical Logical operation of combining the conditions from the conditions property. Set by the
Terrasoft.LogicalOperatorType enumeration value.

Table 2. – BINDPARAMETER configuring

Bpm’online developer guide 297

Property Value

leftExpression Expression of the left side of the condition. Represents a configuration object with the
following properties:

Type – expression type. Set by the BusinessRuleModule.enums.ValueType
enumeration value:

CONSTANT – constant value
ATTRIBUTE – the view model column value
SYSSETTING – system setting
SYSVALUE – system value The
Terrasoft.core.enums.SystemValueType system value list element.

Attribute – model column name
attributePath – meta-path to the lookup schema column
Value – value for comparison

comparisonType Type of comparison. Set by the Terrasoft.core.enums.ComparisonType enumeration
value.

rightExpression Expression of the right side of the condition. Similar to leftExpression.

FILTRATION

Use the FILTRATION rule to set up filtering of values in view model columns. For example, you can filter a lookup
column depending on the current status of a page.

Table 3. – FILTRATION configuring

Property Value

ruleType Rule type. Set by the BusinessRuleModule.enums.RuleType.enumeration value.

In this case FILTRATION type is used.

autocomplete Reverse filtering checkbox. Can take the true or false values.

autoClean The checkbox of automated value cleaning upon changing the column that is used for
filtration. Can take the true or false values.

baseAttributePatch Meta-path to the lookup schema column that will be used for filtration.

The feedback principle is applied when building the column path similar to
EntitySchemaQuery,. The path is generated in relation to the schema, referred to by the
model column.

comparisonType Type of comparison operation. Set by the Terrasoft.ComparisonType.enumeration value.

type The value type for comparison baseAttributePatch. Set by the
BusinessRuleModule.enums.ValueType enumeration value.

attribute The view model column name. This property is described if ATTRIBUTE value type (type)
is indicated.

attributePath Meta-path to the object schema column.

The feedback principle is applied when building the column path similar to
EntitySchemaQuery,. The path is generated in relation to the schema, referred to by the
model column.

value Filtration value. This property is described if ATTRIBUTE value type (type) is indicated.

See also

Bpm’online developer guide 298

The FILTRATION rule use case
The BINDPARAMETER rule. How to lock a field on an edit page based on a specific
condition
The BINDPARAMETER rule. How to hide a field on an edit page based on a specific
condition
The BINDPARAMETER rule. How to make a field required based on a specific condition
Business rules created via wizards

The FILTRATION rule use case

Introduction
The FILTRATION rule is used to configure filtering of the lookup column of the view model based on the value of
another column. For more information on business rules, see the “Setting the edit page fields using business
rules” article.

NOTE

In bpm’online, you can configure business rules using developer tools the as well as the section wizard. For
more information please refer to the “Setting up the business rules“ article.

Case description
Add the [Country], [State/Province] and [City] fields to the page. If the [Country] field is populated, the values in the
[State/Province] field must include only states and provinces of that country. If the [State/Province] field is
populated, the values in the [City] field must include only cities located in that state or province. If the [City] field is
populated first, the [Country] and [State/Province] fields must be automatically populated with the corresponding
values.

NOTE

The base contact page schema already has a rule for filtering cities by country. Therefore, if the [Country] field
is not added, only cities from the country specified for a contact can be selected.

Source code
Use this link to download the case implementation package.

Case implementation algorithm
1. Create a replacing contact page

Create a replacing client module and specify the [Display schema — Contact card] schema as parent object (Fig. 1).
The procedure for creating a replacing page is covered in the “Creating a custom client module schema”
article.

Fig. 1. Order edit page replacing schema properties

Bpm’online developer guide 299

https://academy.bpmonline.com/documents?product=enterprise&ver=7&id=1680
https://academy.terrasoft.ru/sites/default/files/documents/downloads/SDK/Packages/sdkAddFiltrationRuleToPage_18.03.13_03.19.59.zip

2. Add the [Country], [State/Province] and [City] fields to the page.

To do this, add three configuration objects with the settings for the corresponding field properties to the diff array.

3. Add FILTRATION-type rules to the [City] and [State/Province] columns.

To do this, add two rules of the BusinessRuleModule.enums.RuleType.FILTRATION type to the rules property for
the [City] and [Region] columns. To enable reverse filtering (i.e., to automatically populate the [Country] and
[State/Province] fields based on the selected city), set the autocomplete property to true.

The replacing schema source code is as follows:

// Add the module BusinessRuleModul to the dependency list of the module.
define("ContactPageV2", ["BusinessRuleModule"],
 function(BusinessRuleModule) {
 return {
 // Name of the schema of the edit page object.
 entitySchemaName: "Contact",
 // A property that contains a collection of business rules for the schema
of the page view model.
 rules: {
 // A set of rules for the [City] column of the view model..
 "City": {
 // The rule for filtering the [City] column by the value of the
[Region] column.
 "FiltrationCityByRegion": {
 // FILTRATION rule type.
 "ruleType": BusinessRuleModule.enums.RuleType.FILTRATION,
 // Reverse filtering will be performed.
 "autocomplete": true,
 // The value will be cleared when the value of the [Region]
column changes.
 "autoClean": true,
 // The path to the column for filtering in the [City]
reference schema,
 // which is referenced by the [City] column of the
 // edit page view model.
 "baseAttributePatch": "Region",
 // The type of the comparison operation in the filter.
 "comparisonType": Terrasoft.ComparisonType.EQUAL,
 // The column (attribute) of the view model will be the
comparison value.
 "type": BusinessRuleModule.enums.ValueType.ATTRIBUTE,
 // The column name of the view model of the edit page,
 // the value of which will be filtered.
 "attribute": "Region"
 }

Bpm’online developer guide 300

 },
 // A set of rules for the [Region] column of the view model.
 "Region": {
 "FiltrationRegionByCountry": {
 "ruleType": BusinessRuleModule.enums.RuleType.FILTRATION,
 "autocomplete": true,
 "autoClean": true,
 "baseAttributePatch": "Country",
 "comparisonType": Terrasoft.ComparisonType.EQUAL,
 "type": BusinessRuleModule.enums.ValueType.ATTRIBUTE,
 "attribute": "Country"
 }
 }
 },
 // Setting up the visualization of the [Country], [State/Province] and
[City] fields on the edit page.
 diff: [
 // Metadata for adding the [Country] field.
 {
 "operation": "insert",
 "parentName": "ProfileContainer",
 "propertyName": "items",
 "name": "Country",
 "values": {
 "contentType": Terrasoft.ContentType.LOOKUP,
 "layout": {
 "column": 0,
 "row": 6,
 "colSpan": 24
 }
 }
 },
 // Metadata for adding the [State/Province] field.
 {
 "operation": "insert",
 "parentName": "ProfileContainer",
 "propertyName": "items",
 "name": "Region",
 "values": {
 "contentType": Terrasoft.ContentType.LOOKUP,
 "layout": {
 "column": 0,
 "row": 7,
 "colSpan": 24
 }
 }
 },
 // Metadata for adding the [City] field.
 {
 "operation": "insert",
 "parentName": "ProfileContainer",
 "propertyName": "items",
 "name": "City",
 "values": {
 "contentType": Terrasoft.ContentType.LOOKUP,
 "layout": {
 "column": 0,
 "row": 8,
 "colSpan": 24
 }
 }
 }

Bpm’online developer guide 301

]
 };
 });

4. Save the created replacing page schema

After saving the schema and updating the application page, three new fields will be added to the contact profile (Fig.
2). Their values will be filtered based on the values entered in any of these fields. The filtering also works in the
lookup selection window (Fig. 4).

Fig. 2. New fields in the contact profile

Fig. 3. Filtering

Bpm’online developer guide 302

Fig. 4. Filtered values in the lookup selection window

See also
Setting the edit page fields using business rules
The BINDPARAMETER rule. How to lock a field on an edit page based on a specific
condition
The BINDPARAMETER rule. How to hide a field on an edit page based on a specific
condition
The BINDPARAMETER rule. How to make a field required based on a specific condition

Bpm’online developer guide 303

The BINDPARAMETER rule. How to hide a field on an edit page based on
a specific condition

Introduction
BINDPARAMETER rule is used for resolving he following tasks:

hide and display fields
lock and unlock fields
make fields required or optional

For more information on business rules, see the “Setting the edit page fields using business rules” article.

NOTE

In bpm’online, you can configure business rules using developer tools as well as the section wizard. For more
information please refer to the “Setting up the business rules”.

Case description
Add a new [Meeting place] field to the activity page. The field will be available only for activities of the [Meeting]
type.

NOTE

You can add fields to the edit page manually or via the section wizard.

For more on adding fields to edit pages see the “Adding a new field to the edit page” article.

Source code
Use this link to download the case implementation package.

Case implementation algorithm
1. Create a replacing object and add a new column to it.

Create an [Activity] replacing object and add a new [Meeting place] column of the “string” type to it (Fig. 1). Learn
more about creating a replacing object schema in the “Creating the entity schema” article.

Fig. 1. Adding a custom column to the replacing object

Bpm’online developer guide 304

https://academy.bpmonline.com/documents?product=enterprise&ver=7&id=1680
https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkHidingFieldByCondition_18.03.23_04.07.32.zip

2. Create a replacing client module for the activity page

Create a replacing client module and specify the [Activity edit page] schema as parent object (Fig. 2). The procedure
for creating a replacing page is covered in the “Creating a custom client module schema” article.

Fig. 2. Replacing edit page properties

3. Add a new field to the activity edit page.

Add a configuration object with the [Meeting place] field properties on the page to the diff array. The process of

Bpm’online developer guide 305

adding fields to pages is covered in the “Adding a new field to the edit page” article.

To enable localization of this field, add a localizable string (Fig. 3) and bind it to the field title.

Fig. 3. Localizable string properties

4. Add a rule to the “rules” property of the page view model

For the UsrMeetingPlace column, add the rule with the BINDPARAMETER type to rules property of the page view
model. Set the BusinessRuleModule.enums.Property.VISIBLE value for the rule’s property. Add the following
condition for rule execution to the conditions array: the value in the ActivityCategory column of the model should
be equal to the ConfigurationConstants.Activity.ActivityCategory.Meeting configuration constant.

NOTE

The ConfigurationConstants.Activity.ActivityCategory.Meeting configurational constant contain the id of the
“Meeting” record of the [Activity category] lookup.

The replacing schema source code is as follows:

// Add the module BusinessRuleModule and ConfigurationConstants to the dependency
list of the module.
define("ActivityPageV2", ["BusinessRuleModule", "ConfigurationConstants"],
 function(BusinessRuleModule, ConfigurationConstants) {
 return {
 // Name of the page schema of the edit page.
 entitySchemaName: "Activity",
 // Displaying a new field on the edit page.
 diff: /**SCHEMA_DIFF*/[
 // Metadata for adding a field [Meeting place].
 {
 // The operation of adding a component to a page.
 "operation": "insert",
 // The meta name of the parent container to which the field is
added.
 "parentName": "Header",
 // The field is added to the parent
 // component's collection.
 "propertyName": "items",
 // The name of the column of the schema to which the component is
bound.
 "name": "UsrMeetingPlace",
 "values": {
 // Field title.
 "caption": {"bindTo":
"Resources.Strings.MeetingPlaceCaption"},
 // Location of the field.
 "layout": { "column": 0, "row": 5, "colSpan": 12 }
 }
 }
]/**SCHEMA_DIFF*/,
 // Rules of the edit page view model Правила модели представления
страницы редактирования.

Bpm’online developer guide 306

 rules: {
 // A set of rules for the [Meeting place] column of the view model.
 "UsrMeetingPlace": {
 // The dependence of visibility of the [Meeting Place] field from
the value in [Category] field.
 "BindParametrVisibilePlaceByType": {
 // The type of the BINDPARAMETER rule.
 "ruleType": BusinessRuleModule.enums.RuleType.BINDPARAMETER,
 // Rule regulates the VISIBLE property.
 "property": BusinessRuleModule.enums.Property.VISIBLE,
 // An array of conditions in which the rule is triggered.
 // Determines whether the value in the [Category] column is
equal to the value "Meeting".
 "conditions": [{
 // Expression of the left side of the condition.
 "leftExpression": {
 //The type of the expression is the attribute
(column) of the view model.
 "type": BusinessRuleModule.enums.ValueType.ATTRIBUTE,
 // Name of the view model column which value is
compared in the expression.
 "attribute": "ActivityCategory"
 },
 // The type of comparison operation.
 "comparisonType": Terrasoft.ComparisonType.EQUAL,
 // Expression of the right side of the condition.
 "rightExpression": {
 // Type of expression is a constant value.
 "type": BusinessRuleModule.enums.ValueType.CONSTANT,
 // The value with which the left side expression is
compared.
 "value":
ConfigurationConstants.Activity.ActivityCategory.Meeting
 }
 }]
 }
 }
 }
 };
 });

After saving the schema and refreshing the application page, an additional [Meeting place] field will appear on the
activity page if the activity category is “Meeting” (Fig. 5, 5).

Fig. 4. Case result. Activity type is “To do”, the [Meeting place] field is not visible

Fig. 5. Case result. Activity type is “To do”, the [Meeting place] field is visible

Bpm’online developer guide 307

See also
Setting the edit page fields using business rules
The BINDPARAMETER rule. How to lock a field on an edit page based on a specific
condition
The BINDPARAMETER rule. How to make a field required based on a specific condition
The FILTRATION rule use case
Business rules created via wizards

The BINDPARAMETER rule. How to lock a field on an edit page based on
a specific condition

Introduction
BINDPARAMETER rule is used for resolving he following tasks:

hide and display fields
lock and unlock fields
make fields required or optional

For more information on business rules, see the “Setting the edit page fields using business rules” article.

NOTE

In bpm’online, you can configure business rules using developer tools the as well as the section wizard. For
more information please refer to the “Setting up the business rules”.

Case description
Configure fields on the contact edit page to make the [Business phone] field editable only if the [Mobile phone] field
is filled.

Source code
Use this link to download the case implementation package.

Case implementation algorithm

Bpm’online developer guide 308

https://academy.bpmonline.com/documents?product=enterprise&ver=7&id=1680
https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkBlockingFieldByCondition_18.03.18_03.21.14.zip

1. Create a replacing client module for the contact page

Create a replacing client module and specify the [Display schema — Contact card] schema as parent object (Fig. 1).
The procedure for creating a replacing page is covered in the “Creating a custom client module schema”
article.

Fig. 1. Order edit page replacing schema properties

2. In the rules property of the page view model, add the rule

For the Phone column, add the rule with the BINDPARAMETER type to rules property of the page view model. Set
the BusinessRuleModule.enums.Property.ENABLED. Value for the rule’s property. Add the following condition for
rule execution to the conditions array: the value in the MobilePhone column should be filled.

The replacing schema source code is as follows:

// Add the module BusinessRuleModule to the list of dependent modules.
define("ContactPageV2", ["BusinessRuleModule"], function(BusinessRuleModule) {
 return {
 // Name of the page schema of the edit page.
 entitySchemaName: "Contact",
 // Rules of the edit page view model.
 rules: {
 // A set of rules for the [Business phone] column of the view model.
 "Phone": {
 // Dependence of the availability of the [Business phone] field from
the value of the [Mobile phone] field.
 "BindParameterEnabledPhoneByMobile": {
 // The type of the BINDPARAMETER rule.
 "ruleType": BusinessRuleModule.enums.RuleType.BINDPARAMETER,
 // The rule regulates the ENABLED property.
 "property": BusinessRuleModule.enums.Property.ENABLED,
 // An array of conditions in which the rule is triggered.
 // Determines whether the [Mobile Phone] field is populated.
 "conditions": [{
 // Expression of the left side of the condition.
 "leftExpression": {
 // The type of the expression is the attribute (column)
of the view model.
 "type": BusinessRuleModule.enums.ValueType.ATTRIBUTE,
 // The name of the column in the view model, whose value
is compared in the expression.
 "attribute": "MobilePhone"
 },
 // The type of comparison operation is "not equal to".
 "comparisonType": Terrasoft.ComparisonType.NOT_EQUAL,
 // Expression of the right side of the condition.

Bpm’online developer guide 309

 "rightExpression": {
 // The expression type is a constant value.
 "type": BusinessRuleModule.enums.ValueType.CONSTANT,
 // The value with which the left side expression is
compared.
 "value": ""
 }
 }]
 }
 }
 }
 };
});

After saving the schema and refreshing the application page, the [Business phone] field will be non-editable until the
[Mobile phone] field is empty (Fig. 2).

Fig. 2. Example result demonstration

See also
Setting the edit page fields using business rules
The BINDPARAMETER rule. How to hide a field on an edit page based on a specific
condition
The BINDPARAMETER rule. How to make a field required based on a specific condition
The FILTRATION rule use case
Business rules created via wizards

Bpm’online developer guide 310

The BINDPARAMETER rule. How to make a field required based on a
specific condition

Introduction
BINDPARAMETER rule is used for resolving he following tasks:

hide and display fields
lock and unlock fields
make fields required or optional

For more information on business rules, see the “Setting the edit page fields using business rules” article.

NOTE

In bpm’online, you can configure business rules using developer tools as well as the section wizard. For more
information please refer to the "Setting up business rules” article.

Case description
Set up the contact edit page fields so that the [Business phone] field is required on condition that the [Contact type]
field is populated with the “Customer” value.

Source code
You can download the package with case implementation using the following link.

Case implementation algorithm
1. Create a replacing client module for the contact edit page.

Create a replacing client module and specify the [Display schema — Contact card] schema as parent object (Fig. 1).
The procedure for creating a replacing page is covered in the “Creating a custom client module schema”
article.

Fig. 1. Replacing edit page properties

2. Add a rule to the “rules” property of the page view model

Bpm’online developer guide 311

https://academy.bpmonline.com/documents?product=enterprise&ver=7&id=1680
https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkRequiredFieldByCondition_18.03.18_03.30.45.zip

Add the BINDPARAMETER type rule for the Phone column to the rules property of the page view model. Set the
property rule value to BusinessRuleModule.enums.Property.REQUIRED. Add a rule execution condition to the
conditions array – the Type column value of the model should be equal to the
ConfigurationConstants.ContactType.Client configuration constant.

NOTE

The ConfigurationConstants.ContactType.Client configuration constant contains the “Client” record identifier
of the [Contact type] lookup.

The replacing schema source code is as follows:

// Add the BusinessRuleModule and ConfigurationConstants modules to the module
dependency list.
define("ContactPageV2", ["BusinessRuleModule", "ConfigurationConstants"],
 function(BusinessRuleModule, ConfigurationConstants) {
 return {
 // Name of the edit page object schema.
 entitySchemaName: "Contact",
 // Rules of the edit page view model.
 rules: {
 // Set of rules of the [Business rule] view model column.
 "Phone": {
 // Dependency of the [Business phone] field "required" property
on the [Type] field value.
 "BindParameterRequiredAccountByType": {
 // BINDPARAMETER rule type.
 "ruleType": BusinessRuleModule.enums.RuleType.BINDPARAMETER,
 // The rule regulates the REQUIRED property.
 "property": BusinessRuleModule.enums.Property.REQUIRED,
 // Condition array, whose performanсe triggers the rule
execution.
 // Defines if the [Type] column value is equal to the
"Client" value.
 "conditions": [{
 // Expression of the left side of the condition.
 "leftExpression": {
 // Expression type — view model attribute(column).
 "type": BusinessRuleModule.enums.ValueType.ATTRIBUTE,
 // Name of the view model column whose value is
compared in the expression.
 "attribute": "Type"
 },
 // Comparison operation type.
 "comparisonType": Terrasoft.ComparisonType.EQUAL,
 // Expression of the right side of the condition.
 "rightExpression": {
 // Expression type – constant value.
 "type": BusinessRuleModule.enums.ValueType.CONSTANT,
 // The comparison value for the left side of the
expression.
 "value": ConfigurationConstants.ContactType.Client
 }
 }]
 }
 }
 }
 };
 });

After you save the schema and update the application web page, the [Business phone] filed of the contact edit page

Bpm’online developer guide 312

will be required on condition the contact type is the “Customer”.

Fig. 2. Case result The [Business phone] field – optional

Fig. 3. Case result The [Business phone] field – required

Bpm’online developer guide 313

See also
Setting the edit page fields using business rules
The BINDPARAMETER rule. How to lock a field on an edit page based on a specific
condition
The BINDPARAMETER rule. How to hide a field on an edit page based on a specific
condition
The FILTRATION rule use case
Business rules created via wizards

Business rules created via wizards

Introduction
Starting from version 7.10.0 besides the business rules created by developer tools, there exist the business
rules generated by section or detail wizards.

Wizard generated business rules are added to the businessRules client module property.
The generated business rules have higher priority at execution.
The BusinessRuleModule enumerations are not used when describing the generated business rules.

See the "Setting up business rules” article for more information on business rule setup via wizards. The manual
setup of the generated business rules is covered in the "Business rules. The businessRules property” article.

Bpm’online developer guide 314

https://academy.bpmonline.com/documents?product=enterprise&ver=7&id=1680
https://academy.bpmonline.com/documents?product=enterprise&ver=7&id=1680
https://academy.bpmonline.com/documents?product=enterprise&ver=7&id=1680

Additional properties
You can find additional properties of the wizard generated business rules in table 1.

Table 1. Additional properties

Property Details
uId. Unique rule identifier. The "GUID” type value.

enabled Enabling checkbox. Can take the true or false values.

removed The checkbox indicating if the rule is removed. Can take the true or false
values.

invalid The checkbox indicating if the rule is valid. Can take the true or false values.

Cases
Case of a master generated business rule connected with a field property (whether it is visible, enabled or required):

define("SomePage", [], function() {
 return {
 // ...
 businessRules: /**SCHEMA_BUSINESS_RULES*/{
 // Set of rules for the [Type] column of the view model.
 "Type": {
 // Wizard generated rule code.
 "ca246daa-6634-4416-ae8b-2c24ea61d1f0": {
 // Unique rule identifier.
 "uId": "ca246daa-6634-4416-ae8b-2c24ea61d1f0",
 // Enabling checkbox.
 "enabled": true,
 // Checkbox indicating if the rule is removed.
 "removed": false,
 // Checkbox indicating if the rule is valid.
 "invalid": false,
 // Rule type.
 "ruleType": 0,
 // The property code, regulating the rule.
 "property": 0,
 // Logical connection between several rule conditions.
 "logical": 0,
 // Condition array, whose performance triggers the rule implementation.
 // Compares the [Account.PrimaryContact.Type] value with the [Type]
column value.
 "conditions": [
 {
 // Comparison operation type.
 "comparisonType": 3,
 // Expression of the left side of the condition.
 "leftExpression": {
 // Expression type — the view model column (attribute).
 "type": 1,
 // The view model column name.
 "attribute": "Account",
 // The path to the [Account] lookup schema, whose value
 // is compared in the expression.
 "attributePath": "PrimaryContact.Type"
 },
 // Expression of the right side of the condition.
 "rightExpression": {
 // Expression type — the view model column (attribute).

Bpm’online developer guide 315

 "type": 1,
 // The view model column name.
 "attribute": "Type"
 }
 }
]
 }
 }
 }/**SCHEMA_BUSINESS_RULES*/
 // ..
 };
});

Case of a master generated business rule for field filtration:

define("SomePage", [], function() {
 return {
 // ...
 businessRules: /**SCHEMA_BUSINESS_RULES*/{
 // Set of rules for the [Type] column of the view model.
 "Account": {
 // Master generated rule code.
 "a78b898c-c999-437f-9102-34c85779340d": {
 // Unique rule identifier.
 "uId": "a78b898c-c999-437f-9102-34c85779340d",
 // Enabling checkbox.
 "enabled": true,
 // Checkbox indicating if the rule is removed.
 "removed": false,
 // Checkbox indicating if the rule is valid.
 "invalid": false,
 // Rule type.
 "ruleType": 1,
 // Path to the filtration column of the [Account] lookup schema,
 // that the [Type] column of the edit page view model
 // refers to.
 "baseAttributePatch": "PrimaryContact.Type",
 // Filter comparison operation type.
 "comparisonType": 3,
 // Expression type — the view model column (attribute).
 "type": 1,
 // The view model column name,
 // whose value will be used for filtration.
 "attribute": "Type"
 }
 }
 }/**SCHEMA_BUSINESS_RULES*/
 // ..
 };
});

See also
Setting the edit page fields using business rules
The BINDPARAMETER rule. How to lock a field on an edit page based on a specific
condition
The BINDPARAMETER rule. How to hide a field on an edit page based on a specific
condition
The BINDPARAMETER rule. How to make a field required based on a specific condition

Bpm’online developer guide 316

The FILTRATION rule use case

Adding an action to the edit page

Introduction
Bpm’online has the possibility to set up a list of actions from the standard [Actions] menu on the edit page.

The list of page actions is an instance of the Terrasoft.BaseViewModelCollection class. Each item of the actions list
is a view model.

An action is set up in the configuration object where both properties of the actions view model may be set explicitly
and the base binding mechanism may be used.

The base content of the [Actions] menu for the edit page is implemented in the base class of the BasePageV2 pages.
The list of section actions returns the getActions() protected virtual method from the BasePageV2 schema.

A separate action is added to the collection by calling the addItem() method. The getButtonMenuItem() callback
method is passed to it as a parameter. The method creates an instance of the actions view model by the
configuration object passed to it as the parameter.

Base implementation of addig the action

/**
* Returns the collection of edit page actions
* @protected
* @virtual
* @return {Terrasoft.BaseViewModelCollection} Returns the collection of page actions
*/
getActions: function() {
 // List of actions - Terrasoft.BaseViewModelCollection instance
 var actionMenuItems = this.Ext.create("Terrasoft.BaseViewModelCollection");
 // Adding an action to the collection. The method instanting the action model
 // instance by the passed configuration object is passed as callback.
 actionMenuItems.addItem(this.getButtonMenuItem({
 // Configuration object for action setting.
 ...
 }));
 // Returns a new colection of actions.
 return actionMenuItems;
}

Below are the properties of the configuration object of the section action to be passed as a parameter to the
getButtonMenuItem() method:

Table 1. Property of the configuration object

Property Details

Type. a type of the [Actions] menu item A horizontal line for separating the menu blocks may be
added to the action menu using this property. For this purpose, the
Terrasoft.MenuSeparator string must be specified as the property value. If no property
value is specified, the menu item will be added by default.

Caption the title of the [Actions] menu item. To set titles, the use of localizable schema strings is
recommended.

Tag the name of the action handler method is set in this property

Enabled a logical property controlling the menu item availability

Bpm’online developer guide 317

Visible a logical property controlling the menu item visibility

Procedure for adding a custom action

1. Create replacing schema of existing page or a new page.
2. Override the getActions() method.
3. Add an action to the actions collection using the addItem() method.
4. Pass a configuration object with the added action settings to the getButtonMenuItem() callback method.

ATTENTION

When base sections are replaced in the getActions() method of the replacing module, the parent
implementation of this method must be called first to initialize actions of the parent section. For this, execute
the this.callParent(arguments) method that returns collection of base page actions.

Case description
The [Show execution date] which will display the scheduled order execution date in the data window must be added
to the edit page. The action will be available only for orders at the [In progress] stage.

ATTENTION

The [Orders] section is available in bpm’online sales products.

NOTE

The edit page action is used to edit a specific object opened on the page. To have access to values of the edit
page object fields in the action handler method, the following view model methods must be used: get() – to
receive a value and set() - to set a value.

Source code
Use this link to download the case implementation package.

Case implementation algorithm
1. Create a replacing edit page for an order in a custom package

A replacing client module must be created and [Order edit page] (OrderPageV2) must be specified as the parent
object in it (Fig. 1). The procedure of creating a replacing page is covered in the“Creating a custom client
module schema” article.

Fig. 1. Properties of the replacing edit page

Property Details

Bpm’online developer guide 318

https://academy.terrasoft.ru/sites/default/files/documents/downloads/SDK/Packages/sdkAddActionToEditPage_18.03.29_11.24.09.zip

2. Add a string with the [Actions] menu title to the localized string collection of the
page replacing schema

Create a new localizable string (Fig. 2).

Fig. 2 – Adding the localized string to the schema

Populate the following values for the created string (Fig.3):

[Name] – “InfoActionCaption".
[Value] – “Show execution date”.

Fig. 3. Properties of the custom localizable string

3. Add the implementation of the following methods to the method collection of the
page view model

isRunning() – checks whether the order is at the [In progress] stage and defines availability of the added
menu item.
showOrderInfo() – the action handler method that displays the scheduled end date of the order in the
message window.
getActions() – an overridden parent schema method that gets the page action collection.

Bpm’online developer guide 319

The replacing schema source code is as follows:

define("OrderPageV2", ["OrderConfigurationConstants"],
function(OrderConfigurationConstants) {
 return {
 // Name of the edit page object schema.
 entitySchemaName: "Order",
 // Methods of the edit page view model.
 methods: {
 // Method which checks the stage of the order execution to define
availability of menu item.
 isRunning: function() {
 // The method returns true if the order status is [In progress],
otherwise it returns false.
 if (this.get("Status")) {
 return this.get("Status").value ===
OrderConfigurationConstants.Order.OrderStatus.Running;
 }
 return false;
 },
 // Action handler method which displays the order end date in the data
window.
 showOrderInfo: function() {
 // Receiving the order end date.
 var dueDate = this.get("DueDate");
 // Calling the standard system method for the data window display.
 this.showInformationDialog(dueDate);
 },
 // Override the base virtual method which returns the actions collection
of the edit page.
 getActions: function() {
 // The parent implementation of the method is called to receive
 // the initiated actions collection of the base page.
 var actionMenuItems = this.callParent(arguments);
 // Adding the separator line.
 actionMenuItems.addItem(this.getButtonMenuItem({
 Type: "Terrasoft.MenuSeparator",
 Caption: ""
 }));
 // Adding a menu item to the actions list of the edit page.
 actionMenuItems.addItem(this.getButtonMenuItem({
 // Binding the title of the menu item to the localizable string
of the schema.
 "Caption": {bindTo: "Resources.Strings.InfoActionCaption"},
 // Binding the action handler method.
 "Tag": "showOrderInfo",
 // Binding the visibility property of the menu item to the value
returning the isRunning() method.
 "Enabled": {bindTo: "isRunning"}
 }));
 return actionMenuItems;
 }
 }
 };
});

ATTENTION

The previous steps are enough to add an action to the edit page. But the custom page action will not be
displayed in the vertical view of the list.

For correct displaying of the page action, add the localizable string of the title and a method that defines menu

Bpm’online developer guide 320

item availability to the section view model schema.

4. Create a replacing schema of the [Orders] section

Create a replacing client module and specify the OrderSectionV2 schema as parent object (Fig. 4). The procedure for
creating a replacing page is described in the “Creating a custom client module schema” article.

Fig. 4. Properties of the [Orders] section replacing page

5. Add a localizable string with the [Actions] menu item title

For this purpose, repeat the actions in par. 2

6. Add the method implementation

Add the implementation of the isRunning() method to the view model collection of methods. The method will check
whether the selected order is at the [In progress] stage and defines availability of the added menu item.

The replacing schema source code is as follows:

define("OrderSectionV2", ["OrderConfigurationConstants"],
function(OrderConfigurationConstants) {
 return {
 // Name of the section schema.
 entitySchemaName: "Order",
 // Methods collection of the section view model.
 methods: {
 // Method checking the stage of the selected order to determine the menu
item visibility.
 isRunning: function(activeRowId) {
 activeRowId = this.get("ActiveRow");
 // Receiving the data collection of the section list view.
 var gridData = this.get("GridData");
 // Receiving the model of the selected order by a value in the
primary column.
 var selectedOrder = gridData.get(activeRowId);
 // Receiving the model property – selected order status.
 var selectedOrderStatus = selectedOrder.get("Status");
 // Value of the selected order status is compared to the value of the
[In-progress] type and
 // returns true or false depending on the comparison result.
 return selectedOrderStatus.value ===
OrderConfigurationConstants.Order.OrderStatus.Running;
 }
 }
 };
});

Bpm’online developer guide 321

After you save the schema and update the application page with clearing the cache, a new action will appear on the
order edit page when selecting an order at the [In progress] stage (Fig. 5,6).

Fig. 5. Case result. The order is at the [Completed] stage and the action is inactive

Fig. 6. Case result. The order is at the [In progress] stage and the action is active

Control elements

Contents
Adding a new field to the edit page
Adding a button to the edit page
How to add a field with an image to the edit page
How to add the color select button to the edit page
How to add multi-currency field
How to add custom logic to the existing controls

Bpm’online developer guide 322

Adding a new field to the edit page

Introduction
You can add fields to the edit page in two ways:

1. Via section wizard (see the "Section wizard", "How to set up page fields” articles).

A base object (for example, the [Activity] object) replacing schema and a base edit page (for example, the
ActivityPageV2) replacing schema will be created in the custom package as a result of the section wizard operation.
A new column will be added in the object replacing schema. A configuration object with the settings of the new field
location on a page will be added to the diff array in the edit page replacing schema.

NOTE

When creating new sections via the wizard, it will create new schemas instead of replacing schemas in your
current custom package.

You should implement additional edit page business logic or develop new client interface elements in the created
edit page replacing schema.

2. Via creating replacing base object and replacing base page by developer tools.

Source code
You can download the package with case implementation using the following link.

Example 1
Case description

Manually add a new [Meeting place] field to the activity edit page.

Case implementation algorithm

1. Create a replacing object and add a new column to it.

Create an [Activity] replacing object and add the new [Meeting place] column of the “string” type to it (Fig. 1). Learn
more about creating a replacing object schema in the “Creating the entity schema” article.

Fig. 1. Adding a custom column to the replacing object

Bpm’online developer guide 323

https://academy.bpmonline.com/documents?product=enterprise&ver=7&id=1245
https://academy.bpmonline.com/documents?product=enterprise&ver=7&id=1399
https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkAddFieldToPage_18.03.28_03.50.32.zip

2. Create a replacing client module for the activity page

Create a replacing client module and specify the [Activity edit page] schema as parent object (Fig. 2). The procedure
of creating a replacing page is covered in the “Creating a custom client module schema” article.

Fig. 2. Replacing edit page properties

3. Add a localized string with the field caption.

Add a string containing the added field caption to the localized string collection of the replacing page schema (fig.3).

Fig. 3. Adding localized string to the schema

Bpm’online developer guide 324

For the created string specify (Fig. 4):

[Name] – "MeetingPlaceCaption";
[Value] – “Meeting place”.

Fig. 4. Properties of the custom localized string

4. Add a new field to the activity edit page.

Add a configuration object containing the settings of the [Meeting place] field location on the page to the diff array.

More information about the diff array properties is available in the "The "diff" array” article.

The replacing schema source code is as follows:

define("ActivityPageV2", [], function() {
 return {
 // Name of the edit page object schema.
 entitySchemaName: "Activity",
 // Displaying of a new field on the edit page.
 diff: /**SCHEMA_DIFF*/[
 // Meta data for adding the [Meeting place] field.
 {
 // Operation of adding a component to the page.
 "operation": "insert",
 // Meta name of a parent container where a field is added.
 "parentName": "Header",
 // The field is added to the component collection

Bpm’online developer guide 325

 // of a parent element.
 "propertyName": "items",
 // The name of a schema column that the component is linked to.
 "name": "UsrMeetingPlace",
 "values": {
 // Field caption.
 "caption": {"bindTo": "Resources.Strings.MeetingPlaceCaption"},
 // Field location.
 "layout": {
 // Column number.
 "column": 0,
 // String number.
 "row": 5,
 // Span of the occupied columns.
 "colSpan": 12
 }
 }
 }
]/**SCHEMA_DIFF*/
 };
});

After you save the schema and update the application page with clearing the cache, you will see a new field appear
on the activity edit page (fig.5).

Fig. 5. Case result demonstration

Example 2
Case description

Manually add a [Country] field to the contact profile edit page. The difference of this case is that you already have
the [Country] column in your object schema.

Case implementation algorithm

1. Create a replacing contact page

Create a replacing client module and specify the [Display schema — Contact card], ContactPageV2 schema as parent
object. The procedure of creating a replacing page is covered in the“Creating a custom client module schema”

Bpm’online developer guide 326

article.

2. Add the [Country] field to the contact profile.

Add a configuration object containing the field property settings to the diff array. Indicate the ProfileContainer.
element as a parent schema element where the field will be located.

The replacing schema source code is as follows:

define("ContactPageV2", [], function() {
 return {
 // Name of the edit page object schema.
 entitySchemaName: "Contact",
 diff: [
 // Meta data for adding the [Country] field.
 {
 // Operation of adding a component to the page.
 "operation": "insert",
 // Meta name of a parent container where a field is added.
 "parentName": "ProfileContainer",
 // The field is added to the component collection
 // of a parent element.
 "propertyName": "items",
 // The name of a schema column that the component is linked to.
 "name": "Country",
 "values": {
 // Field type — lookup.
 "contentType": Terrasoft.ContentType.LOOKUP,
 // Field location.
 "layout": {
 // Column number.
 "column": 0,
 // String number.
 "row": 6,
 // Span of the occupied columns.
 "colSpan": 24
 }
 }
 }
]
 };
});

After you save the schema and update the application page with clearing the cache, you will see a new field appear
on the contact edit page (fig.6).

Fig. 6. Case result demonstration

Bpm’online developer guide 327

Adding a button to the edit page

To add a custom button to the view model on the edit page, two properties must be modified:

Methods collection. The implementation of the handler method to be called when the button is clicked
must be added to the methods collection. Other auxiliary methods required for the control item
functioning must be also added. These may be methods for regulating the visibility or availability of the
control item depending on conditions.
diff configuration objects array. Add a configuration object in the diff configuration objects array to set up
the visual location of the control item on the edit page.

NOTE

To display the button on the page in the existing record edit mode, the section schema must be modified.

To display the button in the new record addition mode, similar modifications are made in the schema of the
page view model itself.

DOM model of standard page buttons

The html-container hierarchical structure is used to locate standard functional buttons of the bpm'online edit page.

Bpm’online developer guide 328

CombinedModeActionButtonsCardContainer is a top level container on the existing record edit page. Two more
containers are inside it:

CombinedModeActionButtonsCardLeftContainer - where the Save, Cancel and Actions standard buttons
are located;
CombinedModeActionButtonsCardRightContainer - where the Print and View buttons are located.

Similarly, for the new record edit page: ActionButtonsContainer — a top level container.

Two more containers are inside it:

Leftcontainer - where the Save, Cancel and standard Actions buttons are located;
RightContainer - where the Print and View buttons are located.

Depending on the exact position required for a button, the corresponding container is specified when setting the
button visualization in the diff array.

NOTE

Meta-names of html-containers are used here.

These names are specified when setting the control item visualization in the configuration object of the diff
array.

The actual ID of corresponding html-items of the page are formed by the system automatically, based on such
meta-names.

Setting the button visualization properties

To set the visual location of a custom button on the edit page, a configuration object with the following properties
must be added to the diff array of the view model:

Property Description

operation A type of operation with a control item (insert, move, remove, merge,
set). This is set by a string with the corresponding operation name. The insert
value is specified to add a new control item.

parentName The meta-name of the parent control item where a custom item is to be
placed. If this is a functional button, LeftContainer and RightContainer may
act as the parent containers.

propertyName The items value is specified for the custom control item.

name The meta-name of the added control item.

values A configuration object with settings of supplementary properties for a control
item.

Setting properties of the values object:

Property Description

itemType A type of an item. This is set by a value of the Terrasoft.ViewItemType list. The
BUTTON value is used for the button.

caption The button title. It is recommended to set title values by binding to a
localizable string of the schema.

click Binding of the button handler method.

layout The object of setting a control item location on the grid.

enabled Controls the the button availability (activity).

visible Controls the button visibility.

style Component style. The property should contain the value of the

Bpm’online developer guide 329

Terrasoft.controls.ButtonEnums.style enumeration.

The Terrasoft.controls.ButtonEnums.style enumeration contains following values:

Property Description

Terrasoft.controls.ButtonEnums.style.DEFAULT Default style.

Terrasoft.controls.ButtonEnums.style.GREEN Green color button.

Terrasoft.controls.ButtonEnums.style.RED Red color button.

Terrasoft.controls.ButtonEnums.style.BLUE Blue color button.

Terrasoft.controls.ButtonEnums.style.GREY Transparent button. This value is from previous
versions of bpm'online.

Terrasoft.controls.ButtonEnums.style.TRANSPARENT Transparent button.

You can read more about the diff array in the "The "diff" array" article.

Examples of implementing a button adding to the edit page
How to add the button on the edit page in the combined mode
How to add a button to an edit page in the new record add mode
How to add a button to a section

Property Description

How to add a button to an edit page in the new record add mode

Case description
The button opening the primary contact edit page must be added to the new account add page.

ATTENTION

By default a pop-up summary is used to add new account. To use the page to add an account select the
[Default value] checkbox in the [Enable account mini page add mode] system setting . In order for the system
setting change to take effect, you must log off and log on to the user.

To complete these case, you need to use the page to add the account.

NOTE

The edit page mode can be accessed at the creation of the record and when the page is refreshed in the
combined mode by pressing F5 key. The vertical list should be disabled.

Source code
Use this link to download the case implementation package.

Case implementation algorithm

Bpm’online developer guide 330

https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkAddButtonToNewPage_18.04.12_01.26.26.zip

1. Create a replacing account edit page

A replacing client module must be created and [AccountPageV2] must be specified as the parent object in it (Fig. 1).
The procedure of creating a replacing page is covered in the“Creating a custom client module schema” article.

Fig. 1. Properties of the replacing edit page

2. Add a string with the button title to the collection of localizable strings of the page
replacing schema

Create a new localizable string (Fig. 2).

Fig. 2. Adding localized string to the schema

For the created string specify (Fig. 3):

[Name] – “OpenPrimaryContactButtonCaption".
[Value] – "Primary Contact".

Fig. 3. Properties of the custom localizable string

3. Add the implementation of the following methods to the method collection of the

Bpm’online developer guide 331

page view model

isAccountPrimaryContactSet() – checks if the [Primary contact] field is filled.
onOpenPrimaryContactClick() – button pressing handler method which performs passing to the base
contact edit page.

4. Add a button on the edit page

Add an object with the settings determining the button position on the account edit page in the diff array.

The replacing schema source code is as follows:

define("AccountPageV2", [], function() {
 return {
 // Name of the edit page object schema.
 entitySchemaName: "Account",
 // Methods collection of the edit page view model.
 methods: {
 // The method checks whether the [Primary contact] field is completed.
 isAccountPrimaryContactSet: function() {
 return this.get("PrimaryContact") ? true : false;
 },
 // Button press handler method.
 onOpenPrimaryContactClick: function() {
 var primaryContactObject = this.get("PrimaryContact");
 if (primaryContactObject) {
 // Determining the base contact Id.
 var primaryContactId = primaryContactObject.value;
 // Forming the address string.
 var requestUrl = "CardModuleV2/ContactPageV2/edit/" +
primaryContactId;
 // Publishing a message and going to the
 // base contact edit page.
 this.sandbox.publish("PushHistoryState", {
 hash: requestUrl
 });
 }
 }
 },
 // Displaying a button on the edit page.
 diff: [
 // Metadata for adding a new control item - custom button to the page.
 {
 // Indicates that an operation of adding an item to the page is being
executed.
 "operation": "insert",
 // МMetadata of the parent control item the button is added.
 "parentName": "LeftContainer",
 // Indicates that the button is added to the control items
collection
 // of the parent item (which meta-name is specified in the
parentName).
 "propertyName": "items",
 // Meta-name of the added button.
 "name": "PrimaryContactButton",
 // Supplementary properties of the item.
 "values": {
 // Type of the added item is button.
 itemType: Terrasoft.ViewItemType.BUTTON,
 // Binding the button title to a localizable string of the
schema..
 caption: {bindTo:

Bpm’online developer guide 332

"Resources.Strings.OpenPrimaryContactButtonCaption"},
 // Binding the button press handler method.
 click: {bindTo: "onOpenPrimaryContactClick"},
 // Binding the property of the button availability.
 enabled: {bindTo: "isAccountPrimaryContactSet"},
 // Setting the button style.
 "style": Terrasoft.controls.ButtonEnums.style.BLUE
 }
 }
]
 };
});

When the schema is saved and the system web-page is updated, the [Primary contact] button will appear on the new
account create page. The button will be activated after filling the [Primary contact] field in the account (Fig. 4).

Fig. 4. Demonstrating the case implementation result

See also
Adding a button to the edit page
How to add the button on the edit page in the combined mode

How to add the button on the edit page in the combined mode

Example of implementing the button adding to an edit page
Case description

Bpm’online developer guide 333

The button opening the base contact edit page must be added to the account edit page.

Case implementation algorithm

1. Create the [Accounts] section replacing schema

A replacing client module must be created and [Accounts section] must be specified as the parent object (Fig. 1).

The procedure for creating the replacing page is described in the article Creating a custom client module
schema.

Fig. 1. — Properties of the section replacing page

2. Add a string with the button name to the localizable strings collection of the section
replacing schema

For this purpose, select [Add] by right-clicking the [LocalizableStrings] structure node (Fig. 2).

Fig. 2. — Adding a localizable string to the schema

Fill properties for the created line as shown in Fig. 3.

Fig. 3. — Properties of a custom localized string

3. Add the method implementation to the methods collection of the view model

Bpm’online developer guide 334

isAccountPrimaryContactSet - checks whether the [Primary contact] field of the page is filled;
onOpenPrimaryContactClick - button pressing handler method which goes to the base contact edit page.

For this purpose, add the program code of the section replacingmodule to the source code tab. Required methods
are added to the methods collection of the view model.

define("AccountSectionV2", [],
 function() {
 return {
 // Name of the edit page object schema.
 entitySchemaName: "Account",
 // Methods collection of the edit page view model.
 methods: {
 // Button press handler method.
 onOpenPrimaryContactClick: function() {
 var activeRow = this.get("ActiveRow");
 if (activeRow) {
 // Determining the base contact Id.
 var primaryId =
this.get("GridData").get(activeRow).get("PrimaryContact").value;
 if (primaryId) {
 // Forming the address string.
 var requestUrl = "CardModuleV2/ContactPageV2/edit/" +
primaryId;
 // Publishing the message and going to the
 // base contact edit page.
 this.sandbox.publish("PushHistoryState", {
 hash: requestUrl
 });
 }
 }
 },
 // The method checks whether the [Base Contact] field is filled.
 isAccountPrimaryContactSet: function() {
 debugger;
 var activeRow = this.get("ActiveRow");
 if (activeRow)
 {
 var pc =
this.get("GridData").get(activeRow).get("PrimaryContact");
 return (pc || pc !== "") ? true : false;
 }
 return false;
 }
 }
 };
 });

4. Add a configuration object with button location settings on the edit page to the diff array

define("AccountSectionV2", [],
 function() {
 return {
 // Name of the edit page object schema.
 entitySchemaName: "Account",
 // Methods collection of the edit page view model.
 methods: {
 // onOpenPrimaryContactClick, isAccountPrimaryContactSet method
implementation
 },
 // Setting a button visualization on the edit page.
 diff: [

Bpm’online developer guide 335

 // Metadata for adding a cutom button to the page.
 {
 // Indicates that an operation of adding an item to the page is
being executed.
 "operation": "insert",
 // Meta-name of the parent control item where the button is
added.
 "parentName": "CombinedModeActionButtonsCardLeftContainer",
 // Indicates that the button is added to the control items
collection
 // of the parent item (which name is specified in the
parentName).
 "propertyName": "items",
 // Meta-name of the added button. .
 "name": "MainContactButton",
 // Supplementary properties of the item.
 "values": {
 // Type of the added item is button.
 itemType: Terrasoft.ViewItemType.BUTTON,
 // Binding the button title to a localizable string of the
schema.
 caption: {bindTo:
"Resources.Strings.OpenPrimaryContactButtonCaption"},
 // Binding the button press handler method.
 click: {bindTo: "onOpenPrimaryContactClick"},
 // Binding the property of the button availability.
 enabled: {bindTo: "isAccountPrimaryContactSet"},
 // Setting the field location.
 "layout": {
 "column": 1,
 "row": 6,
 "colSpan": 1
 }
 }
 }
]
 };
 });

5. Save the created replacingpage schema

6. Create a replacingaccount edit page

A replacing client module must be created and [Account edit page] must be specified as the parent object (Fig. 4).

The procedure for creating the replacingpage is described in the article Creating a custom client module
schema.

Fig. 4. — Properties of the replacing edit page

Bpm’online developer guide 336

7. Add a string with the button title to the localizable strings collection of the replacing page
schema

Fill in properties for the created string as shown on Fig. 5.

Fig. 5. — Properties of a custom localized string

8. Add the method implementation to the methods collection of the page view model

isAccountPrimaryContactSet – checks whether the [Base Contact] field of the page is filled;
onOpenPrimaryContactClick – button pressing handler method which goes to the base contact edit page.

For this purpose, add the program code of the replacingmodule of the page to the source code tab. Required
methods are added to the methods collection of the view model.

define("AccountPageV2", [],
 function() {
 return {
 // Name of the edit page object schema.
 entitySchemaName: "Account",
 // Methods collection of the edit page view model.
 methods: {
 // The method checks whether the [Base Contact] field is filled.
 isAccountPrimaryContactSet: function() {
 return this.get("PrimaryContact") ? true : false;
 },
 // Button press handler method.
 onOpenPrimaryContactClick: function() {
 // Determining the base contact Id.
 var primaryId = this.get("PrimaryContact").value;
 if (primaryId) {
 // Forming the address string.
 var requestUrl = "CardModuleV2/ContactPageV2/edit/" +
primaryId;
 // Publishing a message and going to the
 // base contact edit page.
 this.sandbox.publish("PushHistoryState", {

Bpm’online developer guide 337

 hash: requestUrl
 });
 }
 }
 }
 };
 });

9. Add a configuration object with settings of a button location on a page to the diff array

define("AccountPageV2", [],
 function() {
 return {
 // Name of the edit page object schema.
 entitySchemaName: "Account",
 // Methods collection of the edit page view model.
 methods: {
 // onOpenPrimaryContactClick, isAccountPrimaryContactSet method
implementation
 },
 // Setting a button visualization on the edit page.
 diff: [
 // Metadata for adding a new control item - custom button – to the
page.
 {
 // Indicates that an operation of adding an item to the page is
being executed.
 "operation": "insert",
 // Meta-name of the parent control item where the button is
added.
 "parentName": "LeftContainer",
 // Indicates that the button is added to the control items
collection
 // of the parent item (whose name is specified in the
parentName).
 "propertyName": "items",
 // Meta-name of the added button.
 "name": "MainContactButton",
 // Supplementary properties of the item.
 "values": {
 // Type of the added item is button.
 itemType: Terrasoft.ViewItemType.BUTTON,
 // Binding the button title to a localizable string of the
schema.
 caption: {bindTo:
"Resources.Strings.OpenPrimaryContactButtonCaption"},
 // Binding the button press handler method.
 click: {bindTo: "onOpenPrimaryContactClick"},
 // Binding the property of the button availability.
 enabled: {bindTo: "isAccountPrimaryContactSet"},
 // Setting the field location.
 "layout": {
 "column": 1,
 "row": 6,
 "colSpan": 1
 }
 }
 }
]
 };
 });

Bpm’online developer guide 338

10. Save the created replacing page schema

When the schema is saved and the system web-page is updated, the [Base Contact] button will appear on the
account edit page. The button will be activated if the [Base Contact] field of the account is filled (Fig. 6).

Fig. 6. – Demonstrating the case implementation result

How to add a field with an image to the edit page

Introduction
There are certain peculiarities of adding a field with image (contact’s photo, product picture, account logo, etc.) to
an edit page:

1. The object column used for a field with image should have the “Link to image” type. Specify it as the [Image]
system column of the object.

2. Add the default image to the edit page image schema collection.
3. A field with image is added to the diff edit page schema array with usage of the additional image-edit-

container CSS-class container-wrapper.
4. The values property of the configuration object containing settings of a field with image must include the

following properties:
getSrcMethod – method receiving image by link
onPhotoChange – method called upon image modification
Readonly – property defining the capability of image editing (changing, deleting)
Generator – control element generator. Indicate the
ImageCustomGeneratorV2.generateCustomImageControl for the field with image
beforeFileSelected – method called before opening the image selection dialog box

5. Add the following to the edit page schema collection:
method receiving image by link
method called upon image modification
method saving the link to a modified image in the object column
method called before opening the image selection dialog box

Case description

Bpm’online developer guide 339

Adding a field with logo to the knowledge base article edit page.

Source code
You can download the package with case implementation using the following link..

Case implementation algorithm
1. Creating the [Knowledge base] replacing object.

Create the [Knowledge base article] replacing object (Fig.1). Learn more about creating a replacing object in the
“Creating the entity schema” article.

Fig. 1. Properties of the object replacing schema

2. Adding a new column to the replacing object.

For the created column specify (Fig. 2):

[Title] – "Knowledge base article logo”
[Name] – "UsrLogo”
[Data type] – "Image Link"

Fig. 2. Adding a custom column to the replacing object

Bpm’online developer guide 340

https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkAddPictureField_18.04.10_03.30.17.zip

Indicate the created column as the [Image] object system column (Fig.3).

Fig. 3. Setting up the created column as the system column

Bpm’online developer guide 341

NOTE

To view all object properties, switch to the object property advanced view mode. You can learn more about
object designer capabilities in the "Workspace of the Object Designer” article.

Save and publish the object schema after you set up all properties.

3. Creating a replacing client module for the edit page.

Create a replacing client module and specify the [Knowledge base edit page] (KnowledgeBasePageV2) as the parent
object in it (Fig. 4). The procedure of creating a replacing page is covered in the“Creating a custom client
module schema” article.

Fig. 4. Properties of the replacing edit page

Bpm’online developer guide 342

4. Adding a default image to the [Images] resources of the edit page schema.

Add the default image to the page replacing schema image collection (Fig.5).

Fig. 5. Adding default image to the image schema resources

For the created image specify (Fig. 6):

[Name] – "DefaultLogo"
[Image] – file containing the default image (Fig.7)

Fig. 6. Schema resource properties

Fig. 7. Default image for the knowledge base article

Bpm’online developer guide 343

5. Setting up displaying of a field with logo on the edit page

The field with logo should be placed in the upper part of the account edit page. In the base implementation the fields
are placed in such a way that adding a logo can violate the page interface. That is why you need to rearrange the
location of existing fields when locating a new field.

Add the configuration object of the filed with logo with the necessary parameters to the diff array property of the
view model (see the source code below) and describe the modifications of the fields located in the upper part of the
page: [Name], [ModifiedBy] and [Type].

The field with image is added to the page by using the additional PhotoContainer container-wrapper with the
["image-edit-container"] class.

6. Adding implementation of the following methods to the page view model method
collection:

getPhotoSrcMethod() – receives image by link
beforePhotoFileSelected() – is called before opening the image selection dialog box
onPhotoChange – is called upon image modification
onPhotoUploaded() – saves the link to a modified image in the object column

The replacing schema source code is as follows:

define("KnowledgeBasePageV2", ["KnowledgeBasePageV2Resources",
"ConfigurationConstants"],
 function(resources, ConfigurationConstants) {
 return {
 // Name of the edit page object schema.
 entitySchemaName: "KnowledgeBase",
 // Edit page view model methods.
 methods: {
 // Called before opening the image selection dialog box.
 beforePhotoFileSelected: function() {
 return true;
 },
 // Receives image by link.
 getPhotoSrcMethod: function() {
 // Receiving a link to the image in the object column.
 var imageColumnValue = this.get("UsrLogo");
 // If the link is set, the method returns the url of the image
file.
 if (imageColumnValue) {
 return this.getSchemaImageUrl(imageColumnValue);
 }
 // If the link is not set, it returns the default image.
 return
this.Terrasoft.ImageUrlBuilder.getUrl(this.get("Resources.Images.DefaultLogo"));
 },
 // Processes the image modification.
 // photo — image file.
 onPhotoChange: function(photo) {
 if (!photo) {

Bpm’online developer guide 344

 this.set("UsrLogo", null);
 return;
 }
 // The file is uploaded to the database. onPhotoUploaded is
called when uploading is finished.
 this.Terrasoft.ImageApi.upload({
 file: photo,
 onComplete: this.onPhotoUploaded,
 onError: this.Terrasoft.emptyFn,
 scope: this
 });
 },
 // Saves the link to a modified image.
 // imageId — Id of the saved file from the database.
 onPhotoUploaded: function(imageId) {
 var imageData = {
 value: imageId,
 displayValue: "Image"
 };
 // The image column is assigned a link to the image.
 this.set("UsrLogo", imageData);
 }
 },
 //
 diff: /**SCHEMA_DIFF*/[
 // Container-wrapper that the component will be located in.
 {
 // Adding operation.
 "operation": "insert",
 // Parent container meta-name, where the component is added.
 "parentName": "Header",
 // The image is added to the component collection of the
 // parent container.
 "propertyName": "items",
 // Schema component meta-name, involved in the action.
 "name": "PhotoContainer",
 // Properties passed to the component structure.
 "values": {
 // Element type — container.
 "itemType": Terrasoft.ViewItemType.CONTAINER,
 // CSS-class name.
 "wrapClass": ["image-edit-container"],
 // Locating in the parent container.
 "layout": { "column": 0, "row": 0, "rowSpan": 3, "colSpan": 3
},
 // Child element array.
 "items": []
 }
 },
 // The [UsrLogo] field — the field with account logo.
 {
 "operation": "insert",
 "parentName": "PhotoContainer",
 "propertyName": "items",
 "name": "UsrLogo",
 "values": {
 // Method receiving image by link.
 "getSrcMethod": "getPhotoSrcMethod",
 // Method called upon image modification.
 "onPhotoChange": "onPhotoChange",
 // Method called before opening the image selection dialog
box.

Bpm’online developer guide 345

 "beforeFileSelected": "beforePhotoFileSelected",
 // Property defining the capability of image editing
(changing, deleting).
 "readonly": false,
 // Control element view-generator.
 "generator":
"ImageCustomGeneratorV2.generateCustomImageControl"
 }
 },
 // Rearranging the location of the [Name] field.
 {
 // Merge operation.
 "operation": "merge",
 "name": "Name",
 "parentName": "Header",
 "propertyName": "items",
 "values": {
 "bindTo": "Name",
 "layout": {
 "column": 3,
 "row": 0,
 "colSpan": 20
 }
 }
 },
 // Rearranging the location of the [ModifiedBy] field.
 {
 "operation": "merge",
 "name": "ModifiedBy",
 "parentName": "Header",
 "propertyName": "items",
 "values": {
 "bindTo": "ModifiedBy",
 "layout": {
 "column": 3,
 "row": 2,
 "colSpan": 20
 }
 }
 },
 // Rearranging the location of the [Type] field.
 {
 "operation": "merge",
 "name": "Type",
 "parentName": "Header",
 "propertyName": "items",
 "values": {
 "bindTo": "Type",
 "layout": {
 "column": 3,
 "row": 1,
 "colSpan": 20
 },
 "contentType": Terrasoft.ContentType.ENUM
 }
 }
]/**SCHEMA_DIFF*/
 };
 });

The default logo will be displayed on the knowledge base article edit page after you save the schema and update the
application page. When you hover over the image, you will see an action menu appear. You can use it to delete the

Bpm’online developer guide 346

image or set up a new one for a specific knowledge base article (Fig.9).

Fig. 8. Default logo

Fig. 9. Custom logo

How to add the color select button to the edit page

Introduction
One of bpm’online control elements is the color button (Fig.1).

Fig. 1. Color button

Algorithm of adding the color button to object edit page:

Bpm’online developer guide 347

1. Add the [Text (50 characters)] data type column to the object that will store information about the selected
color.

2. Add the [COLOR_BUTTON] type element description to the diff array. Set up binding to the column added
on previous step for the value property of this element.

3. Add a button label via the [LABEL] control element if needed.

Case description
Adding color button to product edit page.

Source code
You can download the package with case implementation using the following link..

Case implementation algorithm
1. Creating a “Product” replacing object and adding the [UsrColor] column to it.

Create the [Product] replacing object (Fig.2). Learn more about creating a replacing object in the “Creating the
entity schema” article.

Fig. 2. Configuration object properties

Add a new column (Fig.3) and indicate the following properties (Fig.4):

[Title] – “Color”
[Name] – "UsrColor"
[Data type] – "Text (50 characters)”

Fig. 3. Adding a new column

Bpm’online developer guide 348

https://academy.terrasoft.ru/sites/default/files/documents/downloads/SDK/Packages/sdkAddColorButton_18.04.17_12.20.29.zip

Fig. 4. Properties of the added column

Save and publish the object schema after you set up all properties.

Bpm’online developer guide 349

2. Creating a product replacing edit page in custom package

Create a replacing client module and specify the [Edit page – Product], ProductPageV2 schema as the parent object
in it (Fig. 5). The procedure of creating a replacing page is covered in the “Creating a client schema“ article.

Fig. 5. Properties of the product edit page replacing schema

The replacing schema source code is as follows:

define("ProductPageV2", [], function() {
 return {
 // Name of the edit page object schema.
 entitySchemaName: "Product",
 diff: /**SCHEMA_DIFF*/[
 // Color button.
 {
 // Operation of adding.
 "operation": "insert",
 // Meta-name of the parent container where the compponent is added.
 "parentName": "ProductGeneralInfoBlock",
 // The button is added to component collection
 // of the parent container.
 "propertyName": "items",
 // The name of schema component involved in action.
 "name": "ColorButton",
 // Properties transferred to the component constructor.
 "values": {
 // Element type — color button.
 "itemType": this.Terrasoft.ViewItemType.COLOR_BUTTON,
 // Binding of the control element value to the view model column.
 "value": { "bindTo": "UsrColor" },
 // Button location.
 "layout": { "column": 5, "row": 6, "colSpan": 12 }
 }
 }
]/**SCHEMA_DIFF*/
 };
});

After saving the schema and refreshing the application page the color button will be displayed on the product edit
page (Fig .6).

Fig. 6. Case result

Bpm’online developer guide 350

How to add multi-currency field

Introduction
One of the common configuration tasks is adding a [multi-currency field] control element on a page. The multi-
currency field enables users to enter monetary sums, specify currencies and exchange rates. If a user changes the
currency of a multi-currency field, the amount in it will be automatically re-calculated according to the current
exchange rate. Fig. 1 shows an example of a multi-currency field in the system interface.

Fig. 1. Multi-currency field

To add a multi-currency field on an edit page:

1. Add 4 fields to the object schema:

[Currency] lookup column
[Exchange rate]
[Amount]
[Amount in base currency]

NOTE

Bpm’online developer guide 351

The object itself must contain only the [Amount] field. The rest of the fields can be virtual, unless the business
task requires their values to be stored in the database. They can be determined as attributes in the view model
schema.

2. Specify 3 modules in the view model class declaration as dependencies:

MoneyModule,
MultiCurrencyEdit,
MultiCurrencyEditUtilities.

3. Connect Terrasoft.MultiCurrencyEditUtilities mixin to the view model and initialize it in the overridden init()
method.

4. Add a configuration object with the multi-currency field settings to the diff array of the edit page schema. In
addition to common control element properties, the values property must contain:

primaryAmount – name of the column that contains the amount in the base currency.
currency – name of the column that references the currency lookup.
rate – name of the column that contains the currency exchange rate.
Generator – control element generator. Specify “MultiCurrencyEditViewGenerator.generate”.

5. Add recalculation logic. Apply the calculated field mechanism, as described in the Adding calculated fields
article.

Case description
Add a multi-currency [Amount] field to the project edit page.

Source code
You can download the package with case implementation using the following link.

Case implementation algorithm
1. Add object replacing schema necessary columns

Create the replacing schema of the [Project] object in the custom package (Fig. 2). More information about creating
a replacing object and adding columns is described in the Adding a new field to the edit page article.

Fig. 2. Properties of the object replacing schema

Add 4 columns with properties given on the Fig. 3 – Fig. 6 to the replacing schema. Column properties in the object
designer are displayed in the extende mode.

Fig. 3. The [UsrCurrency] column properties

Bpm’online developer guide 352

https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkMultiCurrencyEdit_18.06.21_12.44.14.zip

Fig. 4. The [UsrAmount] column properties

Fig. 5. The [UsrPrimaryAmount] column properties

Fig. 6. The [UsrCurrencyRate] column properties

2. Create a replacing edit page for a project in a custom package

Bpm’online developer guide 353

A replacing client module must be created and [Project edit page] (OrderPageV2) must be specified as the parent
object in it (Fig. 7). The procedure of creating a replacing page is covered in the“Creating a client
schema”article.

Fig. 7. Properties of the [Projects] replacing edit page

Specify the following modules as dependencies when declaring view model class: MoneyModule,
MultiCurrencyEdit, MultiCurrencyEditUtilities (see the source code below).

3. Add necessary attributes

Specify the UsrCurrency, UsrCurrencyRate, UsrAmount and UsrPrimaryAmount attributes that correspond to the
added columns of the object schema in the attributes property of the edit page of view model schema.

The multi-currency module operates only with the Currency column. Create the Currency attribute and declare
there a virtual column. Bind this column with the previously created UsrCurrency column via the handler method
(see the following code below).

5. Connect the Terrasoft.MultiCurrencyEditUtilities mixin to the view model

Declare the Terrasoft.MultiCurrencyEditUtilities mixin in the mixins properties of the page view model schema.
Initialize it in the overridden init() method view model schema (see the following code below).

6. Implement the recalculation logic according to the currency.

Add handler methods of the attribute dependencies in the methods collection of the (see the following code below).

7. Add multi-currency field on the page

Add the configuration object with the settings of the multi-currency field to the diff array of the view model schema
of the edit page.

The replacing schema source code is as follows:

// Specify modules as dependencies in the view model class declaration
// MoneyModule, MultiCurrencyEdit, MultiCurrencyEditUtilities
define("ProjectPageV2", ["MoneyModule", "MultiCurrencyEdit",
"MultiCurrencyEditUtilities"],
 function(MoneyModule, MultiCurrencyEdit, MultiCurrencyEditUtilities) {
 return {
 // Edit page object schema name.
 entitySchemaName: "Project",
 // The attributes property of the view model.
 attributes: {
 // Currency.
 "UsrCurrency": {
 // Attribute data type is a lookup.
 "dataValueType": this.Terrasoft.DataValueType.LOOKUP,

Bpm’online developer guide 354

 // Configuration of the lookup.
 "lookupListConfig": {
 "columns": ["Division", "Symbol"]
 }
 },
 // Exchange rate.
 "UsrCurrencyRate": {
 "dataValueType": this.Terrasoft.DataValueType.FLOAT,
 // Attribute dependencies.
 "dependencies": [
 {
 // Columns on which the attribute depends.
 "columns": ["UsrCurrency"],
 // Handler method.
 "methodName": "setCurrencyRate"
 }
]
 },
 // Amount.
 "UsrAmount": {
 "dataValueType": this.Terrasoft.DataValueType.FLOAT,
 "dependencies": [
 {
 "columns": ["UsrCurrencyRate", "UsrCurrency"],
 "methodName": "recalculateAmount"
 }
]
 },
 // Amount in base currency.
 "UsrPrimaryAmount": {
 "dependencies": [
 {
 "columns": ["UsrAmount"],
 "methodName": "recalculatePrimaryAmount"
 }
]
 },
 // Currency is a virtual column for compatibility with the
MultiCurrencyEditUtilities module.
 "Currency": {
 "type": this.Terrasoft.ViewModelColumnType.VIRTUAL_COLUMN,
 "dataValueType": this.Terrasoft.DataValueType.LOOKUP,
 "lookupListConfig": {
 "columns": ["Division"]
 },
 "dependencies": [
 {
 "columns": ["Currency"],
 "methodName": "onVirtualCurrencyChange"
 }
]
 }
 },
 // View model mixins.
 mixins: {
 // Mixin that controls multicurrency on the edit page.
 MultiCurrencyEditUtilities: "Terrasoft.MultiCurrencyEditUtilities"
 },
 // Methods of the page view model.
 methods: {
 // Overriding the Terrasoft.BasePageV2.init() basic method.
 init: function() {

Bpm’online developer guide 355

 // Calling the parent implementation of init method.
 this.callParent(arguments);
 // Initialization of the mixin controlling the multi-currency.
 this.mixins.MultiCurrencyEditUtilities.init.call(this);
 },
 // Sets the exchange rate.
 setCurrencyRate: function() {
 //Loads the exchange rate at the beginning of the project.
 MoneyModule.LoadCurrencyRate.call(this, "UsrCurrency",
"UsrCurrencyRate", this.get("StartDate"));
 },
 // Recalculates amount.
 recalculateAmount: function() {
 var currency = this.get("UsrCurrency");
 var division = currency ? currency.Division : null;
 MoneyModule.RecalcCurrencyValue.call(this, "UsrCurrencyRate",
"UsrAmount", "UsrPrimaryAmount", division);
 },
 // Recalculates amount in base currency.
 recalculatePrimaryAmount: function() {
 var currency = this.get("UsrCurrency");
 var division = currency ? currency.Division : null;
 MoneyModule.RecalcBaseValue.call(this, "UsrCurrencyRate",
"UsrAmount", "UsrPrimaryAmount", division);
 },
 // The handler of the currency virtual column change.
 onVirtualCurrencyChange: function() {
 var currency = this.get("Currency");
 this.set("UsrCurrency", currency);
 }
 },
 // Setting up the visualization of a multi-currency field on the edit
page.
 diff: /**SCHEMA_DIFF*/[
 // Metadata for adding the[Amount] field.
 {
 // Adding operation.
 "operation": "insert",
 // The meta-name of the parent container to which the component
is added.
 "parentName": "Header",
 // The field is added to the parent container's collection.
 "propertyName": "items",
 // The meta-name of the schema component above which the action
is performed.
 "name": "UsrAmount",
 // Properties passed to the component's constructor.
 "values": {
 // The name of the column of the view model to which the
binding is performed.
 "bindTo": "UsrAmount",
 // Element location in the container.
 "layout": { "column": 0, "row": 2, "colSpan": 12 },
 // The name of the column that contains the amount in the
base currency.
 "primaryAmount": "UsrPrimaryAmount",
 // The name of the column that contains the currency of the
amount.
 "currency": "UsrCurrency",
 // The name of the column that contains the exchange rate.
 "rate": "UsrCurrencyRate",
 // The property that defines the availability for editing the

Bpm’online developer guide 356

amount field in the base currency.
 "primaryAmountEnabled": false,
 // Generator of the control view.
 "generator": "MultiCurrencyEditViewGenerator.generate"
 }
 }
]/**SCHEMA_DIFF*/
 };
 });

After saving the schema and refreshing the application page the [Amount] multi-currency field will be displayed on
the project edit page (Fig .1). The value of the field will be automatically recalculated after selecting a currency from
the drop-down list (Fig. 8).

Fig. 8. Drop-down list of currencies

How to add custom logic to the existing controls

Introduction
Controls are objects used to create an interface between the user and a bpm’online application. For example,
buttons, fields, checkboxes, etc,

All controls in bpm’online are inherited from the Terrasoft.controls.Component class. Full list of classes that
implement bpm’online components is available by link in the “JavaScript API for platform core (on-line
documentation)”.

According to the Open–closed principle, you cannot add custom logic to the existing control. For this you need to
create a new class that inherits functions of the existing class of the control. And implement new functions in the
successor class.

Steps to add new functions:

1. Create new client module.

2. In the client module, declare a class that inherits the existing control. Implement necessary functions in the class.

3. Add a new item to the bpm’online interface.

Case description
Create control which enables to enter only integer values in the specified range. Perform the checking of the entered
value by pressing the Enter key and display the corresponding message if the number is outside the range. Use the
Terrasoft.controls.IntegerEdit control as parent.

Bpm’online developer guide 357

https://en.wikipedia.org/wiki/Open–closed_principle

Source code
You can download the package with case implementation using the following link.

Case implementation algorithm
1. Create a client module

The procedure for creating a custom schema is covered in the “Creating a custom client module schema”.

Run the [Add] – [Module] menu command on the [Schemas] tab of the [Configuration] section.

Specify following properties of the schema:

[Name] – “UsrLimitedIntegerEdit”
[Title] – "UsrLimitedIntegerEdit"

Add the following source code to the schema:

// Declaration of the module.
define("UsrLimitedIntegerEdit", [], function () {
});

2. Create a class of the control
Modify the source code according to the example below.

define("UsrLimitedIntegerEdit", [], function () {
 // Declaration of the class of the control.
 Ext.define("Terrasoft.controls.UsrLimitedIntegerEdit", {
 // Base class.
 extend: "Terrasoft.controls.IntegerEdit",
 // Alias (abbreviated name of the class)..
 alternateClassName: "Terrasoft.UsrLimitedIntegerEdit",
 // The smallest allowed value.
 minLimit: -1000,
 // The highest value allowed.
 maxLimit: 1000,
 // A method for checking for an occurrence in the range of valid values.
 isOutOfLimits: function (numericValue) {
 if (numericValue < this.minLimit || numericValue > this.maxLimit) {
 return true;
 }
 return false;
 },
 // Override the method of the event handler for pressing the Enter key.
 onEnterKeyPressed: function () {
 // Call the basic functionality.
 this.callParent(arguments);
 // Get the entered value.
 var value = this.getTypedValue();
 // Reduction to a numberic type.
 var numericValue = this.parseNumber(value);
 // Check for occurrence in the range of acceptable values.
 var outOfLimits = this.isOutOfLimits(numericValue);
 if (outOfLimits) {
 // Form the warning message.
 var msg = "Value " + numericValue + " is out of limits [" +
this.minLimit + ", " + this.maxLimit + "]";
 // Modify the configuration object to display a warning message.
 this.validationInfo.isValid = false;

Bpm’online developer guide 358

 this.validationInfo.invalidMessage = msg;
 }
 else{
 // Modify the configuration object to hide the warning message.
 this.validationInfo.isValid = true;
 this.validationInfo.invalidMessage ="";
 }
 // Call the logic for displaying the warning message.
 this.setMarkOut();
 },
 });
});

NOTE

You can use the logic of the onEnterKeyPressed() method in the in the onBlur() event handler.

Save the schema.

Ecxept the extend and alternateClassName standard properties, the minLimit and maxLimit properties that specify
the range of allowed values are added to the class. Default values are used for these properties.

The required control logic is implemented in the onEnterKeyPressed override method After calling the base logic in
which the generation of the value change events is performed, the entered value is checked for validity. If the
number is not valid, the corresponding warning message is displayed in the input field. The isOutOfLimitsmethod is
provided to check the occurrence of the entered value in the range of allowed values.

ATTENTION

With this implementation, despite the output of the corresponding warning, the entered value is still stored
and transferred to the schema view model in which the component will be used.

3. Add the control to the bpm’online interface
To add the created control to the bpm’online, create the replacing schema, for example, the contact record page.
Create a replacing client module and specify the [Display schema – Contact card] (ContactPageV2) schema as
parent object (Fig. 1). Creating a replacing page is covered in the “Creating a custom client module schema”
article.

Fig. 1. Properties of the replacing edit page

Add the following source code to the schema:

// Declaration of the module. Be sure to specify the dependency
// of the module in which the class of the control is declared.
define("ContactPageV2", ["UsrLimitedIntegerEdit"],
 function () {
 return {

Bpm’online developer guide 359

 attributes: {
 // Attribute associated with the value in the control.
 "ScoresAttribute": {
 // Attribute data type is integer.
 "dataValueType": this.Terrasoft.DataValueType.INTEGER,
 // Attribute type is a virtual column.
 "type": this.Terrasoft.ViewModelColumnType.VIRTUAL_COLUMN,
 // The default value.
 "value": 0
 }
 },
 diff: /**SCHEMA_DIFF*/[
 {
 // The type of operation is the addition.
 "operation": "insert",
 // The name of the container to which the control is added.
 "parentName": "ProfileContainer",
 // The name of the property in the container to which you want to
add
 // instance of the control.
 "propertyName": "items",
 // The name of the control.
 "name": "Scores",
 // Header.
 "caption": "Scores",
 // Values passed to the properties of the control.
 "values": {
 // The type of the control is the component.
 "itemType": Terrasoft.ViewItemType.COMPONENT,
 // The name of the class.
 "className": "Terrasoft.UsrLimitedIntegerEdit",
 // The value property of the component is associated with the
ScoresAttribute attribute.
 "value": { "bindTo": "ScoresAttribute" },
 // Values for the minLimit property.
 "minLimit": -300,
 // Values for the maxLimit property.
 "maxLimit": 300,
 // The location of the component in the container.
 "layout": {
 "column": 0,
 "row": 6,
 "colSpan": 24,
 "rowSpan": 1
 }
 }
 }
]/**SCHEMA_DIFF*/
 };
 });

Save the schema.

The added ScoresAttribute attribute contains the value connected to the value entered in input field of the control.
You can use an integer column of the object connected to the view model of the record edit page instead of the
attribute.

The configuration object determining the values of the properties of control entity is added to the diff array. The
value of the “value” property is connected to the ScoresAttribute attribute. The values that specify a valid input
range are assigned to the minLimit and maxLimit properties.

ATTENTION

Bpm’online developer guide 360

If the minLimit and maxLimit properties are not explicitly specified in the configuration object, the default
range (-1000, 1000) will be applied.

As a result, the integer field will be added to the contact record page (Fig. 2). The warning message will be displayed
in the field if the invalid message will be entered (Fig. 3).

Fig. 2. Case result

Fig. 3. Displaying of warning message

Adding calculated fields

Bpm’online developer guide 361

Introduction
A calculated field is a page control whose value is generated based on the status and values in other elements on this
page.

In bpm’online, calculated fields are based on the bpm’online client mechanism, which uses subscriptions to changes
in view model schema attributes. For any attribute, you can set a configuration object and specify object schema
column names. If the values in these columns change, the value of the calculated column will be updated. You can
also specify the handler method for this event.

The general sequence of adding a calculated field is as follows:

1. Add a column for storing the values of the calculated field to the page object schema.
2. In the page view model, set up attribute dependencies by specifying column names from which it depends

and the handler name.
3. Add the implementation of the handler method to the method collection of the view model.
4. Set up the display of the calculated field in the diff property of the view model.

Setting up dependencies of the calculated field

In the attributes view model property, add an attribute for which the dependency is set up.

Declare a dependencies property, which is an array of configuration objects, each of which contains the following
properties:

Сolumns – an array of columns whose values determine the value of the current column.
methodName – handler method name.

If the value of at least one of these columns changes in the view model, the event handler method (whose name is
specified in the methodName property) will be called.

The handler method implementation must be added to the collection of the view methods.

Case description
Add [Payment balance] to display the balance between order amount and payment amount on the order edit page.

NOTE

You can add fields to the edit page manually or using the section wizard. For more on adding fields to edit
pages see the “Adding a new field to the edit page” article.

Case implementation algorithm
1. Create a replacing object

Select the custom package on the [Schemas] tab an select the [Replacing object] in the [Add] menu. Select the
[Order] object as the parent object (Fig. 1).

Fig. 1. Properties of the [Order] replacing object

Bpm’online developer guide 362

Add a new [Payment balance] column of the [Currency] type to the replacing object (Fig. 2).

Fig. 2. Adding a custom column to the replacing object

Publish the object.

2. Create a replacing client module for the order edit page

Create a replacing client module and specify the [Order edit page] (OrderPageV2) module as parent (Fig. 3). The
procedure for creating a replacing page is covered in the “Creating a custom client module schema” article.

Fig. 3. Order edit page replacing schema properties

3. Set up the display of the [Payment balance] field

To do this, describe the configuration object with the required parameters in the diff property of the view model.
Page schema source code is available below

Bpm’online developer guide 363

4. Add UsrBalance attribute to the model schema

To do this, add the UsrBalance attribute to the collection of the attributes property in the source code of the page
view model. Specify dependency from the [Amount] and [PaymentAmount] columns, as well as the
calculateBalance() handler method (which will be calculating the value of the [UsrBalance] column) in the
configuration object of the UsrBalance attribute.

5. Add the needed methods in the methods collection of the view model

In the methods collection of the view model, add the calculateBalance() handler method that will handle the editing
of the [Amount] and [PaymentAmount] columns. This method is used in the UsrBalance attribute.

Override the base virtual method onEntityInitialized(). The onEntityInitialized() method is triggered after the edit
page object schema is initialized. Calling the calculateBalance handler method to this method will ensure the
calculation of the amount to be paid at the moment the order page opens and not only when the dependency
columns are edited.

The complete source code of the module is available below:

define("OrderPageV2", [], function() {
 return {
 // Edit page object schema name.
 entitySchemaName: "Order",
 details: /**SCHEMA_DETAILS*/{}/**SCHEMA_DETAILS*/,
 // The attributes property of the view model.
 attributes: {
 // Name of the view model attribute.
 "UsrBalance": {
 // Data type of the view model column.
 dataValueType: Terrasoft.DataValueType.FLOAT,
 // Array of configuration objects that determines [UsrBalance] column
dependencies.
 dependencies: [
 {
 // The value in the [UsrBalance] column depends on the
[Amount]
 // and [PaymentAmount] columns.
 columns: ["Amount", "PaymentAmount"],
 // Handler method, which is called on modifying the value of
the on of the columns: [Amount]
 // and [PaymentAmount].
 methodName: "calculateBalance"
 }
]
 }
 },
 // Collection of the edit page view model methods.
 methods: {
 // Overriding the base Terrasoft.BasePageV2.onEntityInitialized method,
which
 // is triggerd after the edit page object schema has been initialized.
 onEntityInitialized: function() {
 // Method parent implementation is called.
 this.callParent(arguments);
 // Calling the handler method, which calculates the value in the
[UsrBalance] column.
 this.calculateBalance();
 },
 // Handler method that calculates the value in the [UsrBalance] column.
 calculateBalance: function() {
 // Checking whether the [Amount] and [PaymentAmount] columns are
initialized
 // when the edit page is opened. If not, then zero values are set for

Bpm’online developer guide 364

them.
 var amount = this.get("Amount");
 if (!amount) {
 amount = 0;
 }
 var paymentAmount = this.get("PaymentAmount");
 if (!paymentAmount) {
 paymentAmount = 0;
 }
 // Calculating the margin between the values in the [Amount] and
[PaymentAmount] columns.
 var result = amount - paymentAmount;
 // The calculation result is set as the value in the [UsrBalance]
column.
 this.set("UsrBalance", result);
 }
 },
 // Visual display of the [UsrBalance] column on the edit page.
 diff: /**SCHEMA_DIFF*/[
 {
 "operation": "insert",
 "parentName": "Header",
 "propertyName": "items",
 "name": "UsrBalance",
 "values": {
 "bindTo": "UsrBalance",
 "layout": {"column": 12, "row": 2, "colSpan": 12}
 }
 }
]/**SCHEMA_DIFF*/
 };
});

After saving the schema, updating the web page and clearing the cache, a new [Payment balance] will appear on the
order page. The value in this field will be calculated based on the values in the [Total] and [Payment amount] fields
(Fig. 4).

Fig. 4. Case result demonstration

How to set a default value for a field

Bpm’online developer guide 365

Introduction
In bpm’online, you can define the default values for edit page control elements.

You can set a default value in two ways:

1. Set the value on the business object column level. When creating a new object, its certain page fields should be
populated with some initially known values. In such cases, indicate these values for the corresponding object
columns as the default values in object designer.

Types of default values.

Name Description

Set constant String, number, lookup value, Boolean.

Set from system
setting

The complete list of system settings is available in the [System settings] section. It can be
supplemented with custom system settings.

Set from system
variable

Bpm’online system variables are global variables that store information about system-wide
setting values. Unlike system settings, whose values can differ depending on different
users, system variable values always remain the same for all users. The full list of system
variables is implemented on the kernel level and cannot be changed by user:

New identifier
New sequential identifier
Current user
Contact of the current user
Account of the current user
Current date and time value
Current date value
Current time value

Default value not set

2. Specify in the edit page source code. In some cases, it is impossible to set a default value via the object column
properties. For example, these can be estimated values which are calculated by other column values of the object, etc.
In such a case, you can set a default value only via programming means.

Source code
You can download the package with case implementation using the following link.

Example of setting a field default value via object column
properties
Case description

When creating a new activity, the [Show in calendar] checkbox should be set by default.

Case implementation algorithm

1. Creating the [Activity] replacing object in the custom package

Create the [Activity] replacing object (Fig.1). Learn more about creating a replacing object in the “Creating the
entity schema” article.

Fig. 1. The [Activity] replacing object properties

Bpm’online developer guide 366

https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkDefaultValues_18.04.27_02.59.30.zip

2. Setting the default value for the [Show in calendar] column

Select the [Show in calendar] column from the inherited column list and edit its [Default value] property as shown in
fig.2. To implement the case, select a constant value as the default one.

Fig. 2. Setting the default value for the [Show in calendar] column

After you publish the schema, update the page and clear the cache. The [Show in calendar] field will be selected on
the activity edit page when adding a new activity.

Fig. 3. Demonstration of setting the default value

Bpm’online developer guide 367

Example of setting a default value in the edit page source code
Case description

The default value in the [Deadline] field on the project edit page should be as follows: the [Start] field value plus 10
days.

Case implementation algorithm

1. Create a project replacing edit page in custom package

Create a replacing client module and specify the [Project edit page], ProjectPageV2 schema as its parent object (Fig.
4). The procedure of creating a replacing page is covered in the “Creating a custom client module schema”
article.

Fig. 4. Replacing edit page properties

2. Add the implementation of the following methods to the method collection of the page
view model

setDeadline() – handler method. Calculates the [Deadline] field value.
onEntityInitialized() – an overridden base virtual method. Triggered upon termination of object schema
initialization. Add the handler method call to set the [Deadline] field value to it when opening the edit
page.

Bpm’online developer guide 368

The replacing schema source code is as follows:

define("ProjectPageV2", [], function() {
 return {
 // Name of the edit page object schema.
 entitySchemaName: "Project",
 methods: {
 // Overriding the Terrasoft.BasePageV2.onEntityInitialized() base method.
 // Triggered upon termination of edit page object schema initialization.
 onEntityInitialized: function() {
 // Calling of method parent implementation.
 this.callParent(arguments);
 // Calling of handler method that calculates the [Deadline] field
value.
 this.setDeadline();
 },
 // Handler method. Calculates the [Deadline] field value.
 setDeadline: function() {
 // The [Deadline] column value.
 var deadline = this.get("Deadline");
 // Is a new record mode set?
 var newmode = this.isNewMode();
 // If the value is not set and the new record mode is set.
 if (!deadline && newmode) {
 // Receipt of the [Start] column value.
 var newDate = new Date(this.get("StartDate"));
 newDate.setDate(newDate.getDate() + 10);
 // Setting of the [Deadline] column value.
 this.set("Deadline", newDate);
 }
 }
 }
 };
});

Save the schema and update the application page. A date that equals the [Start] field date plus 10 days will be set in
the [Deadline] field (Fig.5).

Fig. 5. Demonstration of setting the calculated default value

Bpm’online developer guide 369

How to add the field validation

Introduction
Validation is the verification of field values for their compliance with certain requirements. Values of the bpm'online
page fields are validated at the level of the page view model columns. The logic of the field value validation is
implemented in the custom validation method.

Validator is the method of the view model where values of the view model column are analyzed for compliance with
business requirements. This method must return validation results as an object with the following property:

invalidMessage – a message string displayed under the field when making an attempt to save a page with
an invalid field value and in the data window when saving a page with the field that did not passed
validation.

If the value validation is successful, the validator method returns the object with empty string.

To start the field validation, the corresponding view model column must be bound to a specific validator. For this
purpose, override the setValidationConfig() base method and call the addColumnValidator() method in it.

The addColumnValidator() method accepts two parameters:

name of the view model column, to which the validator is bound.
name of the column value validator method.

ATTENTION

If the field is validated in the replacement client schema of the base page, the parent implementation of the
setValidationConfig() method must be called before calling the addColumnValidator() method to correctly
initialize validators of the base page fields.

Bpm’online developer guide 370

To add validation of field values:

1. Add the validator method to the collection of methods of the view model that will check a field value.
2. Override the setValidationConfig() method and connect the validator to the corresponding view model

column in it.

Source code
You can download the package with case implementation using the following link.

Example 1
Case description

Set the validation on the opportunity page as follows: the date in the [Created on] field must be earlier than the date
in the [Closed on] field.

Case implementation algorithm

1. Create a replacement client module of the opportunity edit page

A replacing client module must be created and [OpportunityPageV2] must be specified as the parent object in it
(Fig. 1). Creating a replacing page is covered in the “Creating a custom client module schema” article.

Fig. 1. Properties of the replacing edit page

2. Add an error string to the collection of localizable strings of the page replacing schema

Create a new localizable string (Fig. 2).

Fig. 2. Adding localized string to the schema

Bpm’online developer guide 371

https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkFieldsValidation_18.05.07_02.20.52.zip

For the created string, specify (Fig. 3):

[Name] – “CreatedOnLessDueDate”.
[Value] – “Created on must be less than Closed on”.

Fig. 3. Properties of the custom localizable string

3. Add the implementation of methods in the methods collection of the view model

dueDateValidator() – validator method that determines if the condition is fulfilled.
setValidationConfig() – an overridden base method in which the validator method is bound to the
[DueDate] and [CreatedOn] columns.

The replacing schema source code is as follows:

define("OpportunityPageV2", [], function() {
 return {
 // Name of the edit page object schema.
 entitySchemaName: "Opportunity",
 methods: {
 // Validate method for values in the [DueDate] and [CreatedOn] columns.
 dueDateValidator: function() {
 // Variable for storing a validation error message.
 var invalidMessage = "";
 // Checking values in the [DueDate] and [CreatedOn] columns.
 if (this.get("DueDate") < this.get("CreatedOn")) {
 // If the value of the [DueDate] column is less than the value
 // of the [CreatedOn] column a value of the localizable string
is
 // placed into the variable along with the validation error
message
 // in the invalidMessage variable.
 invalidMessage =
this.get("Resources.Strings.CreatedOnLessDueDate");
 }
 // Object whose properties contain validation error messages.
 // If the validation is successful, empty strings are returned to

Bpm’online developer guide 372

the
 // object.
 return {
 // Validation error message.
 invalidMessage: invalidMessage
 };
 },
 // Redefining the base method initiating custom validators.
 setValidationConfig: function() {
 // This calls the initialization of validators for the parent view
model.
 this.callParent(arguments);
 // The dueDateValidator() validate method is added for the [DueDate]
column.
 this.addColumnValidator("DueDate", this.dueDateValidator);
 // The dueDateValidator() validate method is added for the
[CreatedOn] column.
 this.addColumnValidator("CreatedOn", this.dueDateValidator);
 }
 }
 };
});

After you save the schema and refresh bpm’online page, a string with the corresponding message (Fig. 4) will appear
on the opportunity edit page when entering the date of closing or date of creation which does not satisfy the
validation condition (the date of creation must be before than the date of closing). The data window will appear
when making an attempt to save the opportunity (Fig. 5).

Fig. 4. Case results: invalid date message

Fig. 5. Case results: message when saving

Bpm’online developer guide 373

Example 2
Case description

Set the [Business phone] field validation as follows: phone number must correspond to the following mask: +44
ХХХ ХХХ ХХХХ, otherwise the “Enter the number in the “+44 ХХХ ХХХ ХХХХ” format ” message appears.

Case implementation algorithm

1. Create a replacing client module

Create a replacing client module and specify the [Display schema – Contact card] (ContactPageV2) schema as
parent object (Fig. 6). Creating a replacing page is covered in the “Creating a custom client module schema”
article.

Fig. 6. Properties of the replacing edit page

2. Add an error string to the collection of localizable strings of the page replacing schema

Bpm’online developer guide 374

Create a new localizable string (Fig. 2).

For the created string, specify (Fig. 7):

[Name – "InvalidPhoneFormat".
[Value] – "Enter the number in the “+44 ХХХ ХХХ ХХХХ” format”.

Fig. 7. Properties of the custom localizable string

3. Add the implementation of methods in the methods collection of the view model

phoneValidator() – validator method that determines if the condition is fulfilled.
setValidationConfig() – an overridden base method in which the validator method is bound to the
[Phone] column.

The replacing schema source code is as follows:

define("ContactPageV2", ["ConfigurationConstants"], function(ConfigurationConstants)
{
 return {
 entitySchemaName: "Contact",
 methods: {
 // Redefining the base method initiating custom validators.
 setValidationConfig: function() {
 // Calls the initialization of validators for the parent view model.
 this.callParent(arguments);
 // The phoneValidator() validate method is added to the [Phone]
column.
 this.addColumnValidator("Phone", this.phoneValidator);
 },
 phoneValidator: function(value) {
 // Variable for stroing a validation error message.
 var invalidMessage = "";
 // Variable for stroing the number check result.
 var isValid = true;
 // Variable for the phone number.
 var number = value || this.get("Phone");
 // Determining the correctness of the number format using a regular
expression.
 isValid = (Ext.isEmpty(number) ||
 new RegExp("^\\+44\\s[0-9]{3}\\s[0-9]{3}\\s[0-9]
{4}$").test(number));
 // If the format of the number is incorrect, then an error message is
filled in.
 if (!isValid) {
 invalidMessage =
this.get("Resources.Strings.InvalidPhoneFormat");
 }
 // Object which properties contain validation error messages.
 // If the validation is successful, empty strings are returned to the
object.
 return {
 invalidMessage: invalidMessage
 };

Bpm’online developer guide 375

 }
 }
 };
});

When the schema is saved and the system web-page is updated, the verification of the number format validity will be
preformed on the contact or account edit page when a new phone number is added. If the format is incorrect, a
string with a corresponding message will appear (Fig. 8, 9).

Fig. 8. Case results: Message about the incorrect format

Fig. 9. Case results: message when saving

Bpm’online developer guide 376

Using filtration for lookup fields. Examples

Introduction
There are two methods of using the filtration in bpm'online for lookup fields of the edit page:

1. The [FILTRATION] business rule.
2. Explicit indication of filters in the column description of the attributes model property.

The use of the [FILTRATION] business rule is expedient if a simple filter by a specific value or attribute must be
used for the field. The business rules are detailed in the Setting the edit page fields using business rules. The
detailed case for using the [FILTRATION] business rule is set forth in the The FILTRATION rule use case
article.

If arbitrary filtration (sorting and addition of supplementary columns to a query when a drop-down list is displayed)
is required, the explicit description should be used in the attributes model property.

Setting lookup field filters in the attributes model property:

1. The name of the column for which filters are set must be added to the attributes property of the view model.
2. The lookupListConfig property must be declared for this column. It represents a configuration item

containing the following properties (not required):
columns – an array of column names to be added to a request in addition to Id and the primary
display column.

orders – an array of configuration objects determining the data sorting when displayed.

filter – the method for returning the object of the Terrasoft.BaseFilter class or its inheritor, will be
applied, in turn, to a request.
or filters – an array of filters (methods for returning collections of the Terrasoft.FilterGroup class).

Filters are added to a collection using the add() method which has the following parameters:

Name Data type Description
key String key

item Mixed Element.

index Number Index for insert. If not entered, the index to
be inserted is not rated.

The object of the Terrasoft.BaseFilter class or its inheritor is the item parameter. The methods for creating filters
with descriptions are given in Table 1 of the EntitySchemaQuery filters handling article.

ATTENTION

Filters are combined by default in the collection using the AND logic operator. If the OR operator is to be used,
this must be indicated explicitly in the logicalOperation property of the Terrasoft.FilterGroup object.

Case description
When a value is added to the [Owner] field of the account edit page, display only those contact lookup values for
which the following conditions are fulfilled:

a system user associated with this contact is available
this user is active.

Bpm’online developer guide 377

Source code
You can download the package with case implementation using the following link.

Case implementation algorithm
1. Create a replacing account edit page

A replacing client module must be created and [AccountPageV2] must be specified as the parent object in it (Fig. 1).
The procedure of creating a replacing page is covered in the“Creating a custom client module schema” article.

Fig. 1. Properties of the replacing edit page

2. Add the attribute with filtration to the attributes property of the view model

Specify the type of column data – the Terrasoft.DataValueType.LOOKUP in the configuration object, in the
[Owner] attribute and describe the configuration object of the lookupListConfig lookup field. Add the filters
property to lookupListConfig, which represents the function for returning the filters collection. Add a function that
returns a collection of filters to the array.

The replacing schema source code is as follows:

define("AccountPageV2", [], function() {
 return {
 // Name of the edit page object schema
 "entitySchemaName": "Account",
 // List of the schema attributes.
 "attributes": {
 // Name of the view model column.
 "Owner": {
 // Attribute data type.
 "dataValueType": Terrasoft.DataValueType.LOOKUP,
 // The configuration object of the LOOKUP type.
 "lookupListConfig": {
 // Array of filters used for the query that forms the lookup
field data.
 "filters": [
 function() {
 var filterGroup = Ext.create("Terrasoft.FilterGroup");
 // Adding the "IsUser" filter to the resulting filters
collection.
 // The filter provides for the selection of all records
in the Contact core schema
 // to which the Id column from the SysAdminUnit schema is
connected, for which

Bpm’online developer guide 378

https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkLookupFiltration_18.04.26_03.24.24.zip

 // Id is not equal to null.
 filterGroup.add("IsUser",
 Terrasoft.createColumnIsNotNullFilter("
[SysAdminUnit:Contact].Id"));
 // Adding the "IsActive"
filter to the resultant filters collection.
 // The filter provides for the selection of all records
from the core schema.
 // Contact to which the Id column from the SysAdminUnit
schema, for which
 // Active=true, is connected.
 filterGroup.add("IsActive",
 Terrasoft.createColumnFilterWithParameter(
 Terrasoft.ComparisonType.EQUAL,
 "[SysAdminUnit:Contact].Active",
 true));
 return filterGroup;
 }
]
 }
 }
 }
 };
});

When the schema is saved and the system web-page is updated, only values from the contact lookup which comply
with custom conditions will be displayed on the account edit page when adding a value to the [Owner] field on the
account edit page (Fig. 2, Fig. 3). I.e:

a system user associated with this contact is available
this user is active.

Fig. 2. Account profile with the owner

Bpm’online developer guide 379

Fig. 3. The owner is disable in the filtered contact lookup

Adding an action panel

Introduction

Bpm’online developer guide 380

Starting with version 7.8.0, bpm'online has a new edit page module – the "Action panel" (ActionsDashboard). An
action panel displays information about the current status of and actions for working with the current record.

For more information about action panel, please see the "Action dashboard" article.

General procedure of adding an action panel on a page:

1. Create a Schema of the Edit Page View Model inherited from the SectionActionsDashboard module.
2. Create a replacing page schema.
3. Set up the module in the modules property of the page view model.
4. In the "diff" array of the page view model, add the module on the page.

Case description
Add an action panel to the order edit page.

Source code
You can download the package with case implementation using the following link.

Case implementation algorithm
1. Create a client schema of the OrderActionsDashboard view model

Specify the SectionActionsDashboard schema as a parent object (Fig. 1).

Fig. 1. Properties of the client schema

The client schema source code is as follows:

define("UsrOrderActionsDashboard", [], function () {
 return {
 details: /**SCHEMA_DETAILS*/{}/**SCHEMA_DETAILS*/,
 methods: {},
 diff: /**SCHEMA_DIFF*/[]/**SCHEMA_DIFF*/
 };
});

2. Create a replacing order edit page

A replacing client module must be created and [Order edit page] (OrderPageV2) must be specified as the parent
object in it (Fig. 2). Creating a replacing page is covered in the “Creating a custom client module schema”
article.

Fig. 2. Properties of the replacing edit page

Bpm’online developer guide 381

https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkActionsDashboardAdding_18.05.09_02.40.31.zip

3. Add a configuration object with the module settings in the modules collection of the
page schema

Add the code of the page replacing module to the [Source code] tab: Add a configuration object with the module
settings in it to the modules collection of the view model.

4. Add a configuration object with the settings determining the module position in the
diff array

The replacing schema source code is as follows:

define("OrderPageV2", [],
 function () {
 return {
 entitySchemaName: "Order",
 attributes: {},
 modules: /**SCHEMA_MODULES*/{
 "ActionsDashboardModule": {
 "config": {
 "isSchemaConfigInitialized": true,
 // Schema name.
 "schemaName": "OrderActionsDashboard",
 "useHistoryState": false,
 "parameters": {
 // Configuration object of the module.
 "viewModelConfig": {
 // Schema name of the page entity.
 "entitySchemaName": "Order",
 // Configuration object of the Actions block.
 "actionsConfig": {
 // Schema name for loading items to Actions.
 "schemaName": "OrderStatus",
 // Column name in the parent schema that
references the schema that contains Actions elements.
 // If not specified, takes the schemaName value.
 "columnName": "Status",
 // Column name for element sorting.
 "orderColumnName": "Position",
 // Column name for item sorting in the item menu.
 "innerOrderColumnName": "Position"
 },
 // Displaying the action panel module, the value is
[true] by default.
 "useDashboard": true,
 // Displaying the Content block, [true] by default.
 "contentVisible": true,
 // Risplaying the Header block, [true] by default.

Bpm’online developer guide 382

 "headerVisible": true,
 // The configuration object of the panel elements.
 "dashboardConfig": {
 // Connection between activities and page object.
 "Activity": {
 // Page object column name.
 "masterColumnName": "Id",
 // Clumn name in the [Activity] object.o
 "referenceColumnName": "Order"
 }
 }
 }
 }
 }
 }
 }/**SCHEMA_MODULES*/,
 details: /**SCHEMA_DETAILS*/{}/**SCHEMA_DETAILS*/,
 methods: {},
 diff: /**SCHEMA_DIFF*/[
 {
 "operation": "insert",
 "name": "ActionsDashboardModule",
 "parentName": "ActionDashboardContainer",
 "propertyName": "items",
 "values": {
 "classes": { wrapClassName: ["actions-dashboard-module"] },
 "itemType": Terrasoft.ViewItemType.MODULE
 }
 }
]/**SCHEMA_DIFF*/
 };
 });

After saving the schema and updating the bpm'online web page, the action panel will be added to the order page.
The action panel will contain the order status and connected uncompleted activities (Fig. 3).

Fig. 3. Demonstrating the case implementation result

Bpm’online developer guide 383

Adding a new channel to the action panel

Introduction
Starting with version 7.8.0, bpm'online has a new edit page module – the "Action panel" (ActionsDashboard). An
action panel displays information about the current status of and actions for working with the current record.

For more information about action panel, please see the "Action dashboard" article. The ways of adding the
action panel to the section page are described in the "Adding an action panel" article.

ActionsDashboard channels are a way of communicating with a contact. A channel is created for every section in
which it's connected to, for example, a case, contact or lead.

Case description
Add a new custom channel to the action dashboard of the contact edit page. The channel must have the same
functionality as the call results channel (CallMessagePublisher channel).

Source code
You can download the package with case implementation using the following link.

Case implementation algorithm
1. Add the UsrCallsMessagePublisher source code schema

Bpm’online developer guide 384

https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkActionsDashboardNewChannel_18.05.14_04.16.49.zip

Perform the [Add] > [Source code] menu command on the [Schema] tab in the [Configuration] section (Fig. 1).

Fig. 1. Adding source code schema

For the created schema specify (Fig. 2):

[Title] – "Call message logging publisher"
[Name] – “UsrCallsMessagePublisher”

Fig. 2. The Source code schema properties

In the created schema, add the new CallsMessagePublisher class inherited from the BaseMessagePublisher class to
the Terrasoft.Configuration namespace. The BaseMessagePublisher class contains the basic logic to save an object
in the database and the basic logic of event handlers. The inheritor class will contain the logic for a particular sender,
for example, filling of columns of the Activity object and the subsequent sending of the message.

To implement the new CallsMessagePublisher class, you must add the following source code in the created schema.

using System.Collections.Generic;
using Terrasoft.Core;

namespace Terrasoft.Configuration
{
 // The BaseMessagePublisher heir class.
 public class CallsMessagePublisher : BaseMessagePublisher
 {
 // Class constructor.
 public CallsMessagePublisher(UserConnection userConnection,
Dictionary<string, string> entityFieldsData)
 : base(userConnection, entityFieldsData) {
 //The schema the CallsMessagePublisher works with.
 EntitySchemaName = "Activity";
 }
 }
}

Save and publish the schema.

Bpm’online developer guide 385

2. Create the SectionActionsDashboard replacing client schema

Create a replacing client module and specify the SectionActionsDashboard as parent object (Fig. 3). The procedure
of creating a replacing page is covered in the "Creating a custom client module schema" article.

Fig. 3. Properties of the replacing schema

NOTE

If you want to add a channel to only one edit page, you must create a new module named
[section_name]SectionActionsDashboard (e.g. BooksSectionActionsDashboard) and set
SectionActionsDashboard as the parent schema.

Specify the module which should be rendered in this channel on one of the tabs in the replacing schema diff
property. Set the operations of inserting the CallsMessageTab tab and message container in this property. The new
channel will be visible on the edit pages of those sections, which are connected to SectionActionsDashboard.

In the methods property override the getSectionPublishers() method that will add the new channel to the list of
message publishers, and the getExtendedConfig() method, in which the tab settings are configured.

For the getExtendedConfig() method to run correctly, you must upload the channel icon and specify it in the
ImageSrc parameter. The icons used in this example can be downloaded here ('CallsMessageTabImage.svg' in
the on-line documentation).

You should also override the onGetRecordInfoForPublisher() method and add the
getContactEntityParameterValue() method that defines the contact value from the edit page.

The replacing schema source code is as follows:

define("SectionActionsDashboard", ["SectionActionsDashboardResources",
"UsrCallsMessagePublisherModule"],
 function(resources) {
 return {
 attributes: {},
 messages: {},
 methods: {
 // Method sets the channel tab display settings in the action
dashboard.
 getExtendedConfig: function() {
 // Parent method calling.
 var config = this.callParent(arguments);
 var lczImages = resources.localizableImages;
 config.CallsMessageTab = {
 // Tab image.
 "ImageSrc":
this.Terrasoft.ImageUrlBuilder.getUrl(lczImages.CallsMessageTabImage),
 // Marker value.
 "MarkerValue": "calls-message-tab",

Bpm’online developer guide 386

 // Alignment.
 "Align": this.Terrasoft.Align.RIGHT,
 // Tag.
 "Tag": "UsrCalls"
 };
 return config;
 },
 // Redefines the parent object and adds the contact value from the
edit page
 // of the section that contains the action dashboard.
 onGetRecordInfoForPublisher: function() {
 var info = this.callParent(arguments);
 info.additionalInfo.contact =
this.getContactEntityParameterValue(info.relationSchemaName);
 return info;
 },
 // Defines the contact value from the section edit page
 // that contains the action dashboard.
 getContactEntityParameterValue: function(relationSchemaName) {
 var contact;
 if (relationSchemaName === "Contact") {
 var id = this.getMasterEntityParameterValue("Id");
 var name = this.getMasterEntityParameterValue("Name");
 if (id && name) {
 contact = {value: id, displayValue: name};
 }
 } else {
 contact = this.getMasterEntityParameterValue("Contact");
 }
 return contact;
 },
 //Adds the created channel to the message publisher list.
 getSectionPublishers: function() {
 var publishers = this.callParent(arguments);
 publishers.push("UsrCalls");
 return publishers;
 }
 },
 // An array of modifications, with which the representation of the module
is built in the interface of the system.
 diff: /**SCHEMA_DIFF*/[
 // ДAdding the CallsMessageTab tab.
 {
 // operation type — insertion.
 "operation": "insert",
 // Tab name.
 "name": "CallsMessageTab",
 // Parent element name.
 "parentName": "Tabs",
 // Property name.
 "propertyName": "tabs",
 // Property configuration object.
 "values": {
 // Child elements array.
 "items": []
 }
 },
 // Adding message container.
 {
 "operation": "insert",
 "name": "CallsMessageTabContainer",
 "parentName": "CallsMessageTab",

Bpm’online developer guide 387

 "propertyName": "items",
 "values": {
 // Element type — container.
 "itemType": this.Terrasoft.ViewItemType.CONTAINER,
 // Container CSS class.
 "classes": {
 "wrapClassName": ["calls-message-content"]
 },
 "items": []
 }
 },
 // Adding the UsrCallsMessageModule module.
 {
 "operation": "insert",
 "name": "UsrCallsMessageModule",
 "parentName": "CallsMessageTab",
 "propertyName": "items",
 "values": {
 // Tab module CSS class.
 "classes": {
 "wrapClassName": ["calls-message-module", "message-
module"]
 },
 // Element type — module.
 "itemType": this.Terrasoft.ViewItemType.MODULE,
 // Module name.
 "moduleName": "UsrCallsMessagePublisherModule",
 // Binding the method executed after the element has been
rendered.
 "afterrender": {
 "bindTo": "onMessageModuleRendered"
 },
 // Binding the method executed after the element has been
rerendered.
 "afterrerender": {
 "bindTo": "onMessageModuleRendered"
 }
 }
 }
]/**SCHEMA_DIFF*/
 };
 }
);

3. Create the UsrCallsMessagePublisherModule module

The UsrCallsMessagePublisherModule serves as container that renders the SectionActionsDashboard page with
implemented logic of added channel in the UsrCallsMessagePublisherPage.

Set following properties for the module (Fig. 4):

[Title] – "Call messages logging publisher module"
[Name] – “UsrCallsMessagePublisherModule”
[Parent object] – BaseMessagePublisherModule.

Fig. 4. Properties of the module

Bpm’online developer guide 388

The module source code:

define("UsrCallsMessagePublisherModule", ["BaseMessagePublisherModule"],
 function() {
 // Defining the class.
 Ext.define("Terrasoft.configuration.UsrCallsMessagePublisherModule", {
 // Basic class.
 extend: "Terrasoft.BaseMessagePublisherModule",
 // Short class name.
 alternateClassName: "Terrasoft.UsrCallsMessagePublisherModule",
 // Initialization of the page that will be rendered in this module.
 initSchemaName: function() {
 this.schemaName = "UsrCallsMessagePublisherPage";
 }
 });
 // Returns the class object defined in the module.
 return Terrasoft.UsrCallsMessagePublisherModule;
 });

4. Create the UsrCallsMessagePublisherPage page

For the created page set the BaseMessagePublisherPage schema of the MessagePublisher package as parent object.
Set the "UsrCallsMessagePublisherPage" value as the title and name.

In the source code page, specify the schema name of the object that will run along with the page (in this case,
Activity), implement the logic of message publication and override the getServiceConfig method, in which you must
set the class name from the configuration.

//Sets the class that will work with this page.
getServiceConfig: function() {
 return {
 className: "Terrasoft.Configuration.CallsMessagePublisher"
 };
}

Implementation of message publication logic contains big number of methods, attributes and properties. The full
source code of the UsrCallsMessagePublisherPage schema can be found in the sdkActionsDashboardNewChannel
package. The source code shows the implementation of the CallMessagePublisher channel that is used for logging
incoming and outgoing calls.
As a result you will get the new channel in the SectionActionsDashboard (Fig. 5).

Fig. 5. An example of a custom CallsMessagePublisher channel in the SectionActionsDashboard of the [Contacts]
section.

Bpm’online developer guide 389

https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkActionsDashboardNewChannel_18.05.14_04.16.49.zip

Displaying contact's time zone

General information
The ability to work with different timezones was introduced in version 7.8. Contact pages now display information
about the contact's local timezone. Timezone values, such as time difference between the user's timezone and the
contact's timezone, are calculated automatically. For more information about timezone calculation please see the
"How to determine the current local time for a contact". The information is displayed in the element generated by
the view generator. This element cannot be added to a page with the section wizard.

To add a contact timezone display element to a custom page:

1. Create a replacing page schema module.
2. Add timezone display element.
3. Connect timezone search.
4. Set up display styles.

Case description
Add a contact timezone display element to the call panel. The contact's current local time must be displayed when
searching for phone numbers to ensure that subscribers in different timezones are contacted during business hours
only.

Fig. 1. Displaying subscriber's current local time

Bpm’online developer guide 390

https://academy.bpmonline.com/documents/studio/7-12/how-determine-current-local-time-contact

Source code
You can download the package with case implementation using the following link.

Case implementation algorithm
1. Create a replacing page schema module

To modify this schema, add a replacing client module in the custom package (Fig. 2) and specify
SubscriberSearchResultItem as the parent object and custom package (Fig. 3). Creating a replacing page is covered
in the “Creating a custom client module schema” article.

Fig. 2. Creating a replacing module

Fig. 3 Replacing module properties

2. Add timezone display element

Add modules according to the schema dependency:

TimezoneGenerator – module that helps to create contact's timezone display item.
TimezoneMixin – mixin is used to search for contact's timezone.

Add configuration object for displaying a contact's timezone item to the diff array.

3. Connect timezone search

To run the contact timezone search, pass the contact's unique Id to the init method of the TimezoneMixin. As a
result of execution the following attributes will be set:

TimeZoneCaption – contact's timezone name and current local time.
TimeZoneCity – name of the city for which the timezone is set.

Bpm’online developer guide 391

https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkAddTimeZoneToPage_18.05.16_03.36.33.zip

Source code of the schema:

// Declaring schema.
define("SubscriberSearchResultItem",
 // Dependency from TimezoneGenerator, TimezoneMixin.
 ["TimezoneGenerator", "TimezoneMixin",
 // Dependency from the module with style.
 "css!UsrSubscriberSearchResultItemCss"],
 function() {
 return {
 // Block for creating attributes.
 attributes: {
 // Namne of the attribute that controls timexone element display
status.
 "IsShowTimeZone": {
 // Attribute data type.
 "dataValueType": Terrasoft.DataValueType.BOOLEAN,
 // Attribute type in model.
 "type": Terrasoft.ViewModelColumnType.VIRTUAL_COLUMN,
 // Default value.
 "value": true
 }
 },
 // Mixin connection block.
 mixins: {
 // Connecting mixin.
 TimezoneMixin: "Terrasoft.TimezoneMixin"
 },
 // Method definition block.
 methods: {
 // Class constructor.
 constructor: function() {
 // Selecting base constructor.
 this.callParent(arguments);
 // Indicates if the subscriber is a contact.
 var isContact = this.isContactType();
 // The element is displayed if the subscriber is a contact.
 this.set("IsShowTimeZone", isContact);
 // If the subscriber is a contact.
 if (isContact) {
 // Contact Id.
 var contactId = this.get("Id");
 // Searching for contact's timezone.
 this.mixins.TimezoneMixin.init.call(this, contactId);
 }
 },
 // Gets an indicator that the subscriber is a contact.
 isContactType: function() {
 // Subscriber type.
 var type = this.get("Type");
 // Gets comparison result.
 return type === "Contact";
 }
 },
 // Array of modifications.
 diff: [
 {
 // Adding a new element.
 "operation": "insert",
 // Parent element is SubscriberSearchResultItemContainer.
 "parentName": "SubscriberSearchResultItemContainer",
 // New element is added to the collection of elements of the

Bpm’online developer guide 392

parent.
 "propertyName": "items",
 // Element name.
 "name": "TimezoneContact",
 // Element properties.
 "values": {
 // Element type.
 "itemType": Terrasoft.ViewItemType.CONTAINER,
 // Generator method is called for generating view
configuration.
 "generator": "TimezoneGenerator.generateTimeZone",
 // Container visibility is bound to an attribute.
 "visible": {"bindTo": "IsShowTimeZone"},
 // Element style.
 "wrapClass": ["subscriber-data", "timezone"],
 // Binding title to attribute.
 "timeZoneCaption": {"bindTo": "TimeZoneCaption"},
 // Binding cisty to attribute.
 "timeZoneCity": {"bindTo": "TimeZoneCity"}
 },
 // Element position in the parent container.
 "index": 2
 }
]
 };
 });

As a result, the contact's current local time and city are displayed.

4. Display style setup

During the previous steps, the configuration object placed in the diff array already has preliminary display settings.

Use the index property to adjust element positioning. By default, the elements are placed one after another in the
SubscriberSearchResultItemContainer:

the first element is subscriber photo with index “0”,
then subscriber information with index "1",
then subscriber phone numbers with index "2".

If you set the index value to "2", the element will be displayed between subscriber information and the list of phone
numbers.

Use the subscriber-data CSS-class to set styles for text elements in the schema. The element generator provides the
wrapClass property to manage styles.

Create the UsrSubscriberSearchResultItemCss module in the custom package for positioning of the element and its
visual highlighting.

In the LESS tab of the created module, add CSS-selectors for classes that will determine the required styles.

/* Display style setup for the added element.*/
.ctiPanelMain .search-result-items-list-container .timezone {
 /* Top padding.*/
 padding-top: 13px;
 /* Bottom margin.*/
 margin-bottom: -10px;
}
/* Setting styles to display contact time.*/
.ctiPanelMain .search-result-items-list-container .timezone-caption {
 /* Left padding.*/
 padding-left: 10px;
 /* Text color.*/
 color: rgb(255, 174, 0);
 /* Text font - bold.*/

Bpm’online developer guide 393

 font-weight: bold;
}
/* Display style setup for contact city.*/
.ctiPanelMain .search-result-items-list-container .timezone-city {
 /* Left padding.*/
 padding-left: 10px;
}

To load module with styles, add the following code to the module and save the schema.

define("UsrSubscriberSearchResultItemCss", [],
 function() {
 return {};
 });

Add the UsrSubscriberSearchResultItemCss module to the SubscriberSearchResultItem dependencies.

After saving the schema and refreshing the application page, the subscriber search results will be displayed as shown
on Fig. 1.

How to display the difference between dates on edit page fields

Bpm’online uses the capabilities of the standard Date JavaScript‑object to work with dates on the client’s side of the
application. For example, the Date.prototype.getDate() method is used to display the day of the month for a specific
date in accordance with the local time, and the Date.prototype.setDate() method is used to set the day of the month
relative to the current month. All properties and methods of the Date object may be found in the documentation.

For example, when creating a new contract, the [End Date] field should display a date that is 5 days longer than the
[Start Day] field. To do this:

1. Create a replacing ContactPageV2 edit page schema of the [Contracts] section. The procedure for creating a
replacing client schema is covered in the “Creating a custom client module schema”.

2. Add the following code to the created module:

define("ContractPageV2", [], function() {
 return {
 entitySchemaName: "Contract",
 methods: {
 // The date is set after the object is initialized.
 onEntityInitialized: function() {
 // Checking the mode of the new record.
 if ((this.isAddMode() && this.Ext.isEmpty(this.get("EndDate")))) {
 // Calling an auxiliary method.
 this.setEndDate(this.get("StartDate"), 5);
 }
 // Calling the base functionality.
 this.callParent(arguments);
 },
 // Auxiliary method for setting the date.
 setEndDate: function(date, dateOffsetInDays) {
 var offsetDate = new Date();
 offsetDate.setDate(date.getDate() + dateOffsetInDays);
 this.set("EndDate", offsetDate);
 }
 }
 };
});

Bpm’online developer guide 394

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/getDate
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/setDate
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date

3. Save the changes.

4. Refresh browser page.

As a result, while adding a new contract. its end date will be 5 days ahead of its start date.

Fig. 1. Case result

NOTE

In order for the date in the [End Date] field to be recalculated automatically when the user changes the [Start
Day] field, it is necessary to use the functionality of the computed fields. Please refer to the “Adding
calculated fields” article for more details.

How to block fields of the edit page

Introduction
During the development of the bpm’online custom functions you may need to block all fields and details on the page
when specific condition is met. Mechanism of blocking of the edit page fields can simplify the process without
creating a number of business rules.

More information about blocking of the page fields can be found in the “Blocking edit page fields ”.

ATTENTION

Blocking mechanism is implemented in the bpm'online version 7.11.1 or higher.

Case description
Block all the fields on the invoice edit page if the invoice is on the [Paid] stage. The [Payment status] field and the
[Activities] detail should stay editable.

ATTENTION

If the field has binding for the enabled property in the diff array element or in the BINDPARAMETER

Bpm’online developer guide 395

business rule, the mechanism will not block this field.

Case implementation algorithm
1. Create a replacing schema of the invoice edit page

Create a replacing client module and specify the [Invoice edit page] schema as parent (Fig. 1). The procedure for
creating a replacing client schema is covered in the “Creating a custom client module schema” article.

Fig. 1. The properties of the [Invoice edit page] schema

2. Add schema source code

Add the source code of implementation of the [Invoice edit page] replacing schema on the [Source code] panel of
schema designer. The source code is available below:

define("InvoicePageV2", ["InvoiceConfigurationConstants"],
function(InvoiceConfigurationConstants) {
 return {
 entitySchemaName: "Invoice",
 attributes: {
 // Status of the blocking of fields.
 "IsModelItemsEnabled": {
 dataValueType: Terrasoft.DataValueType.BOOLEAN,
 value: true,
 dependencies: [{
 columns: ["PaymentStatus"],
 methodName: "setCardLockoutStatus"
 }]
 }
 },
 methods: {
 getDisableExclusionsColumnTags: function() {
 // The [Payment status] field should not be blocked.
 return ["PaymentStatus"];
 },

 getDisableExclusionsDetailSchemaNames: function() {
 // Also, the "Activity" detail is not blocked.
 return ["ActivityDetailV2"];
 },
 setCardLockoutStatus: function() {
 // Get current invoice status.
 var state = this.get("PaymentStatus");
 // If the current account status is "paid", then block the fields.
 if (state.value ===
InvoiceConfigurationConstants.Invoice.PaymentStatus.Paid) {

Bpm’online developer guide 396

 // Set a property that stores the field lock flag.
 this.set("IsModelItemsEnabled", false);
 } else {
 // Otherwise, unlock the fields.
 this.set("IsModelItemsEnabled", true);
 }
 },
 onEntityInitialized: function() {
 this.callParent(arguments);
 // Set the status of the blocking of fields.
 this.setCardLockoutStatus();
 }
 },
 diff: /**SCHEMA_DIFF*/[
 {
 "operation": "merge",
 "name": "CardContentWrapper",
 "values": {
 "generator": "DisableControlsGenerator.generatePartial"
 }
 }
]/**SCHEMA_DIFF*/
 };
});

The IsModelItemsEnabled attribute will be defined and methods for blocking and unlocking the field of the invoice
edit page will be implemented. The CardContentWrapper container of the edit page is used as the container of the
blocking mechanism.

Save the schema after adding the source code. Then clear the browser cache.

As a result, the most of the invoice fields will be blocked after changing the status to the [Paid]. Fields and details
specified in the exceptions for blocking will stay unlocked. The fields that have the enabled property explicitly set to
true will stay unlocked

Fig. 2. Case result

Bpm’online developer guide 397

Adding details

Overview
Details are the elements of the section record edit page that display supplemental data for a primary section
object. The details displayed on the tabs of section edit page in the tabs container.

There are four main types of details:

1. A detail with adding page is a standard bpm’online detail. It can be created manually or added to the section
via the detail wizard. More information about detail creation can be found in the “Adding an edit page
detail” and “Creating a detail in wizards” articles.

2. A detail with editable list different from the standard detail. The data can be added, deleted and modified
directly in the detail. More information about creation of the detail with editable list can be found in the
“Adding a detail with an editable list” article.

3. A detail with selection from lookup – data are selected from a lookup displayed in the modal window. More
information about detail creation can be found in the “Creating a detail with selection from lookup”
article.

4. A detail with edit fields – data are filled in and edited in the detail data fields. More information about detail
creation can be found in the “Creating a custom detail with fields” and “Advanced settings of a
custom detail with fields” article.

More information about the details of each type is described in the “Details” article of the “Application interface
and structure” section.

ATTENTION

Main schemas, classes, methods and properties of detail functions are described in the “Details” article of the
“Controls” section.

Contents
Adding an edit page detail
Adding a detail with an editable list
Creating a detail with selection from lookup
Adding multiple records to a detail
Creating a custom detail with fields
Advanced settings of a custom detail with fields
Creating a detail in wizards
Adding the [Attachments] detail
Displaying additional columns on the [Attachments] tab
How to hide menu commands of the detail with list

Adding an edit page detail

General provisions

Bpm’online developer guide 398

https://academy.bpmonline.com/documents/sales-enterprise/7-11/detail-wizard

Details are special elements of section edit pages, which display additional data that is not stored in the fields of the
section primary object. The details are displayed on the edit page tabs in the tab container.

There are four basic types of details:

details with a record edit page;
details with edit fields;
details with editable list;
details with lookup selection.

For more information on details, please see the "Details" article in the "Application interface and structure"
section.

An edit page detail is a standard bpm'online detail that can be added to sections using the Detail WIzard. Below is an
example of adding an edit page detail without the use of the Detail Wizard.

General procedure for adding an edit page detail to an
existing section
To add a custom edit page detail:

1. Create a detail object schema.
2. Create a detail schema.
3. Create a detail edit page schema.
4. Set up the detail in a replacing section edit page schema.
5. Register links between object, detail and detail page schemas, using special SQL queries to system tables.
6. Set up the detail fields.

NOTE!

To bind custom schemas, make changes to the SysModuleEdit, SysModulentity and SysDetail system tables in
the bpm'online database, using SQL queries.

Be extremely careful when composing and executing SQL queries to the database. Executing an invalid query
may damage existing data and disrupt system operation.

Case description
Create a custom [Couriers] detail in the [Orders] section. The detail must contain the list of couriers for the current
order.

Case implementation algorithm

1. Create detail object schema

In the settings mode, go to the [Configuration] section, open the [Schemas] tab and execute the [Add] > [Object]
menu command (Fig. 1).

Fig. 1. Adding a detail object schema

Bpm’online developer guide 399

https://academy.bpmonline.com/documents/sales-enterprise/7-9/detail-wizard

In the opened Object Designer, fill out the properties of the detail object schema, as shown on Fig. 2.

Fig. 2. Setup of detail object schema properties

Add a lookup column [Order], which will connect the detail object with the section object, and a lookup [Contact]
column where the courier's contact will be stored. Both columns must be required. Column properties setup is
shown on Fig. 3 and Fig. 4.

Fig. 3. Specifying the properties of the [Order] column

Bpm’online developer guide 400

Fig. 4. Specifying the properties of the [Contact] column

Object schema must be saved and published.

2. Create detail schema

In the settings mode, go to the [Configuration] section, open the [Schemas] tab and execute the [Add] > [Module]
menu command (Fig. 1).

The new module must inherit the functionality of the base detail schema with list BaseGridDetailV2, which is
available in the NUI package. To do this, specify this schema as the parent for the created detail schema (Fig. 5). The
rest of the properties must be set up as shown on Fig. 5. In the [Package] property, the system will specify the
current package name.

Fig. 5. Detail schema properties

Bpm’online developer guide 401

Set the Couriers value for the [Caption] localizable string of the detail schema (Fig. 6). The [Caption] string contains
detail title, shown on the edit page.

Fig. 6. Setting the value of the [Caption] string

Below is the detail schema source code, which must be added to the [Source code] section of the client module
designer. The code defines the schema name and its connection to the object schema.

define("CourierDetail", [], function() {
 return {
 // Detail object schema name.
 entitySchemaName: "CourierInOrder",
 details: /**SCHEMA_DETAILS*/{}/**SCHEMA_DETAILS*/,
 methods: {},
 diff: /**SCHEMA_DIFF*/[]/**SCHEMA_DIFF*/
 };
});

Save the detail schema to apply the changes.

3. Create detail edit page schema

In the settings mode, go to the [Configuration] section, open the [Schemas] tab and execute the [Add] > [Module]
menu command (Fig. 1).

The created detail edit page schema must inherit the functionality of base page schema BasePageV2, which is
available in the NUI package. To do this, specify this schema as parent (Fig. 7). The rest of the properties must be set

Bpm’online developer guide 402

up as shown on Fig. 7. In the [Package] property, the system will specify the current package name.

Fig. 7. Detail edit page schema properties

To set up fields displayed on the detail edit page, add the following code to the [Source code] section of the client
module designer. In this code, in the diff array, configuration objects of metadata for adding, setting location and
binding the order and courier fields are specified.

define("CourierDetailPage", [], function() {
 return {
 // Detail object schema name.
 entitySchemaName: "CourierInOrder",
 details: /**SCHEMA_DETAILS*/{}/**SCHEMA_DETAILS*/,
 // Array with modifications.
 diff: /**SCHEMA_DIFF*/[
 // Metadata for adding the [Order] field.
 {
 "operation": "insert",
 //НField name.
 "name": "Order",
 "values": {
 // Field position setup on the edit page.
 "layout": {
 "colSpan": 12,
 "rowSpan": 1,
 "column": 0,
 "row": 0,
 "layoutName": "Header"
 },
 // Binding to the [Order] column of the object schema.
 "bindTo": "Order"
 },
 "parentName": "Header",
 "propertyName": "items",
 "index": 0
 },
 // Metadata for adding the [Contact] field.
 {
 "operation": "insert",
 //Field name.
 "name": "Contact",
 "values": {
 // Field position setup on the edit page.
 "layout": {
 "colSpan": 12,
 "rowSpan": 1,
 "column": 12,
 "row": 0,

Bpm’online developer guide 403

 "layoutName": "Header"
 },
 // Binding to the [Contact] column of the object schema.
 "bindTo": "Contact"
 },
 "parentName": "Header",
 "propertyName": "items",
 "index": 1
 }
]/**SCHEMA_DIFF*/,
 methods: {},
 rules: {}
 };
});

Save the detail edit page schema to apply the changes.

4. Set up detail in replacing section edit page schema

To display the detail on the order edit page, first create a replacing client module, and specify the order edit page
OrderPageV2 (located in the Order package) as the parent (Fig. 8). For more information on creating replacing
schemas, please see the "Creating a custom client module schema" article.

Fig. 8. Order edit page replacing schema properties

To display the [Couriers] detail on the [Delivery] tab of the order edit page, add the following source code. In the
details section, a new CourierDetail model will be defined, and its location on the edit page will be specified in the
modification section of the diff array.

define("OrderPageV2", [], function() {
 return {
 // Name of the edit page object schema.
 entitySchemaName: "Order",
 // List of edit page details being added.
 details: /**SCHEMA_DETAILS*/{
 // [Couriers] detail setup.
 "CourierDetail": {
 // Detail schema name.
 "schemaName": "CourierDetail",
 // Detail object schema name.
 "entitySchemaName": "CourierInOrder",
 // Filtering contacts for current order only.
 "filter": {
 // Detail object schema column.
 "detailColumn": "Order",
 // Section object schema column.
 "masterColumn": "Id"
 }
 }

Bpm’online developer guide 404

 }/**SCHEMA_DETAILS*/,
 // Array of modifications.
 diff: /**SCHEMA_DIFF*/[
 // Metadata for adding the [Couriers] detail.
 {
 "operation": "insert",
 // Detail name.
 "name": "CourierDetail",
 "values": {
 "itemType": 2,
 "markerValue": "added-detail"
 },
 // Parent container ([Delivery] tab).
 "parentName": "OrderDeliveryTab",
 // Container where detail is located.
 "propertyName": "items",
 // Index in the list of added elements.
 "index": 3
 }
]/**SCHEMA_DIFF*/,
 methods: {},
 rules: {}
 };
});

To apply the changes, the replacing page schema must be saved.

After this, the detail will be displayed on the edit page of the [Orders] section. New records cannot be added to the
detail until the connections between the detail schemas are registered.

5. Register connections between the schemas using SQL queries to system tables

To register connection between a detail object schema and detail schema, execute the following SQL query.

DECLARE
-- Schema name of the created detail.
@DetailSchemaName NCHAR(100) = 'CourierDetail',
-- Detail title.
@DetailCaption NCHAR(100) = 'Couriers',
--Schema name of the object, to which the detail is bound.
@EntitySchemaName NCHAR(100) = 'CourierInOrder'

INSERT INTO SysDetail(
 ProcessListeners,
 Caption,
 DetailSchemaUId,
 EntitySchemaUId
)
VALUES (
 0,
 @DetailCaption,
 (SELECT TOP 1 UId
 FROM SysSchema
 WHERE name = @DetailSchemaName),
 (SELECT TOP 1 UId
 FROM SysSchema
 WHERE name = @EntitySchemaName)
)

To register connection between the detail object schema and edit page schema, execute the following SQL query.

DECLARE
-- Schema name of the detail page

Bpm’online developer guide 405

@CardSchemaName NCHAR(100) = 'CourierDetailPage',
-- Object schema.
@EntitySchemaName NCHAR(100) = 'CourierInOrder',
-- Detail page caption.
@PageCaption NCHAR(100) = 'Page of detail "Courier In Order"',
-- Empty string.
@Blank NCHAR(100) = ''

INSERT INTO SysModuleEntity(
 ProcessListeners,
 SysEntitySchemaUId
)
VALUES(
 0,
 (SELECT TOP 1 UId
 FROM SysSchema
 WHERE Name = @EntitySchemaName
)
)

INSERT INTO SysModuleEdit(
 SysModuleEntityId,
 UseModuleDetails,
 Position,
 HelpContextId,
 ProcessListeners,
 CardSchemaUId,
 ActionKindCaption,
 ActionKindName,
 PageCaption
)
VALUES (
 (SELECT TOP 1 Id
 FROM SysModuleEntity
 WHERE SysEntitySchemaUId = (
 SELECT TOP 1 UId
 FROM SysSchema
 WHERE Name = @EntitySchemaName
)
),
 1,
 0,
 @Blank,
 0,
 (SELECT TOP 1 UId
 FROM SysSchema
 WHERE name = @CardSchemaName
),
 @Blank,
 @Blank,
 @PageCaption
)

Attention

To apply these changes on the application level, restart the application site in IIS, or compile the application in
the [Configuration] section.

6. Set up detail list columns

At this stage, the detail is completely operational, however contacts are not displayed on the detail, because the

Bpm’online developer guide 406

detail list does not have displayed columns specified for it. Go to the detail menu and set up columns to display (Fig.
9).

Fig. 9. Detail actions menu

See also:
Creating a detail in wizards
Adding a detail with an editable list
Creating a detail with selection from lookup
Creating a custom detail with fields

Adding a detail with an editable list

Introduction
Details are elements of section edit pages. Details display records bound to the current section record by a lookup
field. These can be, for example, records from other sections, whose primary objects contain lookup columns linked
to the primary object of the current section. Details are displayed on tabs of section edit pages.

More information about details is available in the “Details” article of the “Application interface and structure”
section.

ATTENTION

A detail with an editable list is not a standard bpm'online detail and can not be added to sections using the
Detail Wizard.

Bpm’online developer guide 407

https://academy.bpmonline.com/documents?product=enterprise&ver=7&id=1403

To add a custom detail with editable list to an existing section:

1. Create a detail object schema.
2. Create ad configure the detail schema.
3. Set up the detail in the section edit page replacing schema.
4. Set up detail fields.

Case description
Create a custom [Courier services] detail in the [Orders] section. The detail should display a list of courier services
for the current order.

Source code
You can download the package with case implementation using the following link.

Case implementation algorithm
1. Creating a detail object schema.

Perform the [Add] – [Object] action on the [Schemas] tab of the [Configuration] section.

Fig. 1. Adding a detail object schema

For the created object schema (Fig. 2) specify following:

[Name] – "UsrCourierService”
[Title] – "CourierService"
[Parent object] – [Base object].

Fig. 2. Setup of detail object schema properties

Bpm’online developer guide 408

https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkCreateDetailWithEditableGrid_18.05.31_11.28.04.zip

Add the [Order] lookup column to the object schema establishing connection with the [Orders] section and the
[Account] lookup column containing the account carrying out delivery for this order. Mark both columns as
“required” to avoid adding empty records. Column setup is shown in fig. 3 and fig. 4.

Fig. 3. The [Order] column properties setup

Fig. 4. The [Account] column properties setup

Bpm’online developer guide 409

Save and publish the object schema.

2. Creating a detail schema.

Run the [Add] – [Module] menu command on the [Schemas] tab of the [Configuration] section (fig. 1).

The created module should inherit the BaseGridDetailV2 base detail list schema functions (specify it as the parent
schema) defined in the NUI package.

Specify other properties (Fig. 5):

[Name] – “UsrCourierServiceDetail”
[Title] – “Courier Service in Order detail schema”.

Fig. 5. Detail schema properties

Set the [Courier Service] value for the [Caption] localizable string of the detail list schema (fig. 6). The [Caption]
localizable string stores the detail caption, displayed on the edit page.

Fig. 6. Setting the [Caption] localizable string value

Bpm’online developer guide 410

To make the list of the detail editable, make the following changes to the detail schema:

1. Add dependencies from the ConfigurationGrid, ConfigurationGridGenerator, ConfigurationGridUtilities
modules.

2. Connect the ConfigurationGridUtilities mixin.
3. Set the IsEditable attribute value to true.
4. In the diff array of modifications, add the configuration object in which the properties are set and

handler methods for detail list events are bound.

Below is the detail schema source code with comments:

// Defining schema and setting its dependencies from other modules.
define("UsrCourierServiceDetail", ["ConfigurationGrid", "ConfigurationGridGenerator",
 "ConfigurationGridUtilities"], function() {
 return {
 // Detail object schema name.
 entitySchemaName: "UsrCourierService",
 // Schema attribute list.
 attributes: {
 // Determines whether the editing is enabled.
 "IsEditable": {
 // Data type — logic.
 dataValueType: Terrasoft.DataValueType.BOOLEAN,
 // Attribute type — virtual column of the view model.
 type: Terrasoft.ViewModelColumnType.VIRTUAL_COLUMN,
 // Set value.
 value: true
 }
 },
 // Used mixins.
 mixins: {
 ConfigurationGridUtilities: "Terrasoft.ConfigurationGridUtilities"
 },
 // Array with view model modifications.
 diff: /**SCHEMA_DIFF*/[
 {
 // Operation type — merging.
 "operation": "merge",
 // Name of the schema element, with which the action is performed.
 "name": "DataGrid",
 // Object, whose properties will be joined with the schema element
properties.
 "values": {
 // Class name
 "className": "Terrasoft.ConfigurationGrid",
 // View generator must generate only part of view.
 "generator": "ConfigurationGridGenerator.generatePartial",
 // Binding the edit elements configuration obtaining event
 // of the active page to handler method.
 "generateControlsConfig": {"bindTo":
"generateActiveRowControlsConfig"},
 // Binding the active record changing event to handler method.
 "changeRow": {"bindTo": "changeRow"},

Bpm’online developer guide 411

 // Binding the record selection cancellation event to handler
method.
 "unSelectRow": {"bindTo": "unSelectRow"},
 // Binding of the list click event to handler method.
 "onGridClick": {"bindTo": "onGridClick"},
 // Actions performed with active record.
 "activeRowActions": [
 // [Save] action setup.
 {
 // Class name of the control element, with which the
action is connected.
 "className": "Terrasoft.Button",
 // Display style — transparent button.
 "style":
this.Terrasoft.controls.ButtonEnums.style.TRANSPARENT,
 // Tag.
 "tag": "save",
 // Marker value.
 "markerValue": "save",
 // Binding button image.
 "imageConfig": {"bindTo": "Resources.Images.SaveIcon"}
 },
 // [Cancel] action setup.
 {
 "className": "Terrasoft.Button",
 "style":
this.Terrasoft.controls.ButtonEnums.style.TRANSPARENT,
 "tag": "cancel",
 "markerValue": "cancel",
 "imageConfig": {"bindTo": "Resources.Images.CancelIcon"}
 },
 // [Delete] action setup.
 {
 "className": "Terrasoft.Button",
 "style":
this.Terrasoft.controls.ButtonEnums.style.TRANSPARENT,
 "tag": "remove",
 "markerValue": "remove",
 "imageConfig": {"bindTo": "Resources.Images.RemoveIcon"}
 }
],
 // Binding to method that initializes subscription to events
 // of clicking buttons in the active row.
 "initActiveRowKeyMap": {"bindTo": "initActiveRowKeyMap"},
 // Binding the active record action completion event to handler
method.
 "activeRowAction": {"bindTo": "onActiveRowAction"},
 // Identifies whether multiple records can be selected.
 "multiSelect": false
 }
 }
]/**SCHEMA_DIFF*/
 };
});

Save the created detail list schema to apply the changes.

3. Setting up detail in the section edit page replacing schema.

To display the detail on the order edit page, create a client replacing module and indicate the [Order edit page] as
the parent object, OrderPageV2) (fig. 7). Creating a replacing page is covered in the “Creating a custom client
module schema” article.

Bpm’online developer guide 412

Fig. 7. Properties of the order edit page replacing schema

To display the [Courier Service] detail on the [Delivery] tab of the order edit page, add the following source code. It
defines a new UsrCourierServiceDetail detail in the details section and its location on the order edit page is
specified in the diff modification array section.

define("OrderPageV2", [], function() {
 return {
 // Name of the edit page object schema.
 entitySchemaName: "Order",
 // List of edit page details being added.
 details: /**SCHEMA_DETAILS*/{
 // [Courier services] detail setup.
 "UsrCourierServiceDetail": {
 // Detail schema name.
 "schemaName": "UsrCourierServiceDetail",
 // Detail object schema name.
 "entitySchemaName": "UsrCourierService",
 // Filtering displayed contacts for current order only.
 "filter": {
 // Detail object schema column.
 "detailColumn": "UsrOrder",
 // Section object schema column.
 "masterColumn": "Id"
 }
 }
 }/**SCHEMA_DETAILS*/,
 // Array with modifications.
 diff: /**SCHEMA_DIFF*/[
 // Metadata for adding the [Courier services] detail.
 {
 "operation": "insert",
 // Detail name.
 "name": "UsrCourierServiceDetail",
 "values": {
 "itemType": Terrasoft.core.enums.ViewItemType.DETAIL,
 "markerValue": "added-detail"
 },
 // Containers, where the detail is located.
 // Detail is placed on the [Delivery] tab.
 "parentName": "OrderDeliveryTab",
 "propertyName": "items",
 // Index in the list of added elements.
 "index": 3

Bpm’online developer guide 413

 }
]/**SCHEMA_DIFF*/
 };
});

Save a replacing schema of the edit page

4. Setup of detail list columns.

At this stage, the detail is completely operational, however accounts are not displayed on the detail, because the
detail list does not have displayed columns specified for it. Go to the detail menu and set up the columns to be
displayed (Fig. 8)

Fig. 8. Detail action menu

Detail wizard, Section wizard and details with editable lists
A detail with an editable list is not a standard bpm'online detail and can not be added to sections using the Detail
Wizard. If you try perform the [Detail setup] action (Fig. 8), bpm’online will display the “detail is not registered”
message. The Section wizard displays a similar message (Fig. 9).

Fig. 9. Unregistered detail in the Section wizard

Usually details with editable lists do not require registration. However, if you still need to register such a detail for
some reason, use the following SQL script:

DECLARE

Bpm’online developer guide 414

https://academy.terrasoft.ru/documents/sales-enterprise/7-9/master-detaley
https://academy.terrasoft.ru/documents/sales-enterprise/7-9/master-detaley
https://academy.terrasoft.ru/documents/sales-enterprise/7-9/master-razdelov

 -- Name of the created pop-up summary view schema.
 @ClientUnitSchemaName NVARCHAR(100) = 'UsrCourierServiceDetail',
 -- Name of the object schema, to which the pop-up summary is bound.
 @EntitySchemaName NVARCHAR(100) = 'UsrCourierService',
 -- Detail name.
 @DetailCaption NVARCHAR(100) = 'Courier service'

INSERT INTO SysDetail(Caption, DetailSchemaUId, EntitySchemaUId)
VALUES(@DetailCaption,
 (SELECT TOP 1 UId
 from SysSchema
 WHERE Name = @ClientUnitSchemaName),
 (SELECT TOP 1 UId
 from SysSchema
 WHERE Name = @EntitySchemaName))

ATTENTION

To register a custom detail, make changes to the SysDetails table in the bpm’online database using the SQL
query.

Pay high attention to creating and executing the SQL query. Executing an incorrect SQL query can damage the
existing data and disrupt the system.

The detail becomes available in the corresponding lookup and displayed as registered in the section wizard after you
update the page. After this you can use the Section wizard to add this detail to other tabs of the [Orders] edit page.

Fig. 9. Registered detail is displayed in the Section wizard

See also
Creating a detail in wizards
Adding a detail with an editable list
Creating a detail with selection from lookup
Creating a custom detail with fields

Creating a detail with selection from lookup

Introduction
Details are elements of section edit pages. Details display records bound to the current section record by a lookup
field. These can be, for example, records from other sections, whose primary objects contain lookup columns linked
to the primary object of the current section. Details are displayed on tabs of section edit pages.

More information about details is available in the “Details” article of the “Application interface and structure”
section.

Bpm’online developer guide 415

Since a detail with selection from lookup is not a standard bpm’online detail, it is not enough to use section wizard
to add it to the section. Below we will describe a way of adding such a detail to a section edit page.

To add a custom detail with selection from lookup to an existing section:

1. Create a detail object schema.
2. Create a detail via detail wizard and add it to the section.
3. Configure the detail schema.
4. Set up detail fields.

Case description
Create the [Acceptance certificates] custom detail on the [Delivery] tab of the [Orders] section. The detail should
display the list of documents – acceptance certificates for the current order.

Source code
You can download the package with case implementation using the following link.

Case implementation algorithm
1. Creating a detail object schema

Run the [Add] – [Object] menu command on the [Schemas] tab of the [Configuration] section (Fig. 1).

Fig. 1. Adding a detail object schema

Select the “Base object” as the parent object (Fig. 2).

Object properties:

[Name] – “UsrCourierCertInOrder”
[Title] – “Acceptance certificates for deliveries of orders”

Find more information about object schema property setup in object designer in the “Workspace of the Object
Designer” article.

Fig. 2. Setup of detail object schema properties

Bpm’online developer guide 416

https://academy.bpmonline.com/documents?product=enterprise&ver=7&id=1403
https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkCreateDetailWithModalLookup_18.05.24_02.38.38.zip

Add the [Order] lookup column to the object schema establishing connection with the [Orders] section and the
[Document] lookup column containing the acceptance certificate. Mark both columns as “required” to avoid adding
empty records. Column setup is shown in fig. 3 and fig. 4.

Fig. 3. The [Order] column property setup

Fig. 4. The [Document] column property setup

Bpm’online developer guide 417

Save and publish the object schema.

2. Creating a detail and adding it to the section

Via detail wizard create the [Acceptance certificates] detail (Fig. 5). Add the detail to the [Delivery] tab of the
[Orders] section page via section wizard (Fig. 6).

Fig. 5. Creating the detail

Fig. 6. Adding the detail to the section

Bpm’online developer guide 418

https://academy.terrasoft.ru/documents?product=enterprise&ver=7&id=1403

As a result, the UsrSchema1Detail detail schema and the OrderPageV2 section replacing schema will be created in
the development package.

ATTENTION

We recommend changing the name of the detail schema to a more unique name, since the auto generated
name can be duplicated in a different development package. We replaced the name for UsrCourierCertDetail
in the current case.

Change the detail schema name for a new one in the OrderPageV2 section replacing schema.

3. Configuring the detail

Change the source code of the created detail schema:

1. Add dependency from the ConfigurationEnums module.
2. Add the onDocumentInsert(), onCardSaved() event handler-methods, the openDocumentLookup() method

of calling the modal lookup window and additional data control methods.
3. Add the necessary configuration objects to the diff modification array.

The Terrasoft.EntitySchemaQuery class is used for executing database queries in the current case. You can learn
more about using EntitySchemaQuery in the “The use of EntitySchemaQuery for creation of queries in
database” article. To simplify the case, we blocked the detail menu options that enable editing and copying detail
list records.

Source code of the detail schema:

// Defining the shcema and setting up its dependencies from other modules.
define("UsrCourierCertDetail", ["ConfigurationEnums"],
 function(configurationEnums) {
 return {
 // Name of the detail object schema.
 entitySchemaName: "UsrCourierCertInOrder",
 // Detail schema methods.
 methods: {
 //Returns columns selected by query.
 getGridDataColumns: function() {
 return {

Bpm’online developer guide 419

 "Id": {path: "Id"},
 "Document": {path: "UsrDocument"},
 "Document.Number": {path: "UsrDocument.Number"}
 };
 },

 //Configures and displays modal lookup window.
 openDocumentLookup: function() {
 //Configuration object
 var config = {
 // Name of the object schema whose records will be displayed
in the lookup.
 entitySchemaName: "Document",
 // Multiple selection option.
 multiSelect: true,
 // Columns used in the lookup, e.g., for sorting.
 columns: ["Number", "Date", "Type"]
 };
 var OrderId = this.get("MasterRecordId");
 if (this.Ext.isEmpty(OrderId)) {
 return;
 }
 // The [EntitySchemaQuery] class instance.
 var esq = this.Ext.create("Terrasoft.EntitySchemaQuery", {
 // Setting up the root schema.
 rootSchemaName: this.entitySchemaName
 });
 // Adding the [Id] column.
 esq.addColumn("Id");
 // Adding the [Id] column for the [Document] schema.
 esq.addColumn("Document.Id", "DocumentId");
 // Creating and adding filters to query collection.
 esq.filters.add("filterOrder",
this.Terrasoft.createColumnFilterWithParameter(
 this.Terrasoft.ComparisonType.EQUAL, "UsrOrder", OrderId));
 // Receiving the whole record collection and its display in the
modal lookup window.
 esq.getEntityCollection(function(result) {
 var existsDocumentsCollection = [];
 if (result.success) {
 result.collection.each(function(item) {

existsDocumentsCollection.push(item.get("DocumentId"));
 });
 }
 // Adding filter to the configuration object.
 if (existsDocumentsCollection.length > 0) {
 var existsFilter =
this.Terrasoft.createColumnInFilterWithParameters("Id",
 existsDocumentsCollection);
 existsFilter.comparisonType =
this.Terrasoft.ComparisonType.NOT_EQUAL;
 existsFilter.Name = "existsFilter";
 config.filters = existsFilter;
 }
 // Call of the modal lookup window
 this.openLookup(config, this.addCallBack, this);
 }, this);
 },

 // Event handler of saving the edit page.
 onCardSaved: function() {

Bpm’online developer guide 420

 this.openDocumentLookup();
 },

 //Opens the document lookup if the order edit page has been saved.
 addRecord: function() {
 var masterCardState = this.sandbox.publish("GetCardState", null,
[this.sandbox.id]);
 var isNewRecord = (masterCardState.state ===
configurationEnums.CardStateV2.ADD ||
 masterCardState.state === configurationEnums.CardStateV2.COPY);
 if (isNewRecord === true) {
 var args = {
 isSilent: true,
 messageTags: [this.sandbox.id]
 };
 this.sandbox.publish("SaveRecord", args, [this.sandbox.id]);
 return;
 }
 this.openDocumentLookup();
 },

 // Adding the selected products.
 addCallBack: function(args) {
 // Class instance of the BatchQuery package query.
 var bq = this.Ext.create("Terrasoft.BatchQuery");
 var OrderId = this.get("MasterRecordId");
 // Collection of the selected documents from the lookup.
 this.selectedRows = args.selectedRows.getItems();
 // Collection passed over to query.
 this.selectedItems = [];
 // Copying the necessary data.
 this.selectedRows.forEach(function(item) {
 item.OrderId = OrderId;
 item.DocumentId = item.value;
 bq.add(this.getDocumentInsertQuery(item));
 this.selectedItems.push(item.value);
 }, this);
 // Executing the package query if it is not empty.
 if (bq.queries.length) {
 this.showBodyMask.call(this);
 bq.execute(this.onDocumentInsert, this);
 }
 },

 //Returns query for adding the current object.
 getDocumentInsertQuery: function(item) {
 var insert = Ext.create("Terrasoft.InsertQuery", {
 rootSchemaName: this.entitySchemaName
 });
 insert.setParameterValue("UsrOrder", item.OrderId,
this.Terrasoft.DataValueType.GUID);
 insert.setParameterValue("UsrDocument", item.DocumentId,
this.Terrasoft.DataValueType.GUID);
 return insert;
 },

 //Method called when adding records to the detail record list.
 onDocumentInsert: function(response) {
 this.hideBodyMask.call(this);
 this.beforeLoadGridData();
 var filterCollection = [];
 response.queryResults.forEach(function(item) {

Bpm’online developer guide 421

 filterCollection.push(item.id);
 });
 var esq = Ext.create("Terrasoft.EntitySchemaQuery", {
 rootSchemaName: this.entitySchemaName
 });
 this.initQueryColumns(esq);
 esq.filters.add("recordId",
Terrasoft.createColumnInFilterWithParameters("Id", filterCollection));
 esq.getEntityCollection(function(response) {
 this.afterLoadGridData();
 if (response.success) {
 var responseCollection = response.collection;
 this.prepareResponseCollection(responseCollection);
 this.getGridData().loadAll(responseCollection);
 }
 }, this);
 },

 // Method called when deleting records from the detail record list.
 deleteRecords: function() {
 var selectedRows = this.getSelectedItems();
 if (selectedRows.length > 0) {
 this.set("SelectedRows", selectedRows);
 this.callParent(arguments);
 }
 },

 // Hide the [Copy] menu option.
 getCopyRecordMenuItem: Terrasoft.emptyFn,
 // Hide the [Edit] menu option.
 getEditRecordMenuItem: Terrasoft.emptyFn,
 // Returns the default filter column name.
 getFilterDefaultColumnName: function() {
 return "UsrDocument";
 }
 },
 // Modification array.
 diff: /**SCHEMA_DIFF*/[
 {
 // Operation type - merging.
 "operation": "merge",
 // Name of the schema element under operation.
 "name": "DataGrid",
 // The object, whose properties will be combined with the schema
element properties.
 "values": {
 "rowDataItemMarkerColumnName": "UsrDocument"
 }
 },
 {
 // Operation type - merging.
 "operation": "merge",
 // Name of the schema element under operation.
 "name": "AddRecordButton",
 // The object, whose properties will be combined with the schema
element properties.
 "values": {
 "visible": {"bindTo": "getToolsVisible"}
 }
 }
]/**SCHEMA_DIFF*/
 };

Bpm’online developer guide 422

 }
);

4. Setting up detail list columns

At this stage the detail is completely operable but contact records are not displayed on the detail as the display
columns are not specified. Call the detail action menu and set up the column display (fig. 7).

Fig. 7. Detail action menu

As a result, the new detail will enable adding records from the document lookup via the modal window (Fig. 8).

Fig. 8. Case result

Bpm’online developer guide 423

See also
Creating a detail in wizards
Adding a detail with an editable list
Adding an edit page detail
Creating a custom detail with fields

Adding multiple records to a detail

Introduction
Normally, a detail allows you to only add one record. Adding multiple entries to a detail is done through the
LookupMultiAddMixin mixin.

A mixin is a class designed to extend the functions of other classes. Learn more about mixins in the “Mixins. The
"mixins" property”.

The LookupMultiAddMixin is designed to extend the detail schemas. It provides an opportunity to add multiple
lookup records to the detail at the same time.

The sequence of adding the multiple records selection functionality to a detail:

1. Create a replacing schema of the detail.

2. Use mixin methods instead of base detail methods.

Case description
Implement the possibility of multiple records selection in the [Contacts] detail on the [Sales] section records edit
page.

Source code
You can download the package with case implementation using the following link.

Case implementation algorithm
1. Create a replacing view model schema of a detail

Create a detail replacing schema in the development package (Fig. 1). The procedure for creating a replacing schema
is covered in the “Creating a custom client module schema”.

Fig. 1. Adding replacing client module

Bpm’online developer guide 424

https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkAddMultipleRecordsToDetail_18.05.24_02.50.27.zip

Select the OpportunityContactDetailV2 schema as the parent object (Fig. 2).

Fig. 2. Properties of the replacing client module

2. Use mixin methods instead of base detail methods.

To use the LookupMultiAddMixin mixin in a schema, add it to the mixins property and initialize it in the pre-
defined init() schema method. Learn more about pre-defining the init() method in the “ Modular development
principles in bpm'online” article.

To implement the required functionality, you need to pre-define the “add” button displaying methods
(getAddRecordButtonVisible()), saving detail page methods (onCardSaved()), and adding a detail record methods
(addRecord()).

Saving a detail page and adding record methods include the method of calling the help window for multiple selection
openLookupWithMultiSelect() and the associated method getMultiSelectLookupConfig() which configures the help
window, is used. The description and parameters of these methods are given in Table 1.

Table 1. Methods for calling and configuring the help window

Methods. Description

openLookupWithMultiSelect(isNeedCheckOfNew) Opens a lookup window with a multiple selection option The
isNeedCheckOfNew {bool} parameter indicates the need to
check if the record is new.

getMultiSelectLookupConfig() Returns the configuration object for the help window. Object
properties:

rootEntitySchemaName – root object schema;

rootColumnName – a connected column that indicates the

Bpm’online developer guide 425

root schema record;

relatedEntitySchemaName – connected schema;

relatedColumnName – a column that indicates the
connected schema record.

In this case the help window will pull data from the OpportunityContact table using the Opportunity and Contact
columns.

Source code of the detail schema:

define("OpportunityContactDetailV2", ["LookupMultiAddMixin"], function() {
 return {
 mixins: {
 // Connecting the mixin to the schema.
 LookupMultiAddMixin: "Terrasoft.LookupMultiAddMixin"
 },
 methods: {
 // Overriding the base method for initializing the schema.
 init: function() {
 this.callParent(arguments);
 //Initializing the mixin.
 this.mixins.LookupMultiAddMixin.init.call(this);
 },
 // Overriding the base method for displaying the "Add" button.
 getAddRecordButtonVisible: function() {
 //Displaying the "add" button if the detail is maximized, even if the
detail edit page is not implemented.
 return this.getToolsVisible();
 },
 // Overriding the base method.
 // The save event handler for the detail edit page.
 onCardSaved: function() {
 // Opens the window for multiple record selection.
 this.openLookupWithMultiSelect();
 },
 // Overriding the base method of adding a detail record.
 addRecord: function() {
 // Opens the window for multiple records selection.
 this.openLookupWithMultiSelect(true);
 },
 // A method that returns a window configuration object.
 getMultiSelectLookupConfig: function() {
 return {
 // Root schema — [Opportunities].
 rootEntitySchemaName: "Opportunity",
 // Root schema column.
 rootColumnName: "Opportunity",
 // Connected schema — [Contact].
 relatedEntitySchemaName: "Contact",
 // Root schema column.
 relatedColumnName: "Contact"
 };
 }
 }
 };
});

After saving the schema and reloading the application page, the user will be able to select multiple records from the
lookup (Fig. 4) by clicking the “add” detail record button (Fig. 3). All selected records will be added to the [Contacts]

Methods. Description

Bpm’online developer guide 426

detail of the [Opportunities] section record edit page (Fig. 5).

Fig. 3. Adding multiple records to a detail

Fig. 4. Selecting necessary records from a lookup

Fig. 5. Case result: All selected records are added to a detail

Creating a custom detail with fields

Introduction
A detail with fields can include multiple field groups. The base detail with fields is implemented in the
BaseFieldsDetail schema of the BaseFinance package, which is available in bpm'online bank customer journey, bank
sales and lending. The detail record view model is implemented in the BaseFieldRowViewModel schema.

Base detail with fields enables you to:

Add detail records without saving a page.

Bpm’online developer guide 427

Work with a detail like you would with an edit page.
Use the base field validation with the ability to add a custom one.
Add a virtual record.
Expand record behavior logic.

A custom detail with fields can be created with the help of the base detail (a custom detail schema should be
inherited from the base detail schema).

Case description
Implement a custom detail with fields for document registration. The detail should be populated with records that
include the document’s [Number] and [Series] fields. The detail should be located on the [History] tab of the contact
edit page.

Case implementation algorithm
1. Create a detail object schema

Create a new object schema in a custom package with the following property values:

[Title] – “Registration document”.
[Name] – “UsrRegDocument”.

[Package] – the schema will be placed in this package after publishing. By default, this property contains
the name of the package selected prior to creating a schema. It can be populated with any value from the
drop-down list.
[Parent object] – “Base object”, implemented in the Base package.

Fig. 1. Object schema properties

Add three columns in the object structure. Column properties are listed in Table 1. Learn more about adding object
schema columns in the “Creating the entity schema” article.

Table 1. — Column properties of the UsrRegDocument detail object schema

Title Name Data Type
Contact UsrContact Lookup

Series UsrSeries Text (50 characters)

Bpm’online developer guide 428

Number UsrNumber Integer

Publish the schema to apply changes.

2. Create a view model schema for the custom detail with fields.

Add a custom schema([Schema of the Detail View Model with Fields]) in a custom package (Fig. 2).

Fig. 2. Adding a custom view model schema for the custom detail with fields

Property values for the created schema (Fig. 3):

[Title] – “Registration documents”.
[Name] – “UsrRegDocumentFieldsDetail”.

[Package] – the schema will be placed in this package after publishing. By default, this property contains
the name of the package selected prior to creating a schema. It can be populated with any value from the
drop-down list.
[Parent object] – "Base fields detail", implemented in the BaseFinance package.

Fig. 3. UsrRegDocumentFieldsDetail client schema properties

Bpm’online developer guide 429

Assign the “Registration documents” value to the localizable [Caption] string of the [Value] property.

Fig. 4. Localizable string properties

Create a module description and redefine the base getDisplayColumns() method, which returns column names
that are displayed as detail fields. By default, this method returns all required columns, as well as the column with
the set [Displayed value] checkbox in the object schema.

Schema source code:

define("UsrRegDocumentFieldsDetail", [],
 function() {
 return {
 entitySchemaName: "UsrRegDocument",
 diff: /**SCHEMA_DIFF*/ [], /**SCHEMA_DIFF*/
 methods: {
 getDisplayColumns: function() {
 return ["UsrSeries", "UsrNumber"];
 }
 }
 };
 });

Bpm’online developer guide 430

Save the schema to apply changes.

3. Create a replacing schema for the edit page

To do this, create a replacing schema of the contact edit page (ContactPageV2). Main replacing schema
properties (Fig. 5):

[Title] – “Display schema - Contact card”.
[Name] – “ContactPageV2”.

[Package] – the schema will be placed in this package after publishing. By default, this property contains
the name of the package selected prior to creating a schema. It can be populated with any value from the
drop-down list.
[Parent object] – “Display schema - Contact card”, implemented in the UIv2 package.

Fig. 5. The ContactPageV2 replacing schema properties

Make the following adjustments to the source code:

Create a module description
Add a detail in the “details” property
Add a configuration object of the detail's view model to the “diff“ modification array.

Schema source code:

define("ContactPageV2", [], function() {
 return {
 entitySchemaName: "Contact",
 details: /**SCHEMA_DETAILS*/ {
 // Adding a field with details.
 "UsrRegDocumentFieldsDetail": {
 // Name of the custom detail schema.
 "schemaName": "UsrRegDocumentFieldsDetail",
 // Filtering current contact's record details.
 "filter": {
 // Detail object column.
 "detailColumn": "UsrContact",
 // Contact's Id column.

Bpm’online developer guide 431

 "masterColumn": "Id"
 }
 }
 } /**SCHEMA_DETAILS*/ ,
 diff: /**SCHEMA_DIFF*/ [{
 // Adding a new element.
 "operation": "insert",
 // Element name.
 "name": "UsrRegDocumentFieldsDetail",
 // Value configuration object.
 "values": {
 // Element type.
 "itemType": Terrasoft.ViewItemType.DETAIL
 },
 // Container element name.
 "parentName": "HistoryTab",
 // Property name of the container element with the collection of nested
elements.
 "propertyName": "items",
 // The index of the element added to the collection.
 "index": 0
 }] /**SCHEMA_DIFF*/
 };
});

Save the schema to apply changes.

The [History] tab of the contact edit page should now have the custom detail with the [Registration documents]
fields (Fig. 6).

Fig. 6. Case result

ATTENTION

Register the detail with fields (similarly to the detail with the editable grid) in the system to make it visible
in detail and section wizards.

Advanced settings of a custom detail with fields

Introduction
A detail with fields can include multiple field groups. The base detail with fields is implemented in the

Bpm’online developer guide 432

BaseFieldsDetail schema of the BaseFinance package, which is available in bpm'online bank customer journey, bank
sales and lending. The detail record view model is implemented in the BaseFieldRowViewModel schema.

The process of creating a custom detail with fields is described in a separate Creating a custom detail with
fields.

Adding custom styles
Case description

Redefine the field signature style for a detail implemented in the “Creating a custom detail with fields” article.
The field signatures should be displayed in blue.

NOTE

You can override the basic CSS style classes for displaying detail records by using the
getLeftRowContainerWrapClass() and getRightRowContainerWrapClass() methods.

Case implementation algorithm

1. Create a module schema and define record view styles

ATTENTION

You can not set the styles in a view model schema of the edit page. It is necessary to create a new module
schema, define the styles and add the created module to module dependencies of a detail.

Create a new module schema in a custom package with the following property values:

[Title] – “UsrRegDocumentRowViewModel”.
[Name] – “UsrRegDocumentRowViewModel”.

[Package] – the schema will be placed in this package after publishing. By default, this property contains
the name of the package selected prior to creating a schema. It can be populated with any value from the
drop-down list.

Fig. 1. UsrRegDocumentFieldsDetail custom schema properties

Bpm’online developer guide 433

Create a module description, and define the Terrasoft.configuration.UsrRegDocumentRowViewModel class which
is inherited from Terrasoft.configuration.BaseFieldRowViewModel.

The source code of the schema:

define("UsrRegDocumentRowViewModel", ["BaseFieldRowViewModel"], function() {
 Ext.define("Terrasoft.configuration.UsrRegDocumentRowViewModel", {
 extend: "Terrasoft.BaseFieldRowViewModel",
 alternateClassName: "Terrasoft.UsrRegDocumentRowViewModel"
 });
 return Terrasoft.UsrRegDocumentRowViewModel;
});

Define the CSS view classes for the correct display of detail records. To do this, add the following CSS classes to the
LESS tab of the module designer:

.reg-document-left-row-container {
 .t-label {
 color: blue;
 }
}
.field-detail-row {
 width: 100%;
 display: inline-flex;
 margin-bottom: 10px;

 .field-detail-row-left {
 display: flex;
 flex-wrap: wrap;
 width: 100%;

 .control-width-15 {
 min-width: 300px;
 width: 50%;
 margin-bottom: 5px;
 }
 .control-width-15:only-child {
 width: 100% !important;
 }
 }
 .field-detail-row-left.singlecolumn {
 width: 50%;
 }
}

Save the schema to apply changes.

2. Modifying a replacing view model schema of a detail

To use the created module and its styles in a detail schema, add it to the dependency of the module defined in the
detail schema.

Additionally, add the following methods to a detail schema module:

getRowViewModelClassName() – returns the name of the record view model class to the detail.
getLeftRowContainerWrapClass() – returns the string array with CSS class names, used to generate the
views of record signature field containers.

The source code of the modified schema:

define("UsrRegDocumentFieldsDetail", ["UsrRegDocumentRowViewModel",
"css!UsrRegDocumentRowViewModel"],
 function() {
 return {

Bpm’online developer guide 434

 entitySchemaName: "UsrRegDocument",
 diff: /**SCHEMA_DIFF*/ [], /**SCHEMA_DIFF*/
 methods: {
 getDisplayColumns: function() {
 return ["UsrSeries", "UsrNumber"];
 },
 getRowViewModelClassName: function() {
 return "Terrasoft.UsrRegDocumentRowViewModel";
 },
 getLeftRowContainerWrapClass: function() {
 return ["reg-document-left-row-container", "field-detail-row"];
 }
 }
 };
 });

Save the schema to apply changes.

On the [History] tab of the contact edit page, the detail names will be displayed in blue (Fig. 2).

Fig. 2. Case result

Adding additional custom logic for detail records
Case description

Add the field validation to the [Number] field of the detail, implemented in the “Creating a custom detail with
fields” article. The field value can not be negative.

Case implementation algorithm

1. Adding a localizable string with the error message

In the module designer, add the localizable string on the [Structure] tab of the opened
UsrRegDocumentRowViewModel schema with the following property values

(Fig. 3):

[Name] – “NumberMustBeGreaterThenZeroMessage”.
[Value] – “Number must be greater thаn zero!”.

Fig. 3. Case result

Bpm’online developer guide 435

NOTE

A localized string is a schema resource. In order for its values to appear in the client part of the application,
add the UsrRegDocumentRowViewModelResources resource module to the dependencies of the
UsrRegDocumentRowViewModel module.

Save the schema to apply changes.

2. Adding the validation program logic

Add the following methods to the UsrRegDocumentRowViewModel module to implement the validation program
logic:

validateNumberMoreThenZero() – contains the validation logic of the field value.
setValidationConfig() – connects the [Number] column and the validateNumberMoreThenZero()
validation method.
Init() – an overridden base method that calls the base logic and the setValidationConfig() method.

Source code of the modified schema:

define("UsrRegDocumentRowViewModel", ["UsrRegDocumentRowViewModelResources",
"BaseFieldRowViewModel"],
 function(resources) {
 Ext.define("Terrasoft.configuration.UsrRegDocumentRowViewModel", {
 extend: "Terrasoft.BaseFieldRowViewModel",
 alternateClassName: "Terrasoft.UsrRegDocumentRowViewModel",
 validateNumberMoreThenZero: function(columnValue) {
 var invalidMessage;
 if (columnValue < 0) {
 invalidMessage =
resources.localizableStrings.NumberMustBeGreaterThanZeroMessage;
 }
 return {
 fullInvalidMessage: invalidMessage,
 invalidMessage: invalidMessage
 };
 },
 setValidationConfig: function() {
 this.addColumnValidator("UsrNumber",
this.validateNumberMoreThenZero);
 },
 init: function() {
 this.callParent(arguments);

Bpm’online developer guide 436

 this.setValidationConfig();
 }
 });
 return Terrasoft.UsrRegDocumentRowViewModel;
 });

Save the schema to apply changes.

When a negative value is entered in the [Number] field on the [History] tab of the contact edit page, a warning
message will be displayed (Fig. 4).

Fig. 4. Case result

Adding a virtual record
When a detail is loaded, adding virtual records enables you to display a field edit card immediately, without pressing
the [Add] button.

That requires defining the useVirtualRecord() method (returns true) in the UsrRegDocumentFieldsDetail detail
schema:

useVirtualRecord: function() {
 return true;
}

When opening a tab with a detail, a virtual record will be displayed (Fig. 5).

Fig. 5. Displaying a virtual record

Creating a detail in wizards

Introduction

Bpm’online developer guide 437

Detail is an element of the section record edit page, designed to display additional data related to the main section
object. Details are displayed on edit page tabs. The difference between details and section records is that details are
stored in a separate object, and the records in this database object are usually associated with the main section
record entity with the "many-to-one" ratio. Please refer to the “Details” article in the “Application interface and
structure” section for more information.

Details are standard bpm'online elements and can be added to the section by using a detail wizard or a section
wizard.

The general outline for adding a detail with an “add” page to an existing system section:

1. Create a detail object schema
2. Create a schema of a client detail list module and the schema of a detail edit page
3. Implement the detail on the section record edit page using the detail wizard.

Case description
Create a custom [Contact’s ID] detail in the [Contacts] section. The detail must display the contact’s ID number and
the document number. One contact may have several ID’s.

Case implementation algorithm
1. Creating a detail object schema

Learn more about adding object schema columns in the “Creating the entity schema” article.

Create an object schema with the following parameters (Fig. 1):

[Title] – “Contact Identity Card”.
[Name] — “UsrContactIdentityCard”.
[Package] — "Custom" (or a different custom package).
[Parent object] – “Base object”, implemented in the Base package.

Add three columns in the object structure. Column properties are listed in Table 1.

Table 1. – Column properties of the UsrRegDocument detail object schema

Title Name Data Type Lookup
Series UsrSeries Text (50 characters)

Text (50 characters)

–

Number UsrNumber Text (50 characters)

Text (50 characters)

–

Contact UsrContact Lookup Contact

Publish the schema to apply changes.

NOTE

Add columns in the detail wizard.

2. Creating a schema of the detail list client module and a schema of the detail edit
page.

ATTENTION

If the development needs to be carried out in a custom package, it needs to be specified in the [Current
package] system setting. Otherwise, the detail wizard will not be able to save the changes to the package used
for development.

Bpm’online developer guide 438

https://academy.bpmonline.com/documents/sales-enterprise/7-10/detail-wizard
https://academy.bpmonline.com/documents/sales-enterprise/7-10/section-wizard
https://academy.bpmonline.com/documents/sales-enterprise/7-10/section-wizard

To create a new detail in a wizard, go to the [Detail wizard] section in the [System setup] group of the system
designer.

On the [DETAIL] step, specify the title of the detail and select the main detail object (Fig. 1).

Fig. 1. The [DETAIL] step in the detail wizard

Arrange the required detail columns on the [PAGE] step.

Fig. 2. The [PAGE] step in the detail wizard

Save the detail when the setup is done.

As a result, the custom package will have a schema of the detail list client module and a schema of the detail edit
page.

3. Implement the detail on the section record edit page using the detail wizard

Open the detail wizard in the [Contacts] section, and select [NEW DETAIL] on the [PAGE] step. In the opened
window, select the [Contact’s ID] detail and configure the connection between detail object columns and the section
object (Fig. 3).

Fig. 3. Detail properties setup

Bpm’online developer guide 439

The detail will be displayed in the section record page constructor (Fig. 4).

Fig. 4. A detail in the section record page constructor

Save the changes when the section record page setup is done.

As a result, the custom package will have a replacing client module of a section page and a schema of the section
record edit page.

Upon refreshing, the detail will be displayed on a record edit page.

Fig. 5. Case result

Bpm’online developer guide 440

ATTENTION

It is necessary to configure the columns in a detail menu, and add a few records to see the result.

Fig. 6. Adding a record to a detail

Adding the [Attachments] detail

Introduction
The [Attachments] detail is designed for storing files and links to web resources and knowledge base articles related
to a section record. The detail is available in all bpm’online sections (see: “Attachments”). The main functionality of
the detail is implemented in the FileDetailV2 schema of the UIv2 package.

To add a detail to the edit page of a custom section record, do the following:

1. Create a regular detail in the detail wizard using the object schema of the [Section object name]File section (see:
“Creating a new section”).

2. Change the parent for the detail list schema.

3. In the wizard, add the detail to the the edit page of a custom section record.

4. Perform additional detail configurations.

Case description
Add the [Attachments] details to the record edit page of the custom [Photos] section. All schemas of the [Photos]
section and the [Attachments] details should be stored in a custom package (for example, sdkDetailAttachment).

NOTE

To create a section, use the section wizard (see: “Creating a new section” and “Section wizard”).

ATTENTION

If the development needs to be carried out in a custom package, it needs to be specified in the [Current
package] system setting. Otherwise, the wizard will save the changes to the [Custom] package.

Case implementation algorithm
1. Create a detail, using the [Section object name]File section object schema.

As a result (Fig. 1), a number of client modules and object schemas will be created in the custom package. The name

Bpm’online developer guide 441

https://academy.bpmonline.com/documents/sales-enterprise/7-10/how-work-attachments-and-notes
https://academy.terrasoft.ru/documents/sales-enterprise/7-10/master-razdelov
https://academy.bpmonline.com/documents/sales-enterprise/7-10/section-wizard

of the schema of the main section object is UsrPhotos (Fig. 2). The schema name of the section object that you want
to use for the details is UsrPhotosFile.

Fig. 1. The [Photos] section properties in the section wizard

Fig. 2. Schemas created by the section wizard in the user package

Creating details in a wizard is described in more detail in the “Creating a detail in wizards” article. Choose the
detail title and the [Photos attachment] object as the default one in the detail wizard (Fig. 3). The transition to the
second step in the wizard is optional.

Fig. 3. Detail properties in the wizard

Bpm’online developer guide 442

As a result, the custom package will have a schema of the detail list client module and a schema of the detail edit
page (Fig. 4).

Fig. 4. Schemas created by the section wizard in the user package

NOTE

Schema names are generated automatically and may be different from those shown on Fig. 4.

2. Change the parent for the detail list schema.

The detail with an edit page is created. The [Base schema - Detail with list] schema of the NUI package is the
parent object of the client module schema of the UsrSchema3Detail detail list (Fig. 5).

Fig. 5. A default parent object

Bpm’online developer guide 443

To implement the [Files and Links] detail functionality in the custom detail, specify the FileDetailV2 schema as the
parent object of the UsrSchema3Detail schema (Fig. 6).

Fig. 6. The parent object – the FileDetailV2 schema

Bpm’online developer guide 444

NOTE

The procedure of specifying a parent object is covered in the “Creating a custom client module schema”.

Save the schema to apply changes.

3. In the wizard, add the detail to the the edit page of a custom section record.

Adding a detail to the record edit page using the detail wizard is described in the “Creating a detail in wizards”
article. When you add a detail in the wizard, configure the link between the detail columns and the main section
object (Fig. 7).

Fig. 7. Configuring the link between the detail columns and the main section object

Upon refreshing, the detail will be displayed on a record edit page (Fig. 8).

Fig. 8. A detail on an edit page

NOTE

You can add details to any edit page tab. Additionally, you can create a separate [Attachments] tab for the
detail.

4. Perform additional detail configurations

After completing the previous steps, the detail is fully functional, but looks different from the [Attachments] detail of
the base application sections. To make the custom detail look similar to the standard one, you need to define CSS
styles for it.

ATTENTION

The client module schema of the UsrSchema3Detail detail list is a schema of the view model. Defining styles in

Bpm’online developer guide 445

https://academy.bpmonline.com/documents/sales-enterprise/7-10/how-work-attachments-and-notes

it is impossible. It is necessary to create a new module schema, define the styles and add the created module to
module dependencies of a detail.

Create a new module schema in a custom package with the following property values:

[Title] – “UsrSchema3DetailCSS”.
[Name] – “UsrSchema3DetailCSS”.
[Package] – “sdkDetailAttachment”.

Add the following CSS selectors to the LESS tab of the module designer:

div[id*="UsrSchema3Detail"] {
 .grid-status-message-empty {
 display: none;
 }
 .grid-empty > .grid-bottom-spinner-space {
 height: 5px;
 }
 .dropzone {
 height: 35px;
 width: 100%;
 border: 1px dashed #999999;
 text-align: center;
 line-height: 35px;
 }
 .dropzone-hover {
 border: 1px dashed #4b7fc7;
 }
 .DragAndDropLabel {
 font-size: 1.8em;
 color: rgb(110, 110, 112);
 }
}

div[data-item-marker*="added-detail"] {
 div[data-item-marker*="tiled"], div[data-item-marker*="listed"] {
 .entity-image-class {
 width: 165px;
 }
 .entity-image-container-class {
 float: right;
 width: 128px;
 height: 128px;
 text-align: center;
 line-height: 128px;
 }
 .entity-image-view-class {
 max-width: 128px;
 max-height: 128px;
 vertical-align: middle;
 }
 .images-list-class {
 min-height: 0.5em;
 }
 .images-list-class > .selectable {
 margin-right: 10px;
 display: inline-block;
 }
 .entity-label {
 display: block;
 max-width: 128px;
 margin-bottom: 10px;

Bpm’online developer guide 446

 text-align: center;
 }
 .entity-link-container-class > a {
 font-size: 1.4em;
 line-height: 1.5em;
 display: block;
 max-width: 128px;
 margin-bottom: 10px;
 color: #444;
 text-decoration: none;
 text-overflow: ellipsis;
 overflow: hidden;
 white-space: nowrap;
 }
 .entity-link-container-class > a:hover {
 color: #0e84cf;
 }
 .entity-link-container-class {
 float: right;
 width: 128px;
 text-align: center;
 }
 .select-entity-container-class {
 float: left;
 width: 2em;
 }
 .listed-mode-button {
 border-top-right-radius: 1px;
 border-bottom-right-radius: 1px;
 }
 .tiled-mode-button {
 border-top-left-radius: 1px;
 border-bottom-left-radius: 1px;
 }
 .tiled-mode-button, .listed-mode-button {
 padding-left: 0.308em;
 padding-right: 0.462em;
 }
 }
 .button-pressed {
 background: #fff;

 .t-btn-image {
 background-position: 0 16px !important;
 }
 }
 div[data-item-marker*="tiled"] {
 .tiled-mode-button {
 .button-pressed;
 }
 }
 div[data-item-marker*="listed"] {
 .listed-mode-button {
 .button-pressed;
 }
 }
}

NOTE

The styles defined in the source code above almost completely coincide with the styles defined in the schema
of the FileDetailCssModule module in the UIv2 package. They are intended for the FileDetailV2 schema used

Bpm’online developer guide 447

as the parent object.

You can not use the FileDetailCssModule module directly, because the markers and identifiers of the HTML
elements of the standard detail and the detail created by the wizard are different.

Save the schema to apply changes.

To use the created module and its styles in a detail UsrSchema3Detail detail schema, add it to the dependency of the
module defined in the detail schema.

The source code of the modified schema:

div[id*="UsrSchema3Detail"] {
 .grid-status-message-empty {
 display: none;
 }
 .grid-empty > .grid-bottom-spinner-space {
 height: 5px;
 }
 .dropzone {
 height: 35px;
 width: 100%;
 border: 1px dashed #999999;
 text-align: center;
 line-height: 35px;
 }
 .dropzone-hover {
 border: 1px dashed #4b7fc7;
 }
 .DragAndDropLabel {
 font-size: 1.8em;
 color: rgb(110, 110, 112);
 }
}

div[data-item-marker*="added-detail"] {
 div[data-item-marker*="tiled"], div[data-item-marker*="listed"] {
 .entity-image-class {
 width: 165px;
 }
 .entity-image-container-class {
 float: right;
 width: 128px;
 height: 128px;
 text-align: center;
 line-height: 128px;
 }
 .entity-image-view-class {
 max-width: 128px;
 max-height: 128px;
 vertical-align: middle;
 }
 .images-list-class {
 min-height: 0.5em;
 }
 .images-list-class > .selectable {
 margin-right: 10px;
 display: inline-block;
 }
 .entity-label {
 display: block;
 max-width: 128px;
 margin-bottom: 10px;

Bpm’online developer guide 448

 text-align: center;
 }
 .entity-link-container-class > a {
 font-size: 1.4em;
 line-height: 1.5em;
 display: block;
 max-width: 128px;
 margin-bottom: 10px;
 color: #444;
 text-decoration: none;
 text-overflow: ellipsis;
 overflow: hidden;
 white-space: nowrap;
 }
 .entity-link-container-class > a:hover {
 color: #0e84cf;
 }
 .entity-link-container-class {
 float: right;
 width: 128px;
 text-align: center;
 }
 .select-entity-container-class {
 float: left;
 width: 2em;
 }
 .listed-mode-button {
 border-top-right-radius: 1px;
 border-bottom-right-radius: 1px;
 }
 .tiled-mode-button {
 border-top-left-radius: 1px;
 border-bottom-left-radius: 1px;
 }
 .tiled-mode-button, .listed-mode-button {
 padding-left: 0.308em;
 padding-right: 0.462em;
 }
 }
 .button-pressed {
 background: #fff;

 .t-btn-image {
 background-position: 0 16px !important;
 }
 }
 div[data-item-marker*="tiled"] {
 .tiled-mode-button {
 .button-pressed;
 }
 }
 div[data-item-marker*="listed"] {
 .listed-mode-button {
 .button-pressed;
 }
 }
}

Save the schema to apply changes.

As a result, the edit page of the custom [Photos] section will display an [Attachments] detail, almost identical to the
base one (Fig. 9).

Bpm’online developer guide 449

Fig. 9. Case result

Displaying additional columns on the [Attachments] tab

Introduction
The [Attachments] detail is designed for storing files and links to web resources and knowledge base articles related
to the section record. The detail is available in all bpm’online section (see: “How to work with attachments and
notes”). The main functionality of the detail is implemented in the FileDetailV2 scheme of the UIv2 package.

By default, the [Attachments] detail is set to have only the [Name] and [Version] columns in the list view. The
[Description] column is available while adding a new link. However, it is not displayed in the list view.

Fig. 1. The [Description] field

NOTE

The tile view of the [Attachments] detail only features the [Name] column and a file or a link.

Use the columns setup page to set up the detail’s list columns (see: “Setting up columns”). However, the
[Attachments] detail does not have this configuration option by default.

Bpm’online developer guide 450

https://academy.bpmonline.com/documents/sales-enterprise/7-10/how-work-attachments-and-notes
https://academy.bpmonline.com/documents/sales-enterprise/7-10/how-work-attachments-and-notes
https://academy.bpmonline.com/documents/sales-enterprise/7-10/setting-columns

To add this configuration option, do the following:

Create a replacing schema of the FileDetailV2 detail.
Call the method of opening the column configuration page in the replacing schema.

Case description
Add a new [Columns setup] command to the [Actions] menu for the [Attachments] detail.

Case implementation algorithm
1. Replace the FileDetailV2 detail schema

The procedure for creating a replacing client schema is covered in the “Creating a custom client module
schema”. Create a replacement schema with the following properties in a custom package:

[Title]— “FileDetailV2”.
[Name] — “FileDetailV2”.

[Package] – the schema will be placed in this package after publishing. By default, this property contains
the name of the package selected prior to creating a schema. It can be populated with any value from the
drop-down list.
[Parent object] – “FileDetailV2”.

2. Call the method of opening the column configuration page in the replacing schema.

To do this, go to the the module description in the source code of the replacement schema, and redefine the base
getGridSettingsMenuItem() method, which returns the detail menu item, associated with the call to the base
openGridSettings() method defined in the GridUtilities mixin.

Schema source code:

define("FileDetailV2", [], function() {
 return {
 methods: {
 getGridSettingsMenuItem: function() {
 return this.getButtonMenuItem({
 Caption: {"bindTo": "Resources.Strings.SetupGridMenuCaption"},
 Click: {"bindTo": "openGridSettings"}
 });
 }
 }
 };
});

Save the schema to apply changes.

As a result, a new [Columns setup] command is displayed in the [Actions] menu (Fig. 2).

Fig. 2. The [Columns setup] command

Bpm’online developer guide 451

This command enables the user to configure the list column view, and add the [Description] column to the detail.

Fig. 3. The column configuration page

After saving the settings in the detail list view, the column will be displayed (Fig. 4).

Fig. 4. Case result

How to hide menu commands of the detail with list

Bpm’online developer guide 452

The [Copy], [Edit], and [Delete] commands in a detail menu are used to manage records in the detail list (Fig. 1).

Fig. 1. The [Addresses] detail menu

To hide menu detail commands:

1. Create a replacing schema of the detail list. For example, for the [Addresses] detail of the account edit page it will
be the [Account addresses detail]. The procedure for creating a replacing client schema is covered in the “Creating
a custom client module schema” article.

2. Add the following source code to the schema:

define("AccountAddressDetailV2", [], function() {
 return {
 entitySchemaName: "AccountAddress",
 methods: {
 // Disabling the [Copy] command
 getCopyRecordMenuItem: Terrasoft.emptyFn,
 // Disabling the [Edit] command
 getEditRecordMenuItem: Terrasoft.emptyFn,
 // Disabling the [Delete] command
 getDeleteRecordMenuItem: Terrasoft.emptyFn
 },
 diff: /**SCHEMA_DIFF*/[]/**SCHEMA_DIFF*/
 };
});

3. Save the changes.

4. Refresh the browser page.

As a result, commands will be disabled in the detail menu (Fig.2).

Fig. 2. [Addresses] detail menu without menu commands

Bpm’online developer guide 453

Business processes

Contents
How to add auto-numbering to the edit page field
Process launch from a client module
Creating custom [User task] process element
How to customize notifications for the [User task] process element
How to run bpm'online processes via web service
How to save the record without closing the edit page which is opened by the business
process

How to add auto-numbering to the edit page field

Introduction
You can add auto numbering for an object column. For instance, auto numbering is applied in the [Documents],
[Invoices] and [Contracts] sections where a preformatted number is automatically generated when you add a new
record.

There are two ways of implementing auto numbering:

Client-side implementation.
Server-side implementation.

To implement auto numbering on the client side, override the base virtual method onEntityInitialized() and call
the getIncrementCode() method of the edit page base schema BasePageV2.

The getIncrementCode() method accepts two parameters:

callback – the function that will run after receiving service response. The response must be passed to the
corresponding column (attribute);
scope – the context where the callback function will be run (optional parameter).

To implement auto numbering on the server side , add the event handler [Before record adding] to the object,
whose column will be auto numbered. Set up number generating parameters in the business process, namely:

Bpm’online developer guide 454

Indicate the schema of the object for which generation will be performed.
Call the [Generate ordinal number] action.
Pass the generated value to the necessary object column.

NOTE

This is not the only way to implement auto numbering on the server side. It can be implemented via custom
means, for instance, by creating a custom service.

Regardless of the chosen solution, add two system settings to use auto numbering:

[Entity]CodeMask – object number mask.
[Entity]LastNumber – current object number.

[Entity] – is the name of the object, whose column will be auto numbered. For example, InvoiceCodeMask (Invoice
number mask) and InvoiceLastNumber (Current invoice number).

Case description
Set up auto numbering for the [Code] field in the [Products] section. The product code format must be as follows:
ART_00001, ART_00002 and so on.

ATTENTION

We covered two alternative ways of case implementation: client- and server-side.

Source code
You can download the package with case implementation using the following link.

ATTENTION

The package does not contain the bound system settings ProductCodeMask and ProductLastNumber. You will
need to add them manually.

Case implementation algorithm: client-side
1. Create two system settings

Create the [Product code mask] system setting with the following number mask: “ART_{0:00000}” (Fig.1) Populate
the following fields:

[Name] – “Product code mask”.
[Code] – “ProductCodeMask”.
[Type] – a string, whose length depends on the number of characters in the mask. In most cases 50
characters are enough. In this example, we use a string of unlimited length.
[Default value] – "ART_{0:00000}".

Fig. 1. The [Product code mask] system setting

Bpm’online developer guide 455

https://academy.terrasoft.ru/sites/default/files/documents/downloads/SDK/Packages/sdkCreateAutoIncrment_18.01.18_09.35.35.zip

Create the [Product last number] system setting (Fig.2). Populate its properties:

[Name] – “Product last number”.
[Code] – “ProductLastNumber”.
[Type] – “Integer”.

Fig. 2. The [Product last number] system setting

2. Create a replacing schema in the custom package

Create a replacing client module and specify the ProductPageV2 schema as parent object (Fig. 3). The procedure for
creating a replacing page is covered in the “Creating a custom client module schema” article.

Fig. 3. Properties of the product edit page replacing schema

Bpm’online developer guide 456

3. Override the onEntityInitialized() method

In the collection of edit page view model methods, override the onEntityInitialized() method. In
onEntityInitialized() method, call the getIncrementCode() method and fill in the generated number in the [Code]
column of its callback function. The replacing schema source code is as follows:

define("ProductPageV2", [], function() {
 return {
 // The name of edit page object schema.
 entitySchemaName: "Product",
 // The collection of edit page view model methods.
 methods: {
 // Overriding Terrasoft.BasePageV2.onEntityInitialized base method, that
 // is triggered when the initialization of the edit page object schema is
finished.
 onEntityInitialized: function() {
 // onEntityInitialized method parent realization is called.
 this.callParent(arguments);
 // The code is generated only in case we create a new element or a
copy of the existing element.
 if (this.isAddMode() || this.isCopyMode()) {
 // Call of the Terrasoft.BasePageV2.getIncrementCode base
method, that generates the number
 // according to the previously set mask.
 this.getIncrementCode(function(response) {
 // The generated number is stored in [Code] column.
 this.set("Code", response);
 });
 }
 }
 }
 };
});

After saving the schema, clearing the browser cache and updating the application page, the automatically generated
product code will be displayed when you add a new product (Fig.4).

Fig. 4. The result of case implementation on the client side

Bpm’online developer guide 457

Case implementation algorithm: server-side
1. Create two system settings

This step is absolutely identical to the first step of case implementation algorithm on the client side.

2. Create a replacing schema of the [Product] object

Select a custom package and execute the [Add] – [Replacing object] menu command on the [Schemas] tab. Specify
the [Product] object as the parent object in the new object properties (Fig. 5).

Fig. 5. Properties of the product replacing schema

3. Add the [Before record adding] event handler to the object schema

Add a new event handler in the object properties displayed in the object designer. To do this, go to the event tab
and double-click the [Before Record Adding] field or click the event icon in this field (Fig.6).

Fig. 6. The [Before record adding] product event handler

Bpm’online developer guide 458

The object’s process designer will open.

4. Add an event sub-process

To implement the [Before Record Adding] event handler, add event sub-process to the working area of the object
process designer. Set up a business process for number generation (Fig.7).

Fig. 7. The sub-process for the [Before Record Adding] event handler

Event sub-process elements

1. Initial message [Before product adding] (Fig.8) – the sub-process will be run upon receiving the ProductInserting
message added at step3.

Fig. 8. The [Before product adding] initial message properties

2. [Exclusive gateway (OR)], which branches the process into two flows:

Default flow – the transition down this flow will occur if the condition flow cannot be implemented. This
branch finishes with the [Terminate] event.
Condition flow [Code is empty] – checks whether the [Code] column is populated (Fig.9). The further
execution of the sub-process can only be possible if the column is not populated.

Fig. 9. The [Code is empty] condition flow properties

Bpm’online developer guide 459

https://academy.terrasoft.ru/documents?product=BPMS&ver=7&id=7042
https://academy.terrasoft.ru/documents?product=BPMS&ver=7&id=7026
https://academy.terrasoft.ru/documents?product=BPMS&ver=7&id=7036
https://academy.terrasoft.ru/documents?product=BPMS&ver=7&id=7046
https://academy.terrasoft.ru/documents/technic-bpms/7-9/zavershayushchee-sobytie-ostanov
https://academy.terrasoft.ru/documents?product=BPMS&ver=7&id=7045

Add the following code to the [Condition] field of the condition flow:

string.IsNullOrEmpty(Entity.GetTypedColumnValue<string>("Code"))

3. Script task [Get entity schema to generate number] (Fig.10).

Fig. 10. [Get entity schema to generate number] script task properties

Program code С# script is executed in this element. To add it double-click the element. Add the following source
code in the opened window:

//Setting the schema for number generation.
UserTask1.EntitySchema = Entity.Schema;
return true;

Note that “UserTask1” here is the name of the [Generate number] user action.

ATTENTION

Save the script after adding the source code. To do this, select the [Save] menu action.

4. User task [Generate number] (Fig.11).

Fig. 11. The [Generate number] user task properties

This element performs the [Generate ordinal number] system action. It is the [Generate ordinal number] system
action, which generates the current ordinal number in accordance with the ProductCodeMask mask set in the
system settings.

5. Script task [Save number to entity column] (Fig.12).

Fig. 12. The [Save number to entity column] script task properties

Bpm’online developer guide 460

https://academy.terrasoft.ru/documents?product=BPMS&ver=7&id=7015
https://academy.terrasoft.ru/documents?product=BPMS&ver=7&id=7006
https://academy.terrasoft.ru/documents?product=BPMS&ver=7&id=7015

Program code С# script is executed in this element. The value generated by the UserTask1 user action is stored in
the [Code] column of the [Product] created object. The source code of the schema is available below:

Entity.SetColumnValue("Code", UserTask1.ResultCode);
return true;

Save and close the default process designer and publish the [Product] object schema. As a result, after saving the
new product, the [Code] field will be automatically populated on the product page (Fig.13, Fig.14).

ATTENTION

Since code auto generation and saving in the column is performed on the server side when the [Before saving
record] event occurs, it is impossible to view the code value on the product page immediately. This is because
the [Before saving record] event occurs on the server side after sending the request to add a record from the
application client part.

Fig. 13. The code is not displayed when creating a product

Fig. 14. The code is displayed in the saved product

Process launch from a client module

Bpm’online developer guide 461

Introduction
To launch a process from the JavaScript code client schema:

1. Add the ProcessModuleUtilities module as a dependency to the module of the page that was used for calling
the service. This module provides a convenient interface for executing queries to the
ProcessEngineService.svc sevice.

2. Call the executeProcess(args) method of the ProcessModuleUtilities module by passing the args object over
to it as a parameter with the following properties (table 1):

Table 1. Properties of the args object

Property Details
sysProcessName The name of the called process (not required if the sysProcessId property is defined).

sysProcessId The unique identifier of the called process (not required if the sysProcessName
property is defined).

parameters The object whose properties are the same as the properties of the called process
incoming parameters.

Case description
Add an action that will launch the “Conducting a meeting” business process to the account edit page. Pass the
primary contact of the account as a parameter to the business process.

Source code
You can download the package with case implementation using the following link.

Case implementation algorithm
1. Creating the “Conducting a meeting” custom business process

The case uses the “Conduct a meeting” business process described in the “Designing a linear process” and “How to
work with emails” sections (fig. 1).

Fig. 1. Creating the “Conducting a meeting” source business process

After you create the business process, add the ProcessSchemaContactParameter incoming parameter to it. Specify
“Unique identifier” in the [Data type] field of the parameter properties (fig. 2).

Fig. 2. Adding the incoming parameter

Bpm’online developer guide 462

https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkExecuteProcess_18.06.18_03.33.16.zip
http://academy.bpmonline.com/documents/?product=BPMS&ver=7&id=7063
http://academy.bpmonline.com/documents/?product=BPMS&ver=7&id=7066
http://academy.bpmonline.com/documents/?product=BPMS&ver=7&id=7066

In the properties of the [Call customer] action (which is the first business process action), populate the [Contact]
field with the business process incoming parameter (fig. 3).

Fig. 3. Passing the parameter to the process element

Bpm’online developer guide 463

2. Creating the replacing edit page of the account and adding the action.

Adding action to the edit page is covered in the “Adding an action to the edit page” article.

Add the CallProcessCaption localizable string with an action caption (for example, “Schedule a meeting”) to the
replacing module schema of the edit page and the account section schema.

Add the ProcessModuleUtilities module as a dependency to declaring the edit page module.

The source codes of the section schema and the section edit page are below.

3. Adding the necessary methods to schemas

Use the executeProcess() method of the ProcessModuleUtilities module to launch the process. As a parameter, pass
the object with the following properties: the created business process name, the object with initialized incoming
process parameters.

In the below source code, it is implemented in the callCustomProcess() method. The isAccountPrimaryContactSet()
method of verifying the availability of the primary contact and the getActions() method of adding action menu
options are also implemented.

The source code of the edit page replacing module:

define("AccountPageV2", ["ProcessModuleUtilities"], function(ProcessModuleUtilities)
{
 return {
 // Name of the edit page object schema.
 entitySchemaName: "Account",
 // Methods of the edit page view model.
 methods: {
 // Verifies if the [Primary contact] page field is populated.
 isAccountPrimaryContactSet: function() {
 return this.get("PrimaryContact") ? true : false;

Bpm’online developer guide 464

 },
 // Overriding the base virtual method that returns edit page action
collection.
 getActions: function() {
 // Parent method implementation is called to receive
 // the collection of initialized actions of the base page.
 var actionMenuItems = this.callParent(arguments);
 // Adding a separator line.
 actionMenuItems.addItem(this.getActionsMenuItem({
 Type: "Terrasoft.MenuSeparator",
 Caption: ""
 }));
 // Adding the [Conducting a meeting] menu option to the edit page
action list.
 actionMenuItems.addItem(this.getActionsMenuItem({
 // Binding the caption of the menu option to localizable string
of the schema.
 "Caption": { bindTo: "Resources.Strings.CallProcessCaption" },
 // Binding the action handler method.
 "Tag": "callCustomProcess",
 // Binding the visibility property of the menu option to the
value, which returns the isAccountPrimaryContactSet() method.
 "Visible": { bindTo: "isAccountPrimaryContactSet" }
 }));
 return actionMenuItems;
 },
 // Action handler method.
 callCustomProcess: function() {
 // Receiving the identifier of the account primary contact.
 var contactParameter = this.get("PrimaryContact");
 // The object that will be transferred to the executeProcess() method
as an argument.
 var args = {
 // The name of the process that needs to be launched.
 sysProcessName: "UsrCustomProcess",
 // The object with the ContactParameter incoming parameter value
for the CustomProcess process.
 parameters: {
 ProcessSchemaContactParameter: contactParameter.value
 }
 };
 // Launch of the custom business process.
 ProcessModuleUtilities.executeProcess(args);
 }
 }
 };
});

Add the isAccountPrimaryContactSet() method implementation to the section schema for the correct action display
in the menu when displaying the page with the vertical list in the combined mode.

The source code of the section schema replacing module:

define("AccountSectionV2", [], function() {
 return {
 // Name of the section schema.
 entitySchemaName: "Account",
 methods: {
 // Verifies if the [Primary contact] field of the selected record is
populated.
 isAccountPrimaryContactSet: function() {
 // Defining the active record.

Bpm’online developer guide 465

 var activeRowId = this.get("ActiveRow");
 if (!activeRowId) {
 return false;
 }
 // Receiving the data collection of the section record list view.
 // Receiving the model of the selected account by the set value of
the primary column.
 var selectedAccount = this.get("GridData").get(activeRowId);
 if (selectedAccount) {
 // Receiving the model property — availability of the primary
contact.
 var selectedPrimaryContact =
selectedAccount.get("PrimaryContact");
 // The method returns true if the primary contact is established.
Otherwise, it returns false.
 return selectedPrimaryContact ? true : false;
 }
 return false;
 }
 }
 };
});

After you save the schemas and update the application page with clearing the cache, the new [Schedule a meeting]
action will appear in the account page action menu (fig. 4). This action is available only if there exists a primary
contact for the active list record. When executing the action, the “Conducting a meeting” custom business process
will be launched. The primary contact of the account will be passed to the business process parameter (fig. 5)

Fig. 4. Launch of the business process by action on the edit page

Fig. 5. Result of the business process launch. Passing the parameter from the account edit page to the business
process

Bpm’online developer guide 466

Creating custom [User task] process element

Introduction
It is often necessary to perform similar operations repeatedly while working with business processes in bpm'online.
The [User task] process element is best suited for these operations. Learn more about the [User task] element in the
“[User task] process element” article.

By default, a number of user tasks is already available in the system. You can add new user tasks if needed.

The “User task” configuration schema type is used to create new user tasks. The process task partially replicates the
logic of the [Script task] process element. However, a user task can be reused in different processes. Any changes to
the task will be immediately applied to all processes that contain the mentioned task.

Case description
Create a simple process user task that would calculate the sum of two numbers. Use two numbers (specified as task
parameters) to calculate the sum.

Source code
You can download the package with case implementation using the following link.

Case implementation algorithm
1. Creating a user task schema

Go to the [Configuration] section of the system designer, select a custom package and execute the menu command
[Add] - [User Task] on the [Schemas] tab (Fig. 1).

Fig. 1. Creating a user task schema

Bpm’online developer guide 467

http://academy.terrasoft.ru/documents/?product=BPMS&ver=7&id=7006
https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkCreatingUserTask_18.06.20_03.36.26.zip

A user task designer window will open.

The default values for [Name] and [Title] are "UsrProcessUserTask1" and "User Task 1", respectively.

2. Adding task parameters

On the [Activity] tab of the process task designer, open the context menu on the [Parameters] element to add task
result parameters. Execute the [Add] context menu command (Fig. 2).

Fig. 2. Creating a process task parameter

A new parameter will be added as a result, its main properties are displayed in Fig. 3.

Fig. 3. Default properties of a user task parameter

Bpm’online developer guide 468

Add three parameters to create the process task (main properties are shown in table 1).

Table 1. Main parameters of the created process task

Name Type Description
FirstNumber Integer First number

SecondNumber Integer Second number

SumOfNumbers Integer Sum of numbers

3. Adding task logic

The task logic is set via a script. The task script is a process task parameter which contains the C# program code
used to implement the necessary task logic.

Fig. 4. Adding user task logic

Bpm’online developer guide 469

To add the task script program code, select the root element of the structure (Fig. 4, 1) and add the program code to
the text field of the [Script] property (Fig. 4, 2):

// Performing operations with task parameters
SumOfNumbers = FirstNumber + SecondNumber;
// Indicates that the task script execution was successful.
return true;

The parameters must be addressed directly by name. Return the true value at the end of the script to signal the
successful execution of the element and continue the process.

Select the [User task] checkbox (located under the script input field (Fig. 4, 3)) to enable using the custom user task
in business processes.

Bpm’online developer guide 470

4. Saving and publishing the schema

After assigning values to the necessary properties of the created process task schema, save the schema and publish it
(Fig. 5).

Fig. 5. Saving and publishing the schema

You can use the user task to create business processes after successfully publishing the schema.

5. Testing

Create a new business process to test the user task. Learn more about creating business processes in the “How to
create business processes” article.

In the process designer, add the [User task] and the [Auto-generated page] elements to the process diagram (Fig. 6).

Fig. 6. Business process diagram.

Specify the schema title (see step 1) in the [Which user task to perform?] property of the [User task 1] element (Fig.
7).

Fig. 7. Selecting a custom process task

Bpm’online developer guide 471

http://academy.bpmonline.com/documents/?product=BPMS&ver=7&id=7048
http://academy.bpmonline.com/documents/?product=BPMS&ver=7&id=7048

Set the values of the parameters whose sum will be calculated (Fig. 8). The [Sum of numbers] parameter value will
be determined by the script (see step 3), so the value entry field for this parameter can be left unpopulated.

Fig. 8. User task parameter values

The [Auto-generated page 1] element displays the task result, i.e. the sum of parameter values of the user task. To

Bpm’online developer guide 472

display the sum of parameters, add an integer to the page element collection (Fig. 9) and set the title of the auto-
generated page element (Fig. 10, 1).To set the displayed value, call the value formula dialog window by clicking the
lightning icon in the [Value] field (Fig.10, 2).

Fig. 9. Adding page elements

Fig. 10. Page element parameters

Bpm’online developer guide 473

In the [Formula] dialog window that appears on the [Process Elements] tab, select the [User task 1] element (Fig. 11,
1) and double-click the [Sum of Numbers] element parameter (Fig. 11, 2). The formula used to calculate the auto-
generated page value will be displayed (Fig. 11, 3).

Fig. 11. The [Formula] dialog window

Save the formula (Fig. 11, 4) and the added auto-generated page element (Fig. 10, 3).

Run the process (Fig. 6, 2) after saving it (Fig. 6, 1). The message will alert that the process has started. A
notification will enable you to display the business process log (Fig. 12).

Fig. 12. Business process start message

Bpm’online developer guide 474

The business process result is shown in Fig. 13.

Fig. 13. Result of the business process execution.

Note

After changing the parameter values of the custom user task, change the currently displayed page before
starting the business process again (go to any bpm’online section, for example). If you do not leave the auto-
generated business process page, it will display the previous result.

Adding the user process task to the [Process elements] tab
If the created user process task element is planned for regular use, it can be added to the [Process elements] tab in
the process designer. To do so, execute the following SQL script in the database:

-- UsrProcessUserTask1 – name of the process task schema.
insert into SysProcessUserTask(SysUserTaskSchemaUId, Caption)
select s.UId, s.Caption from SysSchema s
where s.Name = 'UsrProcessUserTask1’

After restarting (or compilation) the application, the element will be displayed on the tab (Fig. 14).

Fig. 14. User task element on the tab

Bpm’online developer guide 475

How to customize notifications for the [User task] process element

Introduction
The [User task] process element can create notification on the [Business Process Tasks] panel, just like any other
process action. To activate the notification mechanism, select the [Serialize in DB] checkbox in the process
properties and define the ShowExecutionPage logical parameter.

Default process actions are able to create notifications for process steps. Custom process actions must be manually
assigned this parameter.

Case of creating a user task with a notification
Case description

Create a simple custom process action ([User task]) that would automatically add a notification with “Attention” in
its title and “Very important!” as its text. The notification must be displayed on the [Business process task] panel

Case implementation algorithm

1. Create a user task schema

To do this, go to the [Configuration] section of the system designer, select a custom package and on the [Schemas]
tab, execute the menu command [Add] - [User Task] (Fig.1).

Bpm’online developer guide 476

Fig. 1. Creating a user task schema

Set the property values specified in table 1 for the created schema.

Table 1. Custom process task properties

Property Value
Title Customized User Task

Name UsrCustomizedUserTask

Small vector image Scalable Vector Graphics The notification will be displayed on the
[Business process task] panel. For this particular case we will use
the SVG image available under the link.

Notification Icon (54x54 px) Image for the notification pop-up window in PNG (Portable
network graphics) format, 54x54 px. In the current case we will use
the following image: .

Serialize in DB Select the checkbox.

User task Select the checkbox.

After making the changes, save the schema’s meta data.

2. Add the ShowExecutionPage parameter

To enable automatic adding of the notification when the user task is run, add a new parameter
(ShowExecutionPage) to the Parameters section of the custom user task (Fig. 2). Its primary properties are listed in
table 2.

Bpm’online developer guide 477

https://academy.terrasoft.ru/sites/default/files/documents/downloads/SDK/CustomizedUserTask/chat.svg

Fig. 2. Adding a schema parameter

Table 2. Properties of the ShowExecutionPage parameter

Property Value
Title ShowExecutionPage

Name ShowExecutionPage

Data type Boolean

The value of the ShowExecutionPage parameter does not affect the notification mechanism. If the specified
parameter exists in the process action, then before any process step implemented by this User task is executed, an
automatic notification will be created for this step.

After making the changes, save the schema’s meta data.

3. Override the GetNotificationData() method

The contents of the business process step notification is generated via the GetNotificationData() method that can be
overridden.

The method must return an instance of the Terrasoft.Core.Process.ProcessElementNotification class that contains
data for the business process step notification. We recommend calling the base method first, which will return
instance of the ProcessElementNotification, populated with default values, and then customize this instance. Full
description of the ProcessElementNotification class properties is available in the .NET class libraries of
platform core (on-line documentation).

The properties that are most useful for customization are available in table 3.

Table 3. Primary properties of the Terrasoft.Core.Process.ProcessElementNotification class

Property Value
Title Heading of the business process step notification. Default value – business

process element name on the diagram.

Subject Text of the business process step notification. Provide any process element
specifics that are relevant to the notification recipient user here. Default value
is the NotificationCaption process parameter value of the corresponding
process. Thus, all steps of a business process will have the save value of the
Subject parameter.

StartDate Date and time of notification for system user. Default value – moment when
the notification about the business process step has been created. This
notification will be displayed for the user immediately after the process step is
activated.

To execute the case conditions, override the GetNotificationData() method of the created schema. To do this, select
the GetNotificationData node in the schema structure. Add the following code in the in the [Script] field (Fig. 3):

// Executing base method and getting an instance of the ProcessElementNotification
class generated by default.

Bpm’online developer guide 478

ProcessElementNotification notification = base.GetNotificationData();
// Customizing the notification element.
notification.Subject = "Very important! " + notification.Subject;
notification.Title = "Attention";
// You can postpone date and time of the notification.
// notification.StartDate = notification.StartDate.AddDays(2);
// The method returns customized instance of ProcessElementNotification
return notification;

Fig. 3. Overriding the GetNotificationData() method

After making the changes, publish the schema.

4. Use the created element in the business process.

After publishing the user task schema, this action becomes available for use in bpm’online business processes. To
use this custom action, add the [User Task] element on the process diagram and in the [Which user task to
perform?] field, select "Customized User Task". After this, ShowExecutionPage Boolean parameter will be added to
the user task parameters (Fig. 4). This parameter is optional.

Fig. 4. The ShowExecutionPage user task parameter

Bpm’online developer guide 479

To correctly use the user task, select the [Serialize in DB] checkbox for it. Enable advanced mode in the process
element properties (Fig. 5), and select the needed check box (Fig. 6, 1).

Fig. 5. Opening advanced properties of a process element

Fig. 6. The [Serialize in DB] check box

Save the process (Fig. 6, 2) and run it (Fig. 6, 1).

As a result, the corresponding notification (configured in the GetNotificationData() method) will be displayed (Fig.
7).

Fig. 7. Case result: Custom notification

Bpm’online developer guide 480

The [Process tasks] panel will display a notification with the same properties (Fig. 8).

Fig. 8. Case result: Custom notification

How to run bpm'online processes via web service

Bpm’online developer guide 481

Introduction
The ProcessEngineService.svc web service is used to run business processes from the third-party applications. Main
features of the ProcessEngineService.svc web service are described in “The ProcessEngineService.svc web
service” article.

Case description
Run a demo business processes of creating and reading bpm’online contacts from the browser address bar or third-
party application via the ProcessEngineService.svc web service.

Case implementation algorithm
To implement the case:

1. Create the demo processes of adding new contact and reading all contacts.

2. Check the operability of the ProcessEngineService.svc web service from the browser address bar.

3. In the third-party application, create a class and implement logic of interaction with the
ProcessEngineServise.svc web service in this class.

1. Creating the demo business processes

NOTE

Best practices of business process creation in bpm’online are provided in the business process guide.

1.1. Creating the process of adding a new contact

The business process of adding a new contact has start event, end event and [ScriptTask] element in which the logic
of adding a new contact is implemented. The values of business process properties (Fig. 1):

[Name] – "Add New External Contact"
[Code] – "UsrAddNewExternalContact".

Default values may be used for the other properties.

Fig. 1. Properties of the UsrAddNewExternalContact business process

Bpm’online developer guide 482

https://academy.bpmonline.com/documents/technic-bpms/7-11/bpmonline-business-processes-overview

The business process contains two text parameters (Fig. 2). The contact details are sent to the process via these
parameters:

ContactName – contains a name of the new contact
ContactPhone – contains a phone number of the new contact.

Fig. 2. The parameters of the business process.

Bpm’online developer guide 483

Logic of adding a new contact is implemented in the [ScriptTask] element. The values of element properties (Fig. 3):

[Name] – "Add contact"
[Code] – "ScriptTaskAddContact"
[For interpreted process] – checkbox unchecked.

Fig. 3. [ScriptTask] element properties

Bpm’online developer guide 484

The source code for the ScriptTaskAddContact element:

// Create an instance of the schema of the "Contact" object.
var schema = UserConnection.EntitySchemaManager.GetInstanceByName("Contact");
// Create an instance of a new object.
var entity = schema.CreateEntity(UserConnection);
// Set the default values for the object columns.
entity.SetDefColumnValues();
// Set the value of the "Name" column from the process parameter.
entity.SetColumnValue("Name", ContactName);
// Set the value of the "Phone" column from the process parameter.
entity.SetColumnValue("Phone", ContactPhone);
// Saving a new contact.
entity.Save();
return true;

Save the business process to apply changes.

Creating the process of reading contacts

Business process that generates a list of all contacts is also contains one [ScriptTask] element in which the necessary
logic is implemented. The values of business process properties (Fig. 4):

[Name] – "Get All Contacts"
[Code] – "UsrGetAllContacts"
[Force compile] – checkbox checked.

Default values may be used for the other properties.

Fig. 4. Properties of the contacts reading business process

The UsrGetAllContacts process contains the ContactList parameter. The process will get a list of all contacts as a
JSON object through this parameter. Parameter type – unlimited length string. Parameter properties are listed on
Fig. 5.

Fig. 5. Parameter properties

Bpm’online developer guide 485

Logic of getting contacts is implemented in the [ScriptTask] process element. The values of element properties (Fig.
6):

[Name] – "Get all contatcs"
[Code] – "ScriptTaskGetAllContacts"
[For interpreted process] – checkbox unchecked.

Fig. 6. [ScriptTask] element properties

The source code for the ScriptTaskGetAllContacts element:

// Create an EntitySchemaQuery instance.
EntitySchemaQuery query = new EntitySchemaQuery(UserConnection.EntitySchemaManager,
"Contact");

Bpm’online developer guide 486

// A flag for required selection of the primary column (Id).
query.PrimaryQueryColumn.IsAlwaysSelect = true;
// Adding columns to the request.
query.AddColumn("Name");
query.AddColumn("Phone");
// Getting the result collection.
var list = query.GetEntityCollection(UserConnection);
// Creating a list of contacts for serialization in JSON.
List<object> contacts = new List<object>();
foreach (var item in list)
{
 var contact = new
 {
 Id = item.GetTypedColumnValue<Guid>("Id"),
 Name = item.GetTypedColumnValue<string>("Name"),
 Phone = item.GetTypedColumnValue<string>("Phone")
 };
 contacts.Add(contact);
}
// Save the serialized JSON collection of contacts to the ContactList parameter.
ContactList = JsonConvert.SerializeObject(contacts);
return true;

Save the business process to apply changes.

2. Run business processes from the browser address bar

The call to the service method is possible using an HTTP GET request and you can use a standard browser to start a
business process. General URL formats of calling a service for business processes with parameters are described in
the “The ProcessEngineService.svc web service” article.

To launch the process of creation a new contact, enter the following URL in the browser address bar:

http[s]://<bpm'online_application_address>/0/ServiceModel/ProcessEngineService.svc/Us
rAddNewExternalContact/Execute?ContactName=John Johanson&ContactPhone=+1 111 111 1111

After executing the request, a new contact will be added to bpm’online (Fig. 7).

Fig. 7. New contact

ATTENTION

Bpm’online developer guide 487

A new contact will be created after each successful request to the service. If you run a number of queries with
the same parameters, multiple duplicate contacts will be created.

To launch the process of reading all contacts, enter the following URL in the browser address bar:

http[s]://<bpm'online_application_address>/0/ServiceModel/ProcessEngineService.svc/Us
rGetAllContacts/Execute?ResultParameterName=ContactList

After executing the request, a JSON object with collection of contacts will be displayed in the browser window (Fig.
8).

Fig. 8. Result of the contacts reading process

3. Run business processes from the third-party application

Before making requests to ProcessEngineService.svc, a third party application must be authenticated. Use the
AuthService.svc authentication service for this. Information and examples of authentication of third-party
application can be found in the “The AuthService.svc authentication service” article. Console application
created according the example can be used for the case below.

ATTENTION

Full source code of the console application used for running business processes via the
ProcessEngineService.svc service is available by a link https://github.com/bpmonline-
academy/DevelopmentGuide/tree/master/Examples/WorkWithBpmByWebServices.

To generate requests to the ProcessEngineService.svc service, add a string field that contains base service URL to
the Program class source code:

private const string processServiceUri = baseUri +
@"/0/ServiceModel/ProcessEngineService.svc/";

To run the business process of adding a new contact, add the following method to the source code of the Program
class:

public static void AddContact(string contactName, string contactPhone)
{
 // Generating the URL request.
 string requestString = string.Format(processServiceUri +
 "UsrAddNewExternalContact/Execute?ContactName={0}&ContactPhone={1}",
 contactName, contactPhone);
 // Generating Http request.
 HttpWebRequest request = HttpWebRequest.Create(requestString) as HttpWebRequest;
 request.Method = "GET";
 request.CookieContainer = AuthCookie;
 // Execute the request and analyze the Http response.
 using (var response = request.GetResponse())
 {
 // Because the service returns an empty string,

Bpm’online developer guide 488

https://github.com/bpmonline-academy/DevelopmentGuide/tree/master/Examples/WorkWithBpmByWebServices
https://github.com/bpmonline-academy/DevelopmentGuide/tree/master/Examples/WorkWithBpmByWebServices

 // you can display the http response properties.
 Console.WriteLine(response.ContentLength);
 Console.WriteLine(response.Headers.Count);
 }
}

Add a method of starting the process of reading contacts:

 public static void GetAllContacts()
{
 // Generating the URL request.
 string requestString = processServiceUri +
 "UsrGetAllContacts/Execute?ResultParameterName=ContactList";
 HttpWebRequest request = HttpWebRequest.Create(requestString) as HttpWebRequest;
 request.Method = "GET";
 request.CookieContainer = AuthCookie;
 // Generating Http request.
 using (var response = request.GetResponse())
 {
 // Executing the request and output the result.
 using (var reader = new StreamReader(response.GetResponseStream()))
 {
 string responseText = reader.ReadToEnd();
 Console.WriteLine(responseText);
 }
 }
}

The added methods can be called in the main program method after successful authentication:

static void Main(string[] args)
{
 if (!TryLogin("Supervisor", "Supervisor"))
 {
 Console.WriteLine("Wrong login or password. Application will be
terminated.");
 }
 else
 {
 try
 {
 // Calling methods for starting business processes.
 AddContact("John Johanson", "+1 111 111 1111");
 GetAllContacts();
 }
 catch (Exception)
 {
 // Exception Handling.
 throw;
 }
 };
 Console.WriteLine("Press ENTER to exit...");
 Console.ReadLine();
}

The program result is shown in Fig. 9.

Fig. 9. Result of executing the application

Bpm’online developer guide 489

How to save the record without closing the edit page which is opened
by the business process

Introduction
If the record edit page is opened by the [Open edit page] business process element, the saving of the record (by
clicking the [Save] button or by the this.save() method in the schema source code) will cause the closing of the page.
Edit page is being closed even if the [Open edit page] element is not complete (configured in the [When is the
element considered complete?] element property).

If you need to save the record several times without closing the edit page, pass the configuration object with the
isSilent property set to true to the this.save() method. Example:

this.save({isSilent : true});

Case description
Create a business process that will open the invoice edit page. Save the Id of the edited record in the process
parameter. In the source code of the edit page schema implement the program logic of saving the record each time
the [Product in invoice] detail is being modified. Ensure the ability to edit detail records without closing the invoice
edit page.

Case implementation
1. Business process creation

To do so, execute the following steps.

1.1 Create business process

In the [Configuration] section execute the [Add] – [Business process] action (Fig. 1).

Fig. 1. [Add] – [Business process] action

Bpm’online developer guide 490

In the opened process designer set the following values for the properties (Fig. 2):

[Title] – "Open Invoice Page".
[Code] – "UsrOpenInvoicePage".

Fig. 2. The properties of the business process

1.2 Add parameter

Add the parameter to the business process created on the previous step. This parameter will store the Id of the
opened order record. Set following properties for the parameter (Fig. 3):

[Title] – "Invoice Id".
[Code] – "InvoiceId".
[Data type] – "Unique identifier".

Fig. 3. The properties for the parameter of the business process

Bpm’online developer guide 491

1.3 Add the [ScriptTask] element

You can find the value of the invoice record Id from the browser navigation bar by opening a record for editing (Fig.
4).

Fig. 4. Getting the record Id

Bpm’online developer guide 492

This value can be saved to the InvoiceId parameter by the program code executed by the [ScriptTask] element.

For this add the [ScriptTask] element to the business process. The [Title] property of the element can be set to "Set
Invoice Id". The element can execute following program code

Set<Guid>("InvoiceId", new Guid("3c2b6d9f-4c1e-4364-99f2-53956562b606"));
return true;

The InvoiceId parameter is set here. The instance of the Guid class is created on the basis of the string with the
invoice record Id obtained from the browser navigation bar (Fig. 5).

Fig. 5. [ScriptTask] element properties

NOTE

The Id can be obtained by the instance of the EntitySchemaQuery class (see “The use of
EntitySchemaQuery for creation of queries in database”).

1.5. Add the [Open edit page] element

Use the [Open edit page] element to open the page for editing during the process execution. Set following properties
for this element (Fig. 6):

[Title] – "Open invoice Page".
[Which page to open?] [Which page to open?] – "Invoice".
[Editing mode] – "Edit existing record".
[Record Id] – select the [Invoice Id] process parameter added on the Step 1.2.
[Recommendation for filling in the page] – "Edit product in invoice detail".
[When element is considered complete?] – "Immediately after saving the record".

Fig. 6. [Open edit page] element properties

Bpm’online developer guide 493

Save the business process to apply changes.

The start of the business process will open the record edit page which will be automatically closed when saving (Fig.
7).

Fig. 7. Edit page opened by the business process

Bpm’online developer guide 494

2. Add the program logic to the edit page schema

To save the record when modifying the [Product in invoice] detail without closing the edit page, execute the
following steps.

2.1 Add a replacing schema of the invoice edit page

The procedure for creating a replacing schema of the edit page is covered in the “Creating a custom client
module schema” article. Select the "Invoice edit page" (InvoicePageV2) schema as a parent object.

2.2 Override the onDetailChanged() method

In the replacing schema of the invoice edit page override the onDetailChanged() method implemented in the
BaseEntityPage base schema. This method is the handler of the received message about modification of the detail
on the edit page.

To ensure editing of the records of the [Product in invoice] detail without closing the invoice edit page, add the
following source code to the schema.

define("InvoicePageV2", [], function() {
 return {
 entitySchemaName: "Invoice",
 methods: {
 // The handler for the detail change message.
 onDetailChanged: function(detail, args) {
 this.callParent(arguments);
 // Only for the [Products in invoice] detail
 if (detail.schemaName === "InvoiceProductDetailV2") {
 // Save a record with the automatic closing of the edit page.
 //this.save();
 // Save the record without closing the edit page.
 this.save({isSilent : true});
 }
 }
 },
 diff: /**SCHEMA_DIFF*/[
]/**SCHEMA_DIFF*/

Bpm’online developer guide 495

 };
});

Save the schema to apply changes.

As a result, after start of the business process the record edit page will open (Fig. 7). The page will be closed only
after clicking the [Save] button. The record opened for edit will be saved after each modification of the [Product in
invoice] detail without closing the edit page.

Typical customizations

Contents
Creating pop-up summaries (mini pages)
Adding pop-up summaries (mini pages) to a module
Creating a pop-up summary (mini page) for adding records
Adding pop-up hints
How to modify sales pipeline calculations
How to enable additional filtering in a sales pipeline
Adding a custom dashboard widget
The Terrasoft.AlignableContainer custom element
Adding a duplicate search rule
Junk case custom filtering
How to display custom implementation of approving in the section wizard
How to create custom reminders and notifications
How to create the [Timeline] tab tiles bound to custom section
Adding multi-language email templates to a custom section

Creating pop-up summaries (mini pages)

Introduction
Starting from version 7.7 we have introduced a new module in bpm’online - a pop-up summary. For regular users,
pop-up summaries are improved screen tips containing additional functions based on the current section. Using
pop-up summaries enables receiving information about the account address and opening its location on a map,
sending emails or making contact calls directly from the section without opening the edit page. You can see
examples of pop-up summaries by hovering the cursor over hyperlinks pointing at edit pages in the [Accounts] and
[Contact] sections.

Primary purposes of using pop-up summaries:

Enabling users to get the necessary information by record without opening edit pages.
Providing possibility to quickly add records to sections with populating only the required fields without
opening full record pages.

The structure of a pop-up summary view model schema does not differ from the general structure of bpm’online
module schema. Required properties of pop-up summary schema structure include:

entitySchemaName containing the object schema name bound to a pop-up summary
the diff modification array

These parameters enable building a module view in bpm’online custom interface.

You can also use other general schema structure elements to implement the necessary functions, such as attributes,

Bpm’online developer guide 496

methods, mixins and messages that can be used to add custom control elements, register messages and form the
pop-up summary business logics. The appearance of pop-up summary visual elements can be modified using custom
styles.

ATTENTION

Pop-up summaries do not support the mechanism of business logics setup via business rules.

To add a custom pop-up summary to a current bpm’online section:

1. Add a pop-up view model schema to the custom package. Select BaseMiniPage schema as a parent object.
2. Modify the SysModuleEdit system table in the bpm’online database via a special SQL query.
3. Add the necessary pop-up summary functions to the schema source code. Specify the object schema name in

the entitySchemaName element bound to the pop-up summary and perform at least one modification in the
diff array.

4. Apply styling to the pop-up summary.
5. Add the Has[Section code]MiniPageAddMode setting.

ATTENTION

To bind a pop-up summary to specific section objects, specify the unique pop-up summary identifier in the
MiniPageSchemaUId column of these objects. Currently you can only do it by modifying the SysModuleEdit
system table of bmp’online database via an SQL-query.

Pay high attention to creating and executing the SQL query. Executing an incorrect SQL query can damage the
existing data and disrupt the system.

NOTE

For bpm’online sections with default pop-up summaries, there are system settings, whose codes have the
following format Has[Section code]MiniPageAddMode (for instance, HasAccountMiniPageAddMode). These
system settings are used to toggle between the two modes: adding new records and editing existing records via
pop-up summaries.

You can create a pop-up summary for any bpm’online object.

Case description
Creating a custom pop-up summary for the [Knowledge base] section. The pop-up summary will be used for viewing
the basic [Name] and [Tags] fields with a possibility to download the attached files.

Source code
Use the following link to download a package with the [Knowledge base] section pop-up summary schema
implemented according to this case.

Case implementation algorithm
1. Creating a pop-up summary view model schema

Open the [Schemas] tab in the [Configuration] section and select the [Add] — [Replacing Client Module] command
from the menu (Fig.1).

Fig.1 Adding a pop-up summary view schema

Bpm’online developer guide 497

https://academy.terrasoft.ru/sites/default/files/documents/downloads/SDK/Packages/sdkMiniCardCreating_18.04.22_02.56.16.zip

Populate the following properties of the pop-up summary view schema (Fig.2):

[Title] – “UsrKnowledgeBaseArticleMiniPage”
[Name] – “KnowledgeBase Mini Page”
[Package] – the custom package, in which the development is performed, for instance, UsrPackage
[Parent object] - the BaseMiniPage schema from the NUI package

Fig.2 Properties of the pop-up summary view model schema

2. Registering a the pop-up summary in the database

Execute the following SQL query to perfrom modifications in the database:

DECLARE
 -- Name of the created pop-up summary view schema.
 @ClientUnitSchemaName NVARCHAR(100) = 'UsrKnowledgeBaseArticleMiniPage',
 -- Name of the object schema bound to the pop-up summary.
 @EntitySchemaName NVARCHAR(100) = 'KnowledgeBase'

Bpm’online developer guide 498

UPDATE SysModuleEdit
SET MiniPageSchemaUId = (
 SELECT TOP 1 UId
 FROM SysSchema
 WHERE Name = @ClientUnitSchemaName
)
WHERE SysModuleEntityId = (
 SELECT TOP 1 Id
 FROM SysModuleEntity
 WHERE SysEntitySchemaUId = (
 SELECT TOP 1 UId
 FROM SysSchema
 WHERE Name = @EntitySchemaName
 AND ExtendParent = 0
)
);

As a result of this query execution you will have a unique pop-up identifier, populated in SysModuleEdit table of the
record MiniPageSchemaUId field that corresponds to the [Knowledge base] section (Fig.3).

Fig.3 Unique pop-up summary identifier value in SysModuleEdit table

3. Displaying primary object fields

The pop-up summary code structure is identical to the edit page structure. Specify the KnowledgeBase schema as
the object schema and add the necessary modifications to the diff view model modification array.

The base pop-up summary consists of the following elements:

MiniPage – Terrasoft.GridLayout – pop-up summary field
HeaderContainer – Terrasoft.Container – pop-up summary name (initially is placed in the first row of
the pop-up summary field

Two objects that configure the [Name] and [Keywords] fields are added to the diff modification array.

At this stage the pop-up summary can already be used and the following actions are not required.

Source code of the pop-up summary view model schema:

define("UsrKnowledgeBaseArticleMiniPage", [], function() {
 return {
 entitySchemaName: "KnowledgeBase",
 attributes: {
 "MiniPageModes": {
 "value": [this.Terrasoft.ConfigurationEnums.CardOperation.VIEW]
 }
 },
 diff: /**SCHEMA_DIFF*/[
 {
 "operation": "insert",
 "name": "Name",
 "parentName": "HeaderContainer",
 "propertyName": "items",
 "index": 0,
 "values": {
 "labelConfig": {
 "visible": false
 },

Bpm’online developer guide 499

 "isMiniPageModelItem": true
 }
 },
 {
 "operation": "insert",
 "name": "Keywords",
 "parentName": "MiniPage",
 "propertyName": "items",
 "values": {
 "labelConfig": {
 "visible": false
 },
 "isMiniPageModelItem": true,
 "layout": {
 "column": 0,
 "row": 1,
 "colSpan": 24
 }
 }
 }
]/**SCHEMA_DIFF*/
 };
});

4. Adding a function button to the pop-up summary

As per the example conditions, the pop-up summary must enable downloading files bound to the knowledge base.

You can access additional data via a drop-down list of a pre-configured button. To add a button of selecting files
from the knowledge base article:

1. Add the button description to the diff array – the FilesButton element.
2. Add an attribute binding the primary and additional records – the Article virtual column.
3. Add the MiniPageModes attribute – the array containing a collection of necessary operations performed by

the pop-up summary.

4. Add the button image to bpm’online resources. For example, you can add the following image – . Adding
an image to resources is covered in the "How to add a field with an image to the edit page” article.

5. To add methods of working with a drop-down list of a file selection button:
override the init() method.
override the onEntityInitialized() method
set the Article attribute value via the setArticleInfo() method
get information about the current knowledge base article files via the initFilesMenu(files) method
populate the drop-down list collection of the file selection button via the initFilesMenu(files)
method
initiate the file upload and adding to the drop-down list of the file selection button via the
fillFilesExtendedMenuData() method
initiate the selected file download via the downloadFile() method

5. Applying styling to the pop-up summary.

Create the UsrKnowledgeBaseArticleMiniPageCss module and specify the necessary styles on the LESS tab.

div[data-item-marker="UsrKnowledgeBaseArticleMiniPageContainer"] > div {
width: 250px;
}

Specify the pop-up summary schema dependency on the style module in the page designer and add this module
download in the source code.

Below is the full source code of a pop-up summary:

define("UsrKnowledgeBaseArticleMiniPage",

Bpm’online developer guide 500

["terrasoft", "KnowledgeBaseFile", "ConfigurationConstants",
"css!UsrKnowledgeBaseArticleMiniPageCss"],
 function(Terrasoft, KnowledgeBaseFile, ConfigurationConstants) {
 return {
 entitySchemaName: "KnowledgeBase",
 attributes: {
 "MiniPageModes": {
 "value": [this.Terrasoft.ConfigurationEnums.CardOperation.VIEW]
 },
 "Article": {
 "type": Terrasoft.ViewModelColumnType.VIRTUAL_COLUMN,
 "referenceSchemaName": "KnowledgeBase"
 }
 },
 methods: {
 // Initiates the drop-down list collection of the file selection
button.
 init: function() {
 this.callParent(arguments);
 this.initExtendedMenuButtonCollections("File", ["Article"],
this.close);
 },
 // Initiates the attribute value binding the primary and additional
records.
 // Populates the drop-down list collection of the file selection
button.
 onEntityInitialized: function() {
 this.callParent(arguments);
 this.setArticleInfo();
 this.fillFilesExtendedMenuData();
 },
 // Initiates the file download and adding to the drop-down list of
the file selection button.
 fillFilesExtendedMenuData: function() {
 this.getFiles(this.initFilesMenu, this);
 },
 // Sets the attribute value binding the primary and additional
records.
 setArticleInfo: function() {
 this.set("Article", {
 value: this.get(this.primaryColumnName),
 displayValue: this.get(this.primaryDisplayColumnName)
 });
 },
 // Receives information about files of the current knowledge base
article.
 getFiles: function(callback, scope) {
 var esq = this.Ext.create("Terrasoft.EntitySchemaQuery", {
 rootSchema: KnowledgeBaseFile
 });
 esq.addColumn("Name");
 var articleFilter =
this.Terrasoft.createColumnFilterWithParameter(
 this.Terrasoft.ComparisonType.EQUAL, "KnowledgeBase",
this.get(this.primaryColumnName));
 var typeFilter = this.Terrasoft.createColumnFilterWithParameter(
 this.Terrasoft.ComparisonType.EQUAL, "Type",
ConfigurationConstants.FileType.File);
 esq.filters.addItem(articleFilter);
 esq.filters.addItem(typeFilter);
 esq.getEntityCollection(function(response) {
 if (!response.success) {

Bpm’online developer guide 501

 return;
 }
 callback.call(scope, response.collection);
 }, this);
 },
 // Populates the drop-down list collection of the file selection
button.
 initFilesMenu: function(files) {
 if (files.isEmpty()) {
 return;
 }
 var data = [];
 files.each(function(file) {
 data.push({
 caption: file.get("Name"),
 tag: file.get("Id")
 });
 }, this);
 var recipientInfo = this.fillExtendedMenuItems("File",
["Article"]);
 this.fillExtendedMenuData(data, recipientInfo,
this.downloadFile);
 },
 // Initiates the selected file download.
 downloadFile: function(id) {
 var element = document.createElement("a");
 element.href = "../rest/FileService/GetFile/" +
KnowledgeBaseFile.uId + "/" + id;
 document.body.appendChild(element);
 element.click();
 document.body.removeChild(element);
 }
 },
 diff: /**SCHEMA_DIFF*/[
 {
 "operation": "insert",
 "name": "Name",
 "parentName": "HeaderContainer",
 "propertyName": "items",
 "index": 0,
 "values": {
 "labelConfig": {
 "visible": true
 },
 "isMiniPageModelItem": true
 }
 },
 {
 "operation": "insert",
 "name": "Keywords",
 "parentName": "MiniPage",
 "propertyName": "items",
 "values": {
 "labelConfig": {
 "visible": true
 },
 "isMiniPageModelItem": true,
 "layout": {
 "column": 0,
 "row": 1,
 "colSpan": 24
 }

Bpm’online developer guide 502

 }
 },
 {
 "operation": "insert",
 "parentName": "HeaderContainer",
 "propertyName": "items",
 "name": "FilesButton",
 "values": {
 "itemType": Terrasoft.ViewItemType.BUTTON,
 // Button image setup.
 "imageConfig": {
 // You need to preliminary add the image to the pop-up
summary resources.
 "bindTo": "Resources.Images.FilesImage"
 },
 // Drop-down list setup.
 "extendedMenu": {
 // Drop-down list element name.
 "Name": "File",
 // The name of pop-up summary attribute binding the
primary and additional records.
 "PropertyName": "Article",
 // Setup of button click handler.
 "Click": {
 "bindTo": "fillFilesExtendedMenuData"
 }
 }
 },
 "index": 1
 }
]/**SCHEMA_DIFF*/
 };
 });

6. Adding the HasProductMiniPageAddMode system setting

Add a system setting with the following properties to the [System settings] section of the system designer (Fig.4):

[Name] – “HasKnowledgeBaseMiniPageAddMode”
[Code] – “HasKnowledgeBaseMiniPageAddMode”
[Type] – “Boolean”
[Default value] – checkbox selected

Fig. 4. System setting

Bpm’online developer guide 503

After you save the schema and update the application web-page, a custom pop-up summary containing the record
bound files will be displayed when you hover over a name in the [Knowledge base] section. You will be able to
download the displayed files (Fig.5).

Fig. 5. Case result

Adding pop-up summaries (mini pages) to a module

Introduction
When adding object pop-up summaries, it sometimes becomes required to connect them to bpm’online modules.
Modules enable creating links to specific objects in bpm’online. A pop-up summary displayed upon hovering over
such a link provides additional information about the object without opening the object section.

In bpm’online base version, an object pop-up summary is connected to the following modules:

telephony in the communication panel
email in the communication panel
notification center in the communication panel
the [Feed] section in the communication panel
chart-list in the dashboards section

Case description
Display the current bpm’online user in the application top right corner next to the user profile. Open a pop-up

Bpm’online developer guide 504

summary upon hovering over the current bpm’online user link.

Source code
You can download the package with case implementation using the following link.

Case implementation algorithm
1. Creating a module

Perform the [Add] – [Standard] – [Module] menu command on the [Schemas] tab in the [Configuration] section
(Fig. 1).

Fig. 1. Adding a module

Specify properties for the created module (Fig. 2):

[Name] – “UsrCurrentUserModule”
[Title] – “Current user module”

Fig. 2. Module properties

2. Creating a view and a module view model

To create a view model in the UsrСurrentUserModule module, implement the class inherited from
Terrasoft.BaseViewModel. Connect the Terrasoft.MiniPageUtilities utility class to the mixins property of the
module view model, which enables using the pop-up summary call methods.

To create the view, implement the class inherited from Terrasoft.BaseModule.

Override the init() and render() methods of the Terrasoft.BaseModule base class in the created class. The init()
method initializes the module view model and the render() method connects the view model with the view display in
container rendered in the renderTo parameter. To create the view model, use the getViewModel() method. The link

Bpm’online developer guide 505

https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkMiniPageAnyModule_18.06.22_02.30.14.zip

to the received view model is stored in the viewModel property.

Define the getView() method for receiving the view for its further display. The view must display the full name of the
current user and a hyperlink to the contact edit page. When creating a hyperlink, define the event handler of
hovering over the mouse cursor.

Below you can find the complete source code:

// Defining the module.
define("UsrCurrentUserModule", ["MiniPageUtilities"], function() {
 // Defining the CurrentUserViewModel class.
 Ext.define("Terrasoft.configuration.CurrentUserViewModel", {
 // Parent class name.
 extend: "Terrasoft.BaseViewModel",
 // Shortened class name.
 alternateClassName: "Terrasoft.CurrentUserViewModel",
 // Used mixins.
 mixins: {
 MiniPageUtilitiesMixin: "Terrasoft.MiniPageUtilities"
 }
 });
 // Defining the UsrCurrentUserModule class.
 Ext.define("Terrasoft.configuration.UsrCurrentUserModule", {
 // Shortened class name.
 alternateClassName: "Terrasoft.UsrCurrentUserModule",
 // Parent class name.
 extend: "Terrasoft.BaseModule",
 // The Ext object.
 Ext: null,
 // The sandbox object.
 sandbox: null,
 // The Terrasoft object.
 Terrasoft: null,
 // View model.
 viewModel: null,
 // Creates module views.
 getView: function() {
 // Receiving the contact of the current user.
 var currentUser = Terrasoft.SysValue.CURRENT_USER_CONTACT;
 // View — the Terrasoft.Hyperlink class instance.
 return Ext.create("Terrasoft.Hyperlink", {
 // Populating the link caption with the contact name.
 "caption": currentUser.displayValue,
 // Event handler of hovering over the link.
 "linkMouseOver": {"bindTo": "linkMouseOver"},
 // The property containing additional object parameters.
 "tag": {
 // Current user identifier.
 "recordId": currentUser.value,
 // Object schema name.
 "referenceSchemaName": "Contact"
 }
 });
 },
 // Creates module view model.
 getViewModel: function() {
 return Ext.create("Terrasoft.CurrentUserViewModel");
 },
 // Module initialization.
 init: function() {
 this.viewModel = this.getViewModel();
 },
 // Displays the module view.

Bpm’online developer guide 506

 render: function(renderTo) {
 // Receiving the view object.
 var view = this.getView();
 // Connecting the view with the view model.
 view.bind(this.viewModel);
 // Displaying the view in the renderTo element.
 view.render(renderTo);
 }
 });
 return Terrasoft.UsrCurrentUserModule;
});

Add styles to the created module for a better display of the hyperlink. To do this, add the following code to the LESS
tab of the module designer:

.current-user-class a {
 font-weight: bold;
 font-size: 2.0em;
 margin: 6px 20px;
}

.current-user-class a:hover {
 text-decoration: none;
}

Fig. 3. The LESS tab of the module designer

Save the created module.

3. Creating the view display container

To display a link in the user profile in the top right corner of the application, locate the container and download the
view of the created module into it. Create a replacing client module that would extend the MainHeaderSchema
schema functionality implemented in the NUI package. The procedure for creating a replacing client module is
covered in the “Creating a custom client module schema” article.

To display the view, use the diff property in the replacing schema source code. To display the container in the top
right corner of the page, set the RightHeaderContainer element as a parent element of the created container.
Override the onRender() method and download the created module.

Below you can find the complete source code.

// Defining a module.
define("MainHeaderSchema", [], function() {
 return {
 methods: {
 // Performs the action after the view display.
 onRender: function() {
 // Calling the parent method.
 this.callParent(arguments);
 // Downloading the module of the current user.
 this.loadCurrentUserModule();
 },
 // Downloads the module of the current user.

Bpm’online developer guide 507

 loadCurrentUserModule: function() {
 // Receiving the container for downloading the module.
 var currentUserContainer = this.Ext.getCmp("current-user-container");
 // Verifying if a container is available.
 if (currentUserContainer && currentUserContainer.rendered) {
 // Downloading the module into a container.
 this.sandbox.loadModule("UsrCurrentUserModule", {
 // Container name.
 renderTo: "current-user-container"
 });
 }
 }
 },
 diff: [
 {
 // Element insert operation.
 "operation": "insert",
 // Element name.
 "name": "CurrentUserContainer",
 // Parent container name.
 "parentName": "RightHeaderContainer",
 // Property name.
 "propertyName": "items",
 // Element values.
 "values": {
 // Container identifier.
 "id": "current-user-container",
 // Element type.
 "itemType": Terrasoft.ViewItemType.CONTAINER,
 // Conatiner classes.
 "wrapClass": ["current-user-class"],
 // Container elements.
 "items": []
 }
 }
]
 };
});

Save the created module.

After you update the application page, the full name with a link to the contact edit page will be displayed in the top
right corner. When you hover the cursor over the link, a pop-up summary with the current user details will appear
(Fig. 4).

Fig. 4. The contact pop-up summary

Creating a pop-up summary (mini page) for adding records

Bpm’online developer guide 508

Introduction
You can quickly add and view records using bpm’online pop-up summaries. Information about adding pop-up
summaries that display record details is available in the “Creating pop-up summaries (mini pages)” and
“Adding pop-up summaries (mini pages) to a module” articles.

To implement a custom pop-up summary page for adding new records in an existing section:

1. Add a pop-up view model schema to the custom package. Select BaseMiniPage schema as a parent object.
2. Modify the SysModuleEdit system table in the bpm’online database via a special SQL query.
3. Add the necessary pop-up summary functionality to the schema source code.
4. Add the HasProductMiniPageAddMode system setting.

NOTE

For bpm’online sections with default pop-up summaries, there are system settings, whose codes have the
following format Has[Section code]MiniPageAddMode (for instance, HasAccountMiniPageAddMode). These
system settings are used to toggle between the two modes: adding new records and editing existing records.

Case description
Create a custom pop-up summary page for adding new records in the [Products] section. The pop-up summary must
contain a base set of fields: [Name] and [Code].

Source code
Use the following link to download a package with the [Products] section pop-up summary schema, implemented
according to this case.

Case implementation algorithm
1. Create a pop-up summary view model schema

Execute the [Add] — [Additional] — [Schema of the Edit Page View Model] menu command on the [Schemas] tab in
the [Configuration] section (Fig.1).

Fig. 1. Adding a pop-up summary view schema

Bpm’online developer guide 509

https://academy.terrasoft.ru/sites/default/files/documents/downloads/SDK/Packages/sdkMiniCardAdding_18.02.05_17.42.48.zip

Populate the following properties of the pop-up summary view schema (Fig.2):

[Name] – “UsrProductMiniPage”.
[Subject] – “Product Mini Page”.
[Package] – the custom package, in which the development is performed, for instance, Custom.
[Parent object] — the BaseMiniPage schema from the NUI package.

Fig. 2. Properties of the pop-up summary view model schema

2. Register the pop-up summary in the database

Execute the following SQL query to make changes in the database:

DECLARE
 -- The name of the created pop-up summary view schema.
 @ClientUnitSchemaName NVARCHAR(100) = 'UsrProductMiniPage',

Bpm’online developer guide 510

 -- The name of the pop-up summary object schema.
 @EntitySchemaName NVARCHAR(100) = 'Product'

UPDATE SysModuleEdit
SET MiniPageSchemaUId = (
 SELECT TOP 1 UId
 FROM SysSchema
 WHERE Name = @ClientUnitSchemaName
)
WHERE SysModuleEntityId = (
 SELECT TOP 1 Id
 FROM SysModuleEntity
 WHERE SysEntitySchemaUId = (
 SELECT TOP 1 UId
 FROM SysSchema
 WHERE Name = @EntitySchemaName
 AND ExtendParent = 0
)
);

As a result of this query execution you will have a unique pop-up identifier, populated in SysModuleEdit table of the
record MiniPageSchemaUId field that corresponds to the [Products] section (Fig.3).

Fig. 3. Unique pop-up summary identifier value in SysModuleEdit table

ATTENTION

Since the changes were made directly in the database, log in to your bpm’online again to see them. You may
need to compile the application using the corresponding action in the [Configuration] section.

3. Add fields from the primary object to the pop-up summary

Add the source code below to the created pop-up summary view model schema.

define("UsrProductMiniPage", ["UsrProductMiniPageResources"],
 function(resources) {
 return {
 entitySchemaName: "Product",
 details: /**SCHEMA_DETAILS*/{}/**SCHEMA_DETAILS*/,
 attributes: {
 "MiniPageModes": {
 "value": [this.Terrasoft.ConfigurationEnums.CardOperation.ADD]
 }
 },
 diff: /**SCHEMA_DIFF*/[
 {
 "operation": "insert",
 "parentName": "MiniPage",
 "propertyName": "items",
 "name": "Name",
 "values": {
 "isMiniPageModelItem": true,
 "layout": {
 "column": 0,
 "row": 1,
 "colSpan": 24
 },
 "controlConfig": {
 "focused": true

Bpm’online developer guide 511

 }
 }
 },
 {
 "operation": "insert",
 "parentName": "MiniPage",
 "propertyName": "items",
 "name": "Code",
 "values": {
 "isMiniPageModelItem": true,
 "layout": {
 "column": 0,
 "row": 2,
 "colSpan": 24
 }
 }
 }
]/**SCHEMA_DIFF*/
 };
 });

The array containing the collection of the necessary pop-up summary operations is assigned to MiniPageModes
attribute, which was declared in the base schema. Two objects that configure the [Name] and [Code] fields are added
to the diff array.

NOTE

Add this.Terrasoft.ConfigurationEnums.CardOperation.VIEW value to the array assigned to MiniPageModes
attribute if you also need to display the pop-up summary on the section page (see “Creating pop-up
summaries (mini pages)”).

ATTENTION

If the required columns are not indicated in the diff array, they will be displayed at the bottom of the pop-up
summary.

4. Add the HasProductMiniPageAddMode system setting

In the [System settings] section of the system designer, add a new system setting with the following properties (fig.
4)

[Name] — "HasProductMiniPageAddMode".
[Code] — "HasProductMiniPageAddMode".
[Type] — "Boolean".
[Default value] — true.

Fig. 4. — System setting

Bpm’online developer guide 512

As a result, a pop-up summary with two fields will be displayed when you add a new product (Fig.4).

Fig. 4. Implemented pop-up summary

After saving the pop-up summary, a corresponding record will appear in the section list (Fig.5).

Fig. 5. Records in the [Products] section

Bpm’online developer guide 513

ATTENTION

The record will only display in the section list after you update the browser page. To display the record
immediately after saving the pop-up summary, add the corresponding functions to pop-up summary and the
section page schema via the message mechanism (for more information, see “Sandbox. Module message
exchange”).

Adding pop-up hints

Introduction
You can add pop-up hints to bpm’online elements - text messages providing additional information about the
element functionality and rules of its population.

Pop-up hints can be divided into 3 main groups:

1. A pop-up hint to a field (if such hint is available, the field caption is marked by a small green triangle symbol. The
hint appears when a cursor is hovered over the triangle or upon clicking the field caption.

2. A pop-up hint to other control elements (buttons, completion indicators, images). The hint appears when a cursor
is hovered over the control element.

3. Information button . The hint appears when a cursor is hovered over the information button.

General algorithm of adding pop-up hints to standard control elements:

1. Create a replacing schema of the page or section.
2. Add the pop-up hint text to the schema localizable string collection.
3. Describe the necessary schema element modifications in the diff array.

Source code
You can download the package with case implementation using the following link.

Example 1

Bpm’online developer guide 514

https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkAddingHintsAndTips_18.06.23_03.41.20.zip

Case description

Add a pop-up hint to the [Save] button of contact edit page.

Case implementation algorithm

1. Creating a replacing contact page

Create a replacing client module and specify [Display schema – Contact card] (ContactPageV2) as parent object
(Fig. 1). Creating a replacing page is covered in the “Creating a custom client module schema” article.

Fig. 1. Properties of the replacing contact edit page

2. Adding a localized string with the pop-up hint text

Add a string with the pop-up hint text to the collection of localizable strings of the edit page replacing schema.
Properties of the created string (Fig. 2):

[Name] – “SaveButtonHint”
[Value] – “Press to save the changes”

Fig. 2. Properties of the custom localizable string

3. Adding a button configuration object to the diff array

There are several methods to add a pop-up hint to a control element.

Method 1

Add the hint property containing the pop-up hint text to the control element values property.

The source code of the contact edit page replacing schema when adding the pop-up hint using method 1:

define("ContactPageV2", [],
function () {
 return {
 // Name of the edit page object schema.

Bpm’online developer guide 515

 entitySchemaName: "Contact",
 //Pop-up hint visualization setup.
 diff: /**SCHEMA_DIFF*/[
 // Metadata for adding pop-up hint to the button.
 {
 // Modification of the existing element.
 "operation": "merge",
 "parentName": "LeftContainer",
 "propertyName": "items",
 "name": "SaveButton",
 "values": {
 // Pop-up hint for a button.
 "hint": { "bindTo": "Resources.Strings.SaveButtonHint" }
 }
 }
]/**SCHEMA_DIFF*/
 };
});

Method 2

Add the tips array to control element values property. Add the pop-up hint configuration object to the tips array
using the insert operation. Specify the content property, which is the pop-up hint text in the values property of this
object. You can have a more individual approach to pop-up hint setup using this method. You can change the image
style, connect the pop-up hint visibility to a view model event, add control elements, etc.

ATTENTION

The specified method works for itemType:

Terrasoft.ViewItemType.BUTTON
Terrasoft.ViewItemType.LABEL
Terrasoft.ViewItemType.COLOR_BUTTON
Terrasoft.ViewItemType.HYPERLINK
Terrasoft.ViewItemType.INFORMATION_BUTTON
for elements with the specified generator property

The source code of the contact edit page replacing schema when adding the pop-up hint using method 2:

define("ContactPageV2", [],
function () {
 return {
 // Name of the edit page object schema.
 entitySchemaName: "Contact",
 //Pop-up hint visualization setup.
 diff: /**SCHEMA_DIFF*/[
 // Metadata for adding pop-up hint to the button.
 {
 // Modification of the existing element.
 "operation": "merge",
 "parentName": "LeftContainer",
 "propertyName": "items",
 "name": "SaveButton",
 "values": {
 // Pop-up hint array for a button.
 "tips": []
 }
 },
 // Simple hint configuration object.
 {
 // Adding a new element.
 "operation": "insert",

Bpm’online developer guide 516

 "parentName": "SaveButton",
 "propertyName": "tips",
 "name": "CustomShowedTip",
 "values": {
 // Pop-up hint text.
 "content": {"bindTo": "Resources.Strings.SaveButtonHint"}
 // You can setup additional parameters of pop-up hint
 // display and operation.
 }
 },
]/**SCHEMA_DIFF*/
 };
});

After you save the schema, a pop-up hint will appear next to the [Save] button on the contact edit page (Fig. 3).

Fig. 3. Case result demonstration

Example 2

Case description

Add a pop-up hint to the [Type] field of contact edit page.

Case implementation algorithm

1. Create a replacing contact page

Create a replacing client module and specify [Display schema – Contact card] (ContactPageV2) as parent object
(Fig. 1).

2. Adding a localized string with the pop-up hint text

Add a string with the pop-up hint text to the collection of localizable strings of the edit page replacing schema.
Properties of the created string (Fig. 4):

[Name] – “TypeTipContent”
[Value] – ‘Choose the type of contact from the list”

Fig. 4. Properties of the custom localizable string

Bpm’online developer guide 517

3. Adding a field configuration object to the diff array

Add the tip property containing the content property to the values field property. The content property value will be
the pop-up hint text.

Below is the source code of the page replacing schema.

define("ContactPageV2", [],
function () {
 return {
 // Name of the edit page object schema.
 entitySchemaName: "Contact",
 //Pop-up hint visualization setup.
 diff: /**SCHEMA_DIFF*/[
 // Metadata for adding pop-up hint to the field.
 {
 // Modification of the existing element.
 "operation": "merge",
 "name": "Type",
 "parentName": "ContactGeneralInfoBlock",
 "propertyName": "items",
 "values": {
 // Field propery responsible for displaying the pop-up hint.
 "tip": {
 // Pop-up hint text.
 "content": { "bindTo": "Resources.Strings.TypeTipContent" },
 // Pop-up hint display mode.
 // WIDE is the default mode - thickness of a green band,
 // displayed in the pop-up hint.
 "displayMode": Terrasoft.controls.TipEnums.displayMode.WIDE
 }
 }
 }
]/**SCHEMA_DIFF*/
 };
});

After you save the schema, a pop-up hint will appear in the [Type] field on the contact edit page (Fig. 5).

Fig. 5. Case result demonstration

Bpm’online developer guide 518

Example 3

Case description

Add an information button to the [Full name] contact edit page.

Case implementation algorithm

1. Create a replacing contact page

Create a replacing client module and specify [Display schema – Contact card] (ContactPageV2) as parent object
(Fig. 1).

2. Adding a localized string with the pop-up hint text

Add a string with the pop-up hint text to the collection of localizable strings of the edit page replacing schema.
Properties of the created string (Fig. 6):

[Name] – “InfoButtonCaption”
[Value] – “This is obligatory field”

Fig. 6. Properties of the custom localizable string

3. Adding a button configuration object to the diff array

Add a new element with the Terrasoft.ViewItemType.INFORMATION_BUTTON type and the content property to
the diff array. The content property value will be the pop-up hint text.

The source code of the edit page replacing schema:

define("ContactPageV2", [],

Bpm’online developer guide 519

function () {
 return {
 // Name of the edit page object schema.
 entitySchemaName: "Contact",
 //Pop-up hint visualization setup.
 diff: /**SCHEMA_DIFF*/[
 // Metadata for adding pop-up hint to the button.
 {
 // Modification of the existing element.
 "operation": "merge",
 "parentName": "ProfileContainer",
 "propertyName": "items",
 "name": "AccountName",
 "values": {
 "layout": { "column": 0, "row": 1, "colSpan": 22, "rowSpan": 1 }
 }
 },
 {
 // Adding a new element.
 "operation": "insert",
 "parentName": "ProfileContainer",
 "propertyName": "items",
 "name": "SimpleInfoButton",
 "values": {
 "layout": { "column": 22, "row": 1, "colSpan": 1, "rowSpan": 1 },
 "itemType": Terrasoft.ViewItemType.INFORMATION_BUTTON,
 "content": { "bindTo": "Resources.Strings.InfoButtonCaption" }
 }
 }
]/**SCHEMA_DIFF*/
 };
});

After you save the schema, the pop-up hint will appear in the [Account] field on the contact edit page (Fig. 7).

Fig. 7. Case result demonstration

Bpm’online developer guide 520

Example 4. Adding a link to web resource to the pop-up hint

You can add links to web resources or context help to pop-up hints. Add an html code of the link directly to the
localizable string of the pop-up hint text (Fig. 8).

Fig. 8. Example of defining the pop-up hint with a link

Example of adding a direct link to web resource:

Learn more

As a result, the pop-up hint will look as shown in figure 9.

Fig. 9. Example of displaying the pop-up hint with a link

How to modify sales pipeline calculations

Bpm’online developer guide 521

http://academy.terrasoft.ru/

You can modify the way values are calculated for the sales pipeline dashboard element in the [Opportunities
section]. To do this, you need to create a new module for calculations and replace the sales pipeline display client
schema.

To modify the sales pipeline calculations:
1. Create a new class inherited from FunnelBaseDataProvider and specify the calculation logic.
2. Create a replacing FunnelChartSchema client schema and use the new calculation class in it.

Example of modifying the calculations displayed in the
"Number of opportunities" view of the sales pipeline
Case description

Modify the sales pipeline calculation algorithms by replacing the number of opportunities with the number of
products added to opportunities.

Case implementation algorithm

1. Create a new module in the custom package

Create a new calculation provider client module in the custom package. Calculation provider is a class responsible
for selecting, filtering and processing data for sales pipeline chart.

Specify a name and caption for the new module, for example, UsrFunnelByProductCountDataProvider (Fig. 1).

Fig. 1. Calculation provider module properties

2. Add localizable strings

Add a string with the Number of products value to the collection of localizable strings of the created module. To do
this, right-click the [LocalizableStrings] structure node and select [Add] from the context menu. Set the properties
for the new string as shown on Fig. 2.

Fig. 2. Localizable string properties

Bpm’online developer guide 522

Add CntOpportunity localizable string with the Number of opportunities value in the similar way.

3. Add implementation to the provider module

To modify sales pipeline calculations, override the following methods:

addQueryColumns column generation method for data selection
methods for selection data processing.

To process one record from the selection, define the getSeriesDataConfigByItem method. To process the whole
collection, define the prepareFunnelResponseCollection method. To filter the records, define the
applyFunnelPeriodFilters method.

Below is the source code of the new calculation provider module for the sales pipeline.

define("UsrFunnelByProductCountDataProvider", ["ext-base", "terrasoft",
"UsrFunnelByProductCountDataProviderResources",
 "FunnelBaseDataProvider"],
 function(Ext, Terrasoft, resources) {
 // Defining a new calculation provider.
 Ext.define("Terrasoft.configuration.UsrFunnelByProductCountDataProvider", {
 // Inheriting from the basic provider.
 extend: "Terrasoft.FunnelBaseDataProvider",
 // New provider short name
 alternateClassName: "Terrasoft.UsrFunnelByProductCountDataProvider",
 // Collection processing method
 prepareFunnelResponseCollection: function(collection) {
 this.callParent(arguments);
 },
 // Extending the FunnelBaseDataProvider base model method.
 // Sets the column number of products for data sampling
 addQueryColumns: function(entitySchemaQuery) {
 // Parent method calling
 this.callParent(arguments);
 // Adds the number of products column to the sample
 entitySchemaQuery.addAggregationSchemaColumn("
[OpportunityProductInterest:Opportunity].Quantity",
 Terrasoft.AggregationType.SUM, "ProductsAmount");
 },
 // Extending the FunnelBaseDataProvider base class method.
 // Sets sample filtration
 applyFunnelPeriodFilters: function(filterGroup) {
 // Parent method calling
 this.callParent(arguments);
 // Creates a filter group.
 var endStageFilterGroup = Terrasoft.createFilterGroup();
 // Sets the group operator type.
 endStageFilterGroup.logicalOperation =
Terrasoft.LogicalOperatorType.OR;
 // Sets the filter that shows whether the sale stage is over yet.
 endStageFilterGroup.addItem(

Terrasoft.createColumnIsNullFilter(this.getDetailColumnPath("DueDate")));

Bpm’online developer guide 523

 // Sets the filter that shows whether the sale stage is final.
 endStageFilterGroup.addItem(

Terrasoft.createColumnFilterWithParameter(Terrasoft.ComparisonType.EQUAL,
 this.getDetailColumnPath("Stage.End"), true,
Terrasoft.DataValueType.BOOLEAN));
 filterGroup.addItem(endStageFilterGroup);
 },
 // Extending the FunnelBaseDataProvider base model method.
 // Processes data for the stages in the pipeline.
 getSeriesDataConfigByItem: function(responseItem) {
 // Object that stores localizable strings.
 var lcz = resources.localizableStrings;
 // Receives a stage data object from the parent method.
 var config = this.callParent(arguments);
 // Receives data about the number of products in an opportunity from
the sample result.
 var products = responseItem.get("ProductsAmount");
 products = Ext.isNumber(products) ? products : 0;
 // Formats the strings.
 var name = Ext.String.format("{0}
{1}: {2}
{3}: {4}",
 config.menuHeaderValue, lcz.CntOpportunity, config.y,
lcz.FunnelProductsCaption, products);
 var displayValue = Ext.String.format("
{0}: {1}",
lcz.FunnelProductsCaption, products);
 // Installs new data in the data object and returns it.
 return Ext.apply(config, {
 name: name,
 displayValue: displayValue
 });
 }
 });
 });

4. Create a sales pipeline replacing schema

To use the new provider module in the calculations, override the sales pipeline calculation provider generator
method.

To do this, create a replacing client module and specify FunnelChartSchema as a parent (Fig. 3).

Fig. 3. Properties of the replacing module

Add the new calculation module to dependencies (the Dependencies section), by specifying its name in the
[Dependency] field and the UsrFunnelByProductCountDataProvider value in the [Name] field (Fig. 4).

Fig. 4. Sales pipeline schema dependency properties

Bpm’online developer guide 524

5. Specify the new calculation provider in the sales pipeline replacing schema

To do this, override the getProvidersCollectionConfig method in the replacing schema that gets the configuration
object with the collection of providers.

define("FunnelChartSchema", ["UsrFunnelByProductCountDataProvider"],
 function() {
 return {
 entitySchemaName: "Opportunity",
 methods: {
 getProvidersCollectionConfig: function() {
 // Calls parent method.
 // Gets array of providers.
 var config = this.callParent();
 // Searches data provider in the measurement by the number of
opportunities.
 var byCount = Terrasoft.findItem(config, {tag:
"byNumberConversion"});
 // Replaces with new class.
 byCount.item.className =
"Terrasoft.UsrFunnelByProductCountDataProvider";
 return config;
 }
 }
 };
 });

After saving the schema, the new calculation module will be used in the sales pipeline and the sales pipeline itself
will display the total number of products by stages (Fig. 5).

Fig. 5. Sales pipeline displaying the number of products added to opportunities

Bpm’online developer guide 525

How to enable additional filtering in a sales pipeline

Introduction
In bmp’online, you can enable additional filtering for calculations in sales pipeline charts.

To do it this:

1. Create a new class inherited from the calculation provider and implement the necessary filtering logic.
2. Create a replacing FunnelChartSchema client schema and use the new calculation class in it.

Case description

Bpm’online developer guide 526

Add filtering to sales pipeline calculations displayed in the “Number of opportunities” view for selecting the
opportunities whose [Customer] field is populated with an account.

Source code
You can download the package with case implementation using the following link.

Case implementation algorithm
1. Creating a new module in the custom package

Create a new calculation provider client module in the custom package. Calculation provider is a class responsible
for selecting, filtering and processing data for sales pipeline chart.

Specify a name and caption for the new module, for example, UsrFunnelByCountDataProvider (fig. 1).

Fig. 1. Calculation provider module properties

2. Defining the new provider class and specifying the filtering logic

Inherit the created class from the FunnelByCountDataProvider class and override the getFunnelFixedFilters
method.

The module source code:

define("UsrFunnelByCountDataProvider", ["ext-base",
 "terrasoft", "UsrFunnelByCountDataProviderResources",
 "FunnelByCountDataProvider"],
 function(Ext, Terrasoft, resources) {
 // Defining the new calculation provider.
 Ext.define("Terrasoft.configuration.UsrFunnelByCountDataProvider", {
 // Inheritance from the provider "by number".
 extend: "Terrasoft.FunnelByCountDataProvider",
 // Contracted name of the new provider.
 alternateClassName: "Terrasoft.UsrFunnelByCountDataProvider",
 // Extending the FunnelByCountDataProvider base module method.
 // Returns filter for selection.
 getFunnelFixedFilters: function() {
 // Calling the parent method.
 var esqFiltersGroup = this.callParent(arguments);
 // Adds filter specifying that the customer of an opportunity is an
account.
 esqFiltersGroup.addItem(
 Terrasoft.createColumnIsNotNullFilter("Account"));
 return esqFiltersGroup;
 }
 });
 });

Bpm’online developer guide 527

https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkFunnelChartSchemaFiltering_18.06.27_04.10.03.zip

Save the module.

3. Implementing the pipeline chart module in custom package

To use the new provider module in calculations, cerate a replacing client module and specify FunnelChartSchema
from the Opportunity package as a parent schema (fig. 2).

Fig. 2. Properties of the replacing module

4. Specify the new calculation provider in the sales pipeline replacing schema

Override the provider generator method of sales pipeline calculation in the replacing schema and specify the new
provider class for calculations.

The replacing schema source code is as follows:

define("FunnelChartSchema", ["UsrFunnelByCountDataProvider"], function() {
 return {
 entitySchemaName: "Opportunity",
 methods: {
 getProvidersCollectionConfig: function() {
 // Calls parent method returning the provider array.
 var config = this.callParent();
 // Searches for data provider for displaying in the “Number of
opportunities” view.
 var byCount = Terrasoft.findItem(config, {tag:
"byNumberConversion"});
 // Changes for a new class.
 byCount.item.className = "Terrasoft.UsrFunnelByCountDataProvider";
 return config;
 }
 }
 };
});

After you save the schema, the new calculation module will be used in the sales pipeline. It will display the
opportunities whose [Customer] field is populated with an account.

Adding a custom dashboard widget

Introduction

Bpm’online developer guide 528

Dashboard widgets (analytic elements) are used for data analysis of sections. Go to the “Dashboards” view of the
required section to work with its analytics. Use the [Dashboards] section to work with the entirety of bpm’online
section data analytics.

To learn more about bpm’online dashboard widgets, please refer to the “Section analytics” article.

You can create custom dashboard widgets in bpm'online.

Creating a custom widget
To create a custom widget you need to:

1. Create new or select the existing module. Custom module must be an inheritor of the BaseNestedModule
module or one of its inheritors: ChartModule, IndicatorModule, GaugeModule, etc. More information about
dashboard widget modules can be found in the “Dashboard widgets” article.

2. Add the source code that implements the necessary functionality to the created module.
3. Specify the module dependency in the [Dependencies] block of the module properties. Add messages that are

used.
4. Set the widget parameters in the [Module parameters] field when adding widgets on the dashboards panel.

More information about parameters can be found in the “Dashboard widgets” article.

Case description
Create custom widget that shows currency exchange rate.

Source code
Use this link to download the case implementation package.

Case implementation algorithm
1. Create a currency indicator module.

Go to the [Configuration] section in the system designer and on the [Schemas] tab, select [Add] -> [Standard] ->
[Module] command. For the created module specify (Fig. 1):

[Parent object] – [Indicator module]
[Name] – “UsrCurrencyIndicatorModule”.
[Title] – “Currency Indicator Module”.

Fig. 1. Currency indicator module properties

2. Add the source code

Bpm’online developer guide 529

https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkAddCustomWidget_18.04.04_02.58.19.zip

The module source code:

define("UsrCurrencyIndicatorModule", ["UsrCurrencyIndicatorModuleResources",
"IndicatorModule"], function() {

 // Class that generates the configuration of the currency indicator module view..
 Ext.define("Terrasoft.configuration.CurrencyIndicatorViewConfig", {
 extend: "Terrasoft.BaseModel",
 alternateClassName: "Terrasoft.CurrencyIndicatorViewConfig",
 // Generates the configuration of the currency indicator module view.
 generate: function(config) {
 var style = config.style || "";
 var fontStyle = config.fontStyle || "";
 var wrapClassName = Ext.String.format("{0}", style);
 var id = Terrasoft.Component.generateId();
 // The returned configuration view object.
 var result = {
 "name": id,
 "itemType": Terrasoft.ViewItemType.CONTAINER,
 "classes": {wrapClassName: [wrapClassName, "indicator-module-
wrapper"]},
 "styles": {
 "display": "table",
 "width": "100%",
 "height": "100%"
 },
 "items": [
 {
 "name": id + "-wrap",
 "itemType": Terrasoft.ViewItemType.CONTAINER,
 "styles": {
 "display": "table-cell",
 "vertical-align": "middle"
 },
 "classes": {wrapClassName: ["indicator-wrap"]},
 "items": [
 // Display the name of the currency.
 {
 "name": "indicator-caption" + id,
 "itemType": Terrasoft.ViewItemType.LABEL,
 "caption": {"bindTo": "CurrencyName"},
 "classes": {"labelClass": ["indicator-caption"]}
 },
 // Display the currency exchange rate.
 {
 "name": "indicator-value" + id,
 "itemType": Terrasoft.ViewItemType.LABEL,
 "caption": {
 "bindTo": "CurrencyValue"
 },
 "classes": {"labelClass": ["indicator-value " +
fontStyle]}
 }
]
 }
]
 };
 return result;
 }
 });

 // Class of the view model of the currency indicator module.

Bpm’online developer guide 530

 Ext.define("Terrasoft.configuration.CurrencyIndicatorViewModel", {
 extend: "Terrasoft.BaseModel",
 alternateClassName: "Terrasoft.CurrencyIndicatorViewModel",
 Ext: null,
 Terrasoft: null,
 sandbox: null,
 columns: {
 // Currency name.
 CurrencyName: {
 type: Terrasoft.core.enums.ViewModelSchemaItem.ATTRIBUTE,
 dataValueType: Terrasoft.DataValueType.TEXT,
 value: null
 },
 // Currency value.
 CurrencyValue: {
 type: Terrasoft.core.enums.ViewModelSchemaItem.ATTRIBUTE,
 dataValueType: Terrasoft.DataValueType.FLOAT,
 value: null
 }
 },
 onRender: Ext.emptyFn,
 // Returns the currency value, depending on the name. This method is given as
an example.
 // For each specific task, you should select an individual method to obtain
data,
 // for example REST API, database query, etc.
 getCurrencyValue: function(currencyName, callback, scope) {
 var result = 0;
 if (currencyName === "USD") {
 result = 26;
 }
 if (currencyName === "EUR") {
 result = 32.3;
 }
 if (currencyName === "RUB") {
 result = 0.45;
 }
 callback.call(scope || this, result);
 },
 // Gets the data and displays them on the widget.
 prepareIndicator: function(callback, scope) {
 this.getCurrencyValue(this.get("CurrencyName"), function(currencyValue) {
 this.set("CurrencyValue", currencyValue);
 callback.call(scope);
 }, this);
 },
 // Initializes the widget.
 init: function(callback, scope) {
 this.prepareIndicator(callback, scope);
 }
 });

 // Widget module class.
 Ext.define("Terrasoft.configuration.CurrencyIndicatorModule", {
 extend: "Terrasoft.IndicatorModule",
 alternateClassName: "Terrasoft.CurrencyIndicatorModule",
 // The name of the wdget view model class.
 viewModelClassName: "Terrasoft.CurrencyIndicatorViewModel",
 // The name of the view configuration generating class.
 viewConfigClassName: "Terrasoft.CurrencyIndicatorViewConfig",
 // Subscribing to messages from third-party modules.
 subscribeMessages: function() {

Bpm’online developer guide 531

 this.sandbox.subscribe("GenerateIndicator", this.onGenerateIndicator,
this, [this.sandbox.id]);
 }
 });

 return Terrasoft.CurrencyIndicatorModule;
});

3. Add a style to the LESS tab

To display the widget text at the center, add the following style to the LESS tab of the module:

.indicator-module-wrapper {
 text-align: center;
}

3. Check the dependencies and messages

The dependencies and messages of parent module should automatically display in the created module (Fig. 2).

Fig. 2. Dependencies and messages of created module

If it doesn’t happen, add them manually:

Add a parent module to the [Dependencies] block
Add the GetIndicatorConfig message to the [Messages] block. Sett the “Publish” direction for the message
and the GenerateIndicator as address message with the “Follow” direction.

Save the new module.

5. Add the widget to the dashboard panel and set its parameters

To display the widget, add it to the dashboard panel (Fig. 3).

Fig. 3. Adding the widget to the dashboard panel

Bpm’online developer guide 532

In addition, you need to set the parameters of the module bound to the widget (Fig. 4).

Fig. 4. Configuration of the added widget module

To bind the module to the added widget, add the “Currency Indicator Module” value in the [Module] field and add
the configuration JSON object with the required parameters to the [Module parameters] field.

{
 "parameters": {
 "CurrencyName": "USD",
 "style": "widget-blue"
 },

Bpm’online developer guide 533

 "configurationMessage": "GetIndicatorConfig"
}

A “CurrencyName” parameter sets the currency for which the exchange rate is displayed. A “style” parameter sets
the widget style and “configurationMessage” parameter sets the message name that will be used to transfer the
configuration object.

You can set up any of bpm’online system colors in the style parameter as widget color (Fig. 5).

Fig. 5. Style types of the widget

After saving the created widget and refreshing the page, the custom widget will be displayed on the dashboards
panel (Fig. 6).

Fig. 6. Currency exchange rate widget

The Terrasoft.AlignableContainer custom element

Bpm’online developer guide 534

Introduction
The Terrasoft.AlignableContainer custom element has been introduced in bpm'online version 7.8. This element is
inherited from the Terrasoft.Container element, and contains the properties associated with the fixed container
positioning, which depends on another element.

The Terrasoft.AlignableContainer view depends on the element used to position the container (the container is
positioned at the center of the screen in case of element absence). Default container positioning order is defined by
the following sequence:

1. The container displays under the element at first.
2. If there is no space under the element, the container displays above it.
3. If placing either below or above is impossible, the container displays on the right.
4. If placing on the right is impossible, the container displays to the left of the element.

You can also specify the container background for the Terrasoft.AlignableContainer custom element. The
mentioned Terrasoft.AlignableContainer found their

Case description
When you click on a photo in the [Contacts] section, display an enlarged image in the center of the screen with a
background. When hovering over a photo, a larger version of the contact image relative to the photo container
should be displayed.

Case implementation algorithm
1. Create a replacing client module

Go to the [Configuration] section, click [Add] and select [Replacing client module] (Fig. 1, 1) to create a replacing
client module.

Fig. 1. Creating a replacing module

Select the ContactPageV2 schema as the parent object of the UIv2 package (Fig. 2).

Fig. 2. The ContactPageV2 replacing schema properties

Bpm’online developer guide 535

2. Display a larger version of a photo in the screen center.

To display images in the screen center, you must use the Terrasoft.AlignableContainer custom element. The element
link (near which you want to display the container) is not specified as a parameter. Set the true value to the
checkbox which is responsible for displaying the background for it to show up.

To display a photo in the center of the screen, you must create a handling method for the clicking on the contact's
photo event. Add a closing button to hide the image.

To do this, add the following source code to the created edit page schema of a contact:

// Defining a module and it's dependencies.
define("ContactPageV2", ["css!UsrContactPhotoContainerCSS"], function() {
 return {
 // Object schema name.
 entitySchemaName: "Contact",
 attributes: {
 // The attribute responsible for displaying the container when clicking
on a photo.
 "LargeSizeContainerVisible": {
 // Element type.
 dataValueType: this.Terrasoft.DataValueType.BOOLEAN,
 // Column type.
 type: this.Terrasoft.ViewModelColumnType.VIRTUAL_COLUMN,
 // Element value.
 value: false
 }
 },
 methods: {
 // A method that displays a container with a larger photo.
 openLargeSizeImage: function() {
 // Sets the container to visible with a larger photo.
 this.set("LargeSizeContainerVisible", true);
 // Hides the container with an average-sized image.
 this.set("MiddleSizeContainerVisible", false);
 },
 // A method that hides containers with images.
 close: function() {
 // Hides a container that displays a large photo.
 this.set("LargeSizeContainerVisible", false);
 // ides a container that displays an average-sized image.
 this.set("MiddleSizeContainerVisible", false);
 }
 },
 diff: /**SCHEMA_DIFF*/[
 {

Bpm’online developer guide 536

 // Connecting element properties.
 "operation": "merge",
 // Element name.
 "name": "Photo",
 // Parent element name.
 "parentName": "AccountPhotoContainer",
 // Property name.
 "propertyName": "items",
 // Element value.
 "values": {
 // Adding a method handler for a container click event.
 "onImageClick": {
 // Binding to the method handler of a container click event.
 "bindTo": "openLargeSizeImage"
 }
 }
 },
 {
 // Element inserting.
 "operation": "insert",
 // Element name.
 "name": "AlignableLargePhotoContainer",
 // Element value.
 "values": {
 // Container id.
 "id": "AlignableLargePhotoContainer",
 // Element type.
 "itemType": Terrasoft.ViewItemType.CONTAINER,
 // Element object classes.
 "className": "Terrasoft.AlignableContainer",
 // Element classes.
 "wrapClass": ["photo-alignable-container", "large-size-image-
container"],
 // Container visibility method handler.
 "visible": {"bindTo": "LargeSizeContainerVisible"},
 // The element near which you want to display the container.
 "alignToEl": null,
 // Background display chackbox.
 "showOverlay": {"bindTo": "LargeSizeContainerVisible"},
 // Container elements.
 "items": []
 }
 },
 {
 // Inserting an element.
 "operation": "insert",
 // Element name.
 "name": "CloseLargePhotoButton",
 // Parent element name.
 "parentName": "AlignableLargePhotoContainer",
 // Property name.
 "propertyName": "items",
 // Element values.
 "values": {
 // Element type.
 "itemType": Terrasoft.ViewItemType.BUTTON,
 // Element classes.
 "classes": {
 "imageClass": ["close-no-repeat-button"],
 "wrapperClass": ["close-button-wrapper"]
 },
 // Forming an button with an image property.

Bpm’online developer guide 537

 "imageConfig": {
 "bindTo": "Resources.Images.CloseButtonImage"
 },
 // Method-handler for pressing the button to close the element.
 "click": {"bindTo": "close"}
 }
 },
 {
 // Inserting an element.
 "operation": "insert",
 // Element name.
 "name": "AccountLargeResizedPhotoContainer",
 // Parent element name.
 "parentName": "AlignableLargePhotoContainer",
 // Property name.
 "propertyName": "items",
 // Element values.
 "values": {
 // Element type.
 "itemType": Terrasoft.ViewItemType.BUTTON,
 // Element object class.
 "className": "Terrasoft.ImageView",
 // Method of obtaining a link to an image.
 "imageSrc": {"bindTo": "getContactImage"}
 }
 }
]/**SCHEMA_DIFF*/
 };
});

In order to set the required dimensions of the displayed photo container, you need to define its CSS-style.

To do this, go to the [Configuration] section, and select [Add] > [Standard] > [Module] in the [Schemas] tab (Fig. 1,
2).

In module properties, set the title and header to "UsrContactPhotoContainerCSS" (Fig. 3).

Fig. 3. Module properties

Module styles are defined on the LESS tab (Fig. 4).

Fig. 4. LESS module tab

Add the following CSS selectors for the contact photo to display correctly in the screen center:

.schema-wrap .photo-alignable-container::before,

.schema-wrap .alignable-container-overlay::before {
 background: transparent;

Bpm’online developer guide 538

}

.schema-wrap .photo-alignable-container.alignable-container {
 background: white;
}

.photo-alignable-container.large-size-image-container {
 width: 500px;
 height: 525px;
}

.photo-alignable-container .close-no-repeat-button {
 background-repeat: no-repeat;
}

.photo-alignable-container .close-button-wrapper:hover {
 background: transparent;
}

#ContactPageV2AccountLargeResizedPhotoContainerButton-image-view,
#ContactPageV2AccountResizedPhotoContainerButton-image-view
{
 height: 90%;
}

To check the generated code functionality, save the created modules, restart the application, and go to the contact
page and click on the photo. A larger contact photo in the page center on a semi-transparent gray background will
show up as the result (Fig. 5).

Fig. 5. A larger contact phone in the screen center

Bpm’online developer guide 539

3. Display a larger photo after hovering the mouse cursor over the contact photo
container.

To display a larger image after hovering over the user photo container, you must add an event handler for the cursor
hovering event. Also, the Terrasoft.AlignableContainer container needs to transfer the name of the element near
which the container should be displayed. Finally, add the logic of hiding the Terrasoft.AlignableContainer container.
To do this, make the following changes to the source code of the replaced contact page schema.

Add the followinf attributes to the attributes section.

attributes: {
 // The id of the element near which you want to display the container.
 "AlignToElementId": {
 // Element type.
 dataValueType: this.Terrasoft.DataValueType.TEXT,
 // Column type.
 type: this.Terrasoft.ViewModelColumnType.VIRTUAL_COLUMN,
 // Element value.
 value: "ContactPageV2AccountPhotoContainerContainer"
 },
 // The attribute responsible for displaying the container when hovering over a
photo.
 "MiddleSizeContainerVisible": {
 // Element type.

Bpm’online developer guide 540

 dataValueType: this.Terrasoft.DataValueType.BOOLEAN,
 // Column type.
 type: this.Terrasoft.ViewModelColumnType.VIRTUAL_COLUMN,
 // Element value.
 value: false
 }...
},

Add the following methods to the methоds section.

methods: {
 // A method that performs actions after loading an object entity.
 onEntityInitialized: function() {
 // Calls the parent element.
 this.callParent(arguments);
 // Sets the element near which you want to display the container.
 this.setAlignToEl();
 // Creates a subscription to the mouse cursor hover event.
 this.subscribePhotoContainerEvents();
 },
 // The method that sets the element near which you want to display the container.
 setAlignToEl: function() {
 // Gets the item ID.
 var alignToElementId = this.get("AlignToElementId");
 // Gets the DOM element.
 var alignToEl = this.Ext.get(alignToElementId);
 // Writes the value of the DOM element to the AlignToEl parameter.
 this.set("AlignToEl", alignToEl);
 },
 // A method that creates a subscription to the mouse hover event.
 subscribePhotoContainerEvents: function() {
 // Gets the DOM element of the photo container.
 var container = this.get("AlignToEl");
 // Creates a subscription to the mouse cursor hover event.
 container.on("mouseover", this.openMiddleSizeImage, this);
 },
 // The method that displays the image after hovering over the container.
 openMiddleSizeImage: function() {
 // Makes the average-sized photo container visible.
 this.set("MiddleSizeContainerVisible", true);
 // Hides the larger photo container.
 this.set("LargeSizeContainerVisible", false);
 },
 ...
 // A method that hides containers with images.
 close: function() {
 // Hides the larger photo container.
 this.set("LargeSizeContainerVisible", false);
 // Hides the average-sized photo container.
 this.set("MiddleSizeContainerVisible", false);
 }
},

Add the following configuration objects to the diff array:

diff: /**SCHEMA_DIFF*/[
 {
 // Inserting an element.
 "operation": "insert",
 // Element name.
 "name": "AlignablePhotoContainer",
 // Element values.

Bpm’online developer guide 541

 "values": {
 // Container id.
 "id": "AlignablePhotoContainer",
 // Element type.
 "itemType": Terrasoft.ViewItemType.CONTAINER,
 // Element object class.
 "className": "Terrasoft.AlignableContainer",
 // Element classes.
 "wrapClass": ["photo-alignable-container", "middle-size-image-
container"],
 // Method handler of container visibility.
 "visible": {"bindTo": "MiddleSizeContainerVisible"},
 // The element near which you want to display the container.
 "alignToEl": {"bindTo": "AlignToEl"},
 // A checkbox for displaying the background.
 "showOverlay": false,
 // Container elements.
 "items": []
 }
 },
 {
 // Inserting an element.
 "operation": "insert",
 // Element name.
 "name": "ClosePhotoButton",
 // Parent element name.
 "parentName": "AlignablePhotoContainer",
 // Property name.
 "propertyName": "items",
 // Element values.
 "values": {
 // Element type.
 "itemType": Terrasoft.ViewItemType.BUTTON,
 // Element classes.
 "classes": {
 "imageClass": ["close-no-repeat-button"],
 "wrapperClass": ["close-button-wrapper"]
 },
 // Forming an button with an image property.
 "imageConfig": {
 "bindTo": "Resources.Images.CloseButtonImage"
 },
 // Method-handler for pressing the button to close the element.
 "click": {"bindTo": "close"}
 }
 },
 {
 // Inserting an element.
 "operation": "insert",
 // Element name.
 "name": "AccountResizedPhotoContainer",
 // Parent element name.
 "parentName": "AlignablePhotoContainer",
 // property name.
 "propertyName": "items",
 // Element values.
 "values": {
 // Element type.
 "itemType": Terrasoft.ViewItemType.BUTTON,
 // Element object class.
 "className": "Terrasoft.ImageView",
 // Method of getting an image url.

Bpm’online developer guide 542

 "imageSrc": {"bindTo": "getContactImage"}
 }
 },...
]/**SCHEMA_DIFF*/

Also, to set the required size of the "pop-up" photo, add the following CSS selector on the LESS tab of the
UsrContactPhotoContainerCSS module:

.photo-alignable-container.middle-size-image-container {
 width: 250px;
 height: 275px;
}

To check the generated code functionality, save the created modules, restart the application, and go to the contact
page and hover the cursor over the photo. A larger contact photo will show up next to the main one as the result (Fig.
6).

Fig. 6. A larger contact photo next to the main one

Adding a duplicate search rule

Introduction
Deduplication process uses the rules created as procedures and stored in bpm’online. When a rule is being executed,
it populates the ContactDuplicateSearchResult table with a list of duplicates. Search results are grouped by rules
and displayed on the duplicate page. Learn more about this functionality in the “Finding and merging duplicates”
documentation.

Bpm’online developer guide 543

https://academy.bpmonline.com/documents?product=enterprise&ver=7&id=1015

To add a duplicate rule:

1. Add a column to the object schema (if needed). The column value will be used for the search of duplicates.

2. Add the stored search procedure to the application database.

3. Register the stored procedure as a new rule.

Case description
When launching the duplicate search process, the contacts with the same [Taxpayer ID] column values should be
considered duplicates and should be displayed as search result.

Case implementation algorithm
1. Adding a field whose value will be used for the duplicate search

Since the [Taxpayer ID] field is not available on a standard contact edit page, add the field to the page (e.g., via a
section wizard). For more information about adding fields to edit pages see the “Adding a new field to the edit page”
article.

The new field properties:

[Title] – “Taxpayer ID”
[Name in DB] – “UsrInn”

2. Adding the stored search procedure to the application database

Add the stored duplicate search procedure by the [Taxpayer ID] field to the database. To do so, execute the following
SQL script:

-- Verifying if the stored tsp_FindContactDuplicateByInn procedure is available.
IF NOT OBJECT_ID('[dbo].[tsp_FindContactDuplicateByInn]') IS NULL
BEGIN
 -- Deleting the stored procedure.
 DROP PROCEDURE [dbo].[tsp_FindContactDuplicateByInn];
END;
GO
-- Creating the stored procedure.
CREATE PROCEDURE [dbo].[tsp_FindContactDuplicateByInn] (
 -- This table parameter is only rendered if a new contact is stored.
 -- Contains the new contact data.
 -- If duplicate global search process is launched, the rendered parameter
contains no data.
 @parsedConfig CreatingObjectInfo READONLY,
 -- Unique identifier of user who launched the duplicate search.
 @sysAdminUnit UNIQUEIDENTIFIER,
 -- Identifier of the current rule from the [ContactDuplicateSearchResult] table.
 -- This identifier is created after a rule is registered in the system.
 @ruleId UNIQUEIDENTIFIER
)
AS
BEGIN
 -- Receiving the quantity of records from the accepted table for defining the
duplicate global search launch.
 DECLARE @parsedConfigRowsCount INT = (SELECT COUNT(*) FROM @parsedConfig);
 -- Creating temporary table with contact data for the search.
 CREATE TABLE #searchContact (
 [UsrInn] INT,
 [SortDate] DATETIME
);
 -- In case of global search, the temporary table is populated with data.
 IF @parsedConfigRowsCount = 0

Bpm’online developer guide 544

https://academy.bpmonline.com/documents?product=enterprise&ver=7&id=1399

 BEGIN
 -- Adding data for duplicate search to the temporary table.
 INSERT INTO #searchContact ([UsrInn], [SortDate])
 -- Query for contact data selection.
 SELECT
 -- The Taxpayer ID columns of contact modification date are selected.
 [UsrInn],
 MAX([ModifiedOn])
 FROM [Contact]
 -- Grouping by fields is added to enable using qauntity verification.
 GROUP BY [UsrInn]
 -- The table is populated only if more than one contact is available.
 HAVING COUNT(*) > 1;
 END;

 -- Populating the table of results.
 INSERT INTO [ContactDuplicateSearchResult] ([ContactId], [GroupId], [RuleId],
[SysAdminUnitId])
 SELECT
 -- Contact duplicate identifier.
 [vr].[Id],
 -- Group numbering.
 DENSE_RANK() OVER (ORDER BY [vr].[SortDate] DESC, [vr].[UsrInn]),
 -- Rule identifier.
 @ruleId RuleId,
 -- Identifier of user who launched the duplicate search process.
 @sysAdminUnit
 FROM (
 -- Subquery populating the duplicatae table.
 SELECT
 -- Contact identifier.
 [v].[Id],
 --Contact Taxpayer ID.
 [v].[UsrInn],
 -- Date of sorting.
 [r].[SortDate]
 -- Tables providing data.
 FROM [Contact] [v], #searchContact r
 -- The rule defining that contacts are duplicates.
 WHERE [v].[UsrInn] = [r].[UsrInn]
 -- Groupoing of search results.
 GROUP BY [v].[UsrInn], [r].[SortDate], [v].[Id]
) [vr];
END;
GO

NOTE

Sometimes you can come across the "Cannot resolve the collation conflict between "Cyrillic_General_CI_AS"
and "Cyrillic_General_CI_AI" in the equal to operation" error. To fix it, specify the necessary COLLATE when
creating the table column.

CREATE TABLE #searchContact ([Name] NVARCHAR(128) COLLATE Cyrillic_General_CI_AI,
[BirthDate] DATETIME, [SortDate] DATETIME);

3. Registering the stored procedure as a new rule

To register the stored procedure as a new duplicate search rule, add the corresponding record to the DuplicatesRule
table. To do so, execute the following SQL script:

-- Veriable that stores the UId column value of the Contact schema.
DECLARE @ContactUId UNIQUEIDENTIFIER;

Bpm’online developer guide 545

-- Receives the UId сcolumn value of the Contact schema.
Set @ContactUId = (SELECT TOP 1 SysSchema.UId FROM SysSchema
WHERE SysSchema.Name = 'Contact' AND SysSchema.ExtendParent = 0);

-- Adds a new rule to the system.
INSERT INTO DuplicatesRule ([IsActive], [ObjectId], [ProcedureName], [Name]) VALUES
 (1, @ContactUId, 'tsp_FindContactDuplicateByInn', 'Дубли контактов. ИНН');

After you update the application page and clear the cache, you will have a new rule in the list of duplicate search
rules (Fig. 1).

Fig. 1. Duplicate search rule by the [Taxpayer ID] field

Junk case custom filtering

Introduction
Bpm'online users can filter unwanted cases by creating a list of email addresses and domains for automatic spam
detection. Incoming cases from these domains or addresses are either not registered at all or have the “Canceled”
status (the default status value is set in the [Junk Case Default Status] system setting).

Junk filter enables email header analysis based on certain flags, e.g. Auto-Submitted. Emails with those flags are
either not registered or register with the pre-defined initial status, set in system settings.

To analyze email addresses and domains, simply add the required value to the [Blacklist of email addresses and
domains for case registration] lookup. The emails will be marked as blacklisted during the analysis when you
populate the lookup with values (their type is set automatically).

The algorithm of adding a new email filtering property
Email analysis is done through the [Email header properties management] lookup. Follow these steps to add a new
analysis property:

1. Add a new class that implements the IHeaderPropertyHandler interface. This interface contains a single
Check() method that returns a value of bool type. Check the property value and return the result during the
Check() method implementation. If the method returns true, the system creates the case using the standard
mechanism, if false, the system treats the email as blacklisted.

2. Add an [Email header properties management] lookup value. Specify the property name used for analysis in
the Name column. Specify the class name (added in the previous paragraph) in the handler column.

Adding a new email filtering property

Bpm’online developer guide 546

Case description

Add a new No-reply property for case analysis. If the property is found in the email header and its value is anything
other than “No”, treat the case as blacklisted.

Case implementation algorithm

1. Add a new class that implements the IHeaderPropertyHandler interface.

Add a “Source code” schema in a custom package (e.g. Custom). In this schema, define a class that implements the
IHeaderPropertyHandler interface, e.g.:

namespace Terrasoft.Configuration
{
 using System;
 public class NoreplyHandler: IHeaderPropertyHandler
 {
 public bool Check(object value) {
 return string.Equals(value.ToString(), "No",
StringComparison.OrdinalIgnoreCase);
 }
 }
}

Save and publish the new schema.

The IHeaderPropertyHandler interface is defined in the JunkFilter package, so it must be added to the custom
package dependency.

2. Adding a lookup value

Add the No-reply property to the [Email header properties management] lookup. Select the NoreplyHandler class
(created in the previous paragraph) as the handler class (handler property).

After receiving an email with a No-reply header flag and a value that is anything other than “No”, the following
options are possible:

the case is not created if the [Create Cases From Junk Emails] system setting value is false;
the case is created with the [Junk Case Default Status] system setting status if the [Create Cases From
Junk Emails] system setting value is true.

How to display custom implementation of approving in the section
wizard

Starting with version 7.11 bpm’online can now implement approving functions and informing about approvals in any
section. Approvals are enabled in the section wizard. The section wizard has the [Enable approval in section]
checkbox to enable approvals (Fig. 1). Previous versions of bpm’online needed a project complex solutions to enable
approving functions.

Fig. 1. [Enable approval in section] checkbox in the section wizard

Bpm’online developer guide 547

If the custom approving had been already implemented in bpm’online, follow instructions below to enable the
[Enable approval in section] checkbox in the section wizard.

1. Add a record in the SysModuleVisa table
To do so, execute the following SQL script:

insert SysModuleVisa(
 VisaSchemaUId,
 MasterColumnUId,
 UseCustomNotificationProvider)
select
 'XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX',
 'YYYYYYYY-YYYY-YYYY-YYYY-YYYYYYYYYYYY',
 0

where

VisaSchemaUId – UId of user object inherited from the [Base approval] object.
MasterColumnUId – UId of the field of interaction with the section.
UseCustomNotificationProvider – a flag of using custom provider. “0” if you need to use custom provider
by default, “1” if user has created own message provider.

2. Update a record for the section in the SysModule table
In the SysModule table for corresponding section sill the SysModuleVisaId field with value of the Id of added record
in the SysModuleVisa table. To do so, execute the following SQL script:

update SysModule
set SysModuleVisaId ='ZZZZZZZZ-ZZZZ-ZZZZ-ZZZZ-ZZZZZZZZZZZZ'
where Code='KnowledgeBase'

How to create custom reminders and notifications

Introduction
Starting with version 7.12.0, reminder and notification sending mechanics has been reworked in bpm'online.

Previously, to send a custom notification, you would have to:

Creates a class that implements INotificationProvider interface or an inherited abstract
BaseNotificationProvider class.
Add logic for selecting custom notifications by bpm’online.
Register a class in the NotificationProvider table.

The notifications were sent once a minute, calling all classes from the NotificationProvider table.

Starting with version 7.12.0, it is sufficient to create a notification or reminder with the needed parameters. After
this, the application will either send the notification immediately, or display a reminder at the specified time.

To set up custom notifications:

1. Create a [Source code] schema in the custom package and define a class for generating the notification text
and pop-up window. The class must implement the IRemindingTextFormer interface (declared in the
IRemindingTextFormer schema of the Base package).

2. Replace the needed object (such as [Lead]) or specify notification sending logic in it.

Bpm’online developer guide 548

3. Replace the reminder tab schema ReminderNotificationsSchema for displaying notifications for the needed
object.

Case description
Create a custom reminder about opportunity actualization date in leads. The date must be specified in the [Next
actualization date] field on the [Opportunity info] tab.

Source code
A package with implemented example is available for download via the following link.

Case implementation algorithm
1. Create a class for generating the reminder text and the pop-up window.

1. Add a [Source code] schema in the custom package (see “Creating the [Source code] schema”). Set the
following properties (Fig. 1):

[Title] – “Lead Reminding Text Former”.
[Name] – "UsrLeadRemindingTextFormer”

Fig. 1. The [Source code] schema properties

2. Use the context menu of the [Structure] tab to add two localized strings (Fig. 2). Properties of the localized strings
are described in table 1.

Fig. 2. Adding localized strings to schema

Table 1. Localized string properties

Name Value
TitleTemplate You need to update the sale

BodyTemplate Lead {0} requires update of sales information

Bpm’online developer guide 549

https://academy.terrasoft.ru/sites/default/files/documents/downloads/SDK/Packages/sdkHowToSendCustomNotifications_18.03.02_12.34.29.zip

3. Add class implementation for forming reminder text and pop-up window:

namespace Terrasoft.Configuration
{
 using System.Collections.Generic;
 using Terrasoft.Common;
 using Terrasoft.Core;

 public class UsrLeadRemindingTextFormer : IRemindingTextFormer
 {
 private const string ClassName = nameof(UsrLeadRemindingTextFormer);
 protected readonly UserConnection UserConnection;

 public UsrLeadRemindingTextFormer(UserConnection userConnection) {
 UserConnection = userConnection;
 }
 // Generates reminder text from a collection of inbound parameters and
BodyTemplate localized string.
 public string GetBody(IDictionary<string, object> formParameters) {
 formParameters.CheckArgumentNull("formParameters");
 var bodyTemplate = UserConnection.GetLocalizableString(ClassName,
"BodyTemplate");
 var leadName = (string)formParameters["LeadName"];
 var body = string.Format(bodyTemplate, leadName);
 return body;
 }
 // Generates reminder title from the class name and TitleTemplate localize
string.
 public string GetTitle(IDictionary<string, object> formParameters) {
 return UserConnection.GetLocalizableString(ClassName, "TitleTemplate");
 }
 }
}

4. Save and publish the schema.

2. Replace the [Lead] object and set the reminder logic in it.

1. Create a replacing schema of the [Lead] object (see “Crating a replacing object schema” section of the “Creating
the entity schema” article).

2. Click [Additional] and select [Open process]. Built-in process of the replacing [Lead] object will open (Fig. 3).

Fig. 3. Opening built-in process

3. Using the context menu in the [Structure] tab, add process parameter GenerateReminding (Fig. 4) with the
following properties (Fig. 5):

[Title] – “Generate Reminding”.
[Name] – "GenerateReminding”.
[Data type] – “Boolean”.

Fig. 4. Adding a process parameter

Bpm’online developer guide 550

Fig. 5. The properties for the process parameter

4. Select the LeadSavingMethod() (called before saving the object) in the [Methods] node on the [Structure] tab
(Fig. 6). Select the [Override] checkbox and add the following code to the method body:

// Calling base implementation of the method.
base.LeadSavingMethod();
// Getting owner Id.
var oldOwnerId = Entity.GetTypedOldColumnValue<Guid>("OwnerId");
// Getting next actualization date.
DateTime oldRemindDate = Entity.GetTypedOldColumnValue<DateTime>
("NextActualizationDate");
// Comparing Id of original and current owner.
bool ownerChanged = !Entity.OwnerId.Equals(oldOwnerId);
// Comparing original and current actualization dates.
bool remindDateChanged = !Entity.NextActualizationDate.Equals(oldRemindDate);

Bpm’online developer guide 551

// Set the GenerateReminding process parameter value to "true" if the owner
// or actualization date changed.
GenerateReminding = ownerChanged || remindDateChanged;

NOTE

To open source code editor of a method, double-click the method name on the [Structure] tab.

Fig. 6. Properties of the LeadSavingMethod

5. Select the LeadSavedMethod() (called after saving the object) in the [Methods] node on the [Structure] tab (Fig.
7). Select the [Override] checkbox and add the following code to the method body:

base.LeadSaved();
// Checks if the reminder must be generated.
if (!GenerateReminding) {
 return;
}
DateTime remindTime = Entity.NextActualizationDate;
if (Entity.OwnerId.Equals(Guid.Empty) || remindTime.Equals(default(DateTime))) {
 return;
}
// Instantiates the UsrLeadRemindingTextFormer class.
IRemindingTextFormer textFormer =
 ClassFactory.Get<UsrLeadRemindingTextFormer>(new
ConstructorArgument("userConnection", UserConnection));
// Gets lead name.
string leadName = Entity.LeadName;
// Gets the reminder text.
string subjectCaption = textFormer.GetBody(new Dictionary<string, object> {
 {"LeadName", leadName}
 });
// Gets reminder title.
string popupTitle = textFormer.GetTitle(null);
// Configures reminder.
var remindingConfig = new RemindingConfig(Entity);
// Message author — current contact.

Bpm’online developer guide 552

remindingConfig.AuthorId = UserConnection.CurrentUser.ContactId;
// Target recipient — lead owner.
remindingConfig.ContactId = Entity.OwnerId;
// Type — reminder.
remindingConfig.NotificationTypeId = RemindingConsts.NotificationTypeRemindingId;
// Reminder date — next actualization date of an opportunity in lead.
remindingConfig.RemindTime = remindTime;
// Reminder text.
remindingConfig.Description = subjectCaption;
// Reminder title.
remindingConfig.PopupTitle = popupTitle;
// Creating reminder utility class.
var remindingUtilities = ClassFactory.Get<RemindingUtilities>();
// Creating reminder.
remindingUtilities.CreateReminding(UserConnection, remindingConfig);

Fig. 7. Properties of the LeadSavedMethod

NOTE

To display reminders on the system notification tab , replace remindingConfig.NotificationTypeId =
RemindingConsts.NotificationTypeRemindingId; with remindingConfig.NotificationTypeId =
RemindingConsts.NotificationTypeNotificationId; in the code of the LeadSavedMethod.

6. Save and publish built-in process schema of the [Lead] object. Publish the [Lead] object schema.

3. Replace the reminder tab schema ReminderNotificationsSchema.

1. To display reminders for a specific object, create a replacing ReminderNotificationsSchema in the custom
package and add the needed logic to it. The procedure for creating a replacing client schema is covered in the
“Creating a custom client module schema” article. Replacing schema properties (Fig. 8):

[Title] – “Notifications module”.
[Name] – “ReminderNotificationsSchema”.

Fig. 8. Properties of the ReminderNotificationsSchema schema

Bpm’online developer guide 553

2. Add following source code on the [Source code] tab of the schema:

define("ReminderNotificationsSchema", ["ReminderNotificationsSchemaResources"],
 function() {
 return {
 entitySchemaName: "Reminding",
 methods: {
 // Determines of the reminder is related to the lead.
 getIsLeadNotification: function() {
 return this.get("SchemaName") === "Lead";
 },
 // Gets reminder title.
 getNotificationSubjectCaption: function() {
 var caption = this.get("Description");
 return caption;
 }
 },
 // Array of view model notifications.
 diff: [
 // Reminder primary container.
 {
 "operation": "insert",
 "name": "NotificationleadItemContainer",
 "parentName": "Notification",
 "propertyName": "items",
 "values": {
 "itemType": Terrasoft.ViewItemType.CONTAINER,
 "wrapClass": [
 "reminder-notification-item-container"
],
 // Displays only for leads.
 "visible": {"bindTo": "getIsLeadNotification"},
 "items": []
 }
 },
 // Title container.
 {
 "operation": "insert",
 "name": "NotificationItemleadTopContainer",
 "parentName": "NotificationleadItemContainer",
 "propertyName": "items",
 "values": {
 "itemType": Terrasoft.ViewItemType.CONTAINER,
 "wrapClass": ["reminder-notification-item-top-container"],
 "items": []
 }
 },

Bpm’online developer guide 554

 // Image.
 {
 "operation": "insert",
 "name": "NotificationleadImage",
 "parentName": "NotificationItemleadTopContainer",
 "propertyName": "items",
 "values": {
 "itemType": Terrasoft.ViewItemType.BUTTON,
 "className": "Terrasoft.ImageView",
 "imageSrc": {"bindTo": "getNotificationImage"},
 "classes": {"wrapClass": ["reminder-notification-icon-
class"]}
 }
 },
 // Date display.
 {
 "operation": "insert",
 "name": "NotificationDate",
 "parentName": "NotificationItemleadTopContainer",
 "propertyName": "items",
 "values": {
 "itemType": Terrasoft.ViewItemType.LABEL,
 "caption": {"bindTo": "getNotificationDate"},
 "classes": {"labelClass": ["subject-text-labelClass"]}
 }
 },
 // Reminder text display.
 {
 "operation": "insert",
 "name": "NotificationleadSubject",
 "parentName": "NotificationItemleadTopContainer",
 "propertyName": "items",
 "values": {
 "itemType": Terrasoft.ViewItemType.LABEL,
 "caption": {"bindTo": "getNotificationSubjectCaption"},
 "click": {"bindTo": "onNotificationSubjectClick"},
 "classes": {"labelClass": ["subject-text-labelClass", "label-
link", "label-url"]}
 }
 }
]
 };
 });

3. Save the schema.

As a result, bpm’online will create reminders (Fig. 10) for all leads where the owner and actualization date are
specified (Fig. 9).

Fig. 9. Lead page where owner and next actualization date fields populated

Bpm’online developer guide 555

Fig. 10. Lead custom reminder

How to create the [Timeline] tab tiles bound to custom section

Introduction
Starting from version 7.12.0 you can use the [Timeline] tab for quick analysis of customer cooperation, opportunity,
case, etc. history in bpm’online. This tab is available by default in the [Contacts], [Accounts], [Leads],
[Opportunities] and [Cases] sections. General information about this tab functions is provided in the "The
[Timeline] tab” article.

Bpm’online developer guide 556

You can set up a tile using the TimelinePageSetting table settings as shown in the example with the base tile (see
"The [Timeline] tab”). In such a case you will use the following for your tile:

the default icon
the BaseTimelineItemView and BaseTimelineItemViewModel base view and view model modules
author field
tile caption field
message field

You can use one and the same tile for different sections if needed. However, we recommend to use the
TimelineTileSetting table and set up your tiles for different sections.

The TimelineTileSetting table contains tile configurations that already exist in bpm’online. The section, however,
will only display the tiles indicated in the TimelinePageSetting table for this particular section.

For example, the TimelineTileSetting contains three pre-configured tiles: Tasks, Leads and Calls. The
TimelinePageSetting table contains the Tasks and Calls tiles that are pre-configured for usage in the [Accounts]
section, and only the Calls tile that is pre-configured for usage in the [Contacts] section. The Leads tile in this case
will not be displayed in any section.

NOTE

It is considered a good practice to differentiate the tile settings. We recommend to use the TimelineTileSetting
table for setting up tiles, and the TimelinePageSetting – for adding the tiles to section timeline.

ATTENTION

If you need to add the existing Files tile to a section, the "entitySchemaName” property of the
TimelinePageSetting table should contain the entity schema name for files in the corresponding section
configuration (for example, AccountFile, ContactFile, etc.). The object schema name (the
"entitySchemaName” property) of the TimelineTileSetting table should always look as follows:
"##ReferenceSchemaName##File".

To add a new pre-configured tile:

1. Add a new section (if needed).

2. Add a module schema to your custom package and determine the tile view class, bound to the new section. The
class should be the inheritor of BaseTimelineItemView.

3. Add a module schema to your custom package and determine the tile view model class, bound to the new section.
The class should be the inheritor of BaseTimelineItemViewModel.

4. Add a record with the tile view settings bound to the new section into the TimelineTileSetting database table.

5. In the TimelinePageSetting table add or edit the record enabling the tile display on the [Timeline] tab in the
necessary section.

Case description
Display the tiles bound to the [Books] custom section on the [Timeline] tab of the [Accounts] section. The tiles
should contain:

icon
name
author
book record date
price
ISBN number

A short book description should also be displayed when you deploy the tile.

Source code

Bpm’online developer guide 557

You can download the package with the [Book] section implementation using the following link. You can download
the package with the tile module schema implementation using the following link.

ATTENTION

You should also edit the database tables to implement the case (see steps 4 and 5).

Case implementation algorithm
1. Adding a new [Books] section

Use the archive containing the needed function package to add the new [Books] section. Install the package via the
marketplace application installation function from the *.zip-archive (see "Installing marketplace applications
from a zip archive”).

NOTE

You can also add the section via section wizard.

The [Books] section will be available in the [General] workplace after you install the package (Fig.1).

Fig. 1. The [Books] section

You will also see a detail displaying the linked records from the [Books] section on the [Books] tab of the [Accounts]
section record edit page (Fig.2).

Fig. 2. The [Books] detail in the [Accounts] section

Bpm’online developer guide 558

https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkBookExample_18.04.25_10.55.21.zip
https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkTimelineExample_18.04.25_10.55.37.zip
https://academy.terrasoft.ru/documents?product=enterprise&ver=7&id=1245

2. Adding a tile view module

Add a client module schema containing dependencies from the Timeline package to the custom package (see
"Creating a custom client module schema”).

For the created module schema specify (Fig. 3):

[Name] – "UsrBookTimelineItemView"
[Title] – "UsrBook Timeline Item View”

Fig. 3. Tile view module schema properties

Add the following module source code to the [Source code] tab of the schema:

// Defining the module and its dependencies.
define("UsrBookTimelineItemView", ["UsrBookTimelineItemViewResources",
"BaseTimelineItemView"], function() {
 // Defining the tile view class.
 Ext.define("Terrasoft.configuration.UsrBookTimelineItemView", {
 extend: "Terrasoft.BaseTimelineItemView",
 alternateClassName: "Terrasoft.UsrBookTimelineItemView",
 // Method returning the [UsrISBN] additional tile field configuration.
 getUsrISBNViewConfig: function() {
 return {
 // Field name.
 "name": "UsrISBN",
 // Field type — label.

Bpm’online developer guide 559

 "itemType": Terrasoft.ViewItemType.LABEL,
 // Caption.
 "caption": {
 "bindTo": "UsrISBN"
 },
 // Visibility.
 "visible": {
 // Binding to the tile linked entity column.
 "bindTo": "UsrISBN",
 // Visibility setup.
 "bindConfig": {
 // A field is visible if its value is populated.
 "converter": "checkIsNotEmpty"
 }
 },
 // CSS field styles.
 "classes": {
 "labelClass": ["timeline-text-light"]
 }
 };
 },
 // Method returning the [UsrPrice] additional tile field configuration.
 getUsrPriceViewConfig: function() {
 return {
 "name": "UsrPrice",
 "itemType": Terrasoft.ViewItemType.LABEL,
 "caption": {
 "bindTo": "UsrPrice"
 },
 "visible": {
 "bindTo": "UsrPrice",
 "bindConfig": {
 "converter": "checkIsNotEmpty"
 }
 },
 "classes": {
 "labelClass": ["timeline-item-subject-label"]
 }
 };
 },
 // Redefined method returning the [Message] tile field configuration.
 getMessageViewConfig: function() {
 // Receiving standard settings.
 var config = this.callParent(arguments);
 // Visibility setup. Visible if the tile is deployed.
 config.visible = {
 "bindTo": "IsExpanded"
 };
 return config;
 },
 // Redefined method returning general tile configuration.
 getBodyViewConfig: function() {
 // Receiving standard settings.
 var bodyConfig = this.callParent(arguments);
 // Adding additional field configurations.
 bodyConfig.items.unshift(this.getUsrISBNViewConfig());
 bodyConfig.items.unshift(this.getUsrPriceViewConfig());
 return bodyConfig;
 }
 });
});

Bpm’online developer guide 560

Here you can define the configuration of the [UsrISBN] and [UsrPrice] fields that are additionally displayed on the
tab. The standard configuration is defined in the BaseTimelineItemView module.

3. Adding a tile view model module

Add a client module schema containing dependencies from the Timeline package to the custom package (see
"Creating a custom client module schema”).

For the created module schema specify (Fig. 3):

[Name] – "UsrBookTimelineItemViewModel"
[Title] – "UsrBook timeline item view model”

Fig. 4. Module schema properties of the tile view model

Add the following module source code to the [Source code] tab of the schema:

define("UsrBookTimelineItemViewModel", ["UsrBookTimelineItemViewModelResources",
"BaseTimelineItemViewModel"],
 function() {
 Ext.define("Terrasoft.configuration.UsrBookTimelineItemViewModel", {
 alternateClassName: "Terrasoft.UsrBookTimelineItemViewModel",
 extend: "Terrasoft.BaseTimelineItemViewModel"
 });
 });

You define the Terrasoft.configuration.UsrBookTimelineItemViewModel class here. Since this class is defined as
the inheritor of Terrasoft.BaseTimelineItemViewModel, it enables using all functions of the base class.

4. Adding the record with tile view settings to the TimelineTileSetting table

The TimelineTileSetting table is used to set up the timeline tile properties. The purpose of primary columns of this
table is provided in table 2 of the "The [Timeline] tab” article.

Add a new record to the TimelineTileSetting table. You can add a new record via the following SQL query:

INSERT INTO TimelineTileSetting (CreatedOn, CreatedById, ModifiedOn, ModifiedById,
Name, Data, Image)
 VALUES (GETUTCDATE(), NULL, GETUTCDATE(), NULL, 'UsrBooks', NULL, NULL);

Since data in the Data and Image columns are stored in the varbinary(max) format, use specific editors (such as
dbForge Studio Express for SQL Server) to modify them. To do this (Fig.5):

1. Select a table.

2. Select the necessary record column and click the edit button.

3. Enter the text data display mode in the data editor.

4. Add necessary data.

Bpm’online developer guide 561

5. Save the changes in the data editor.

6. Click the data update button.

7. Click OK in the popped up checkout window to apply the modifications.

ATTENTION

This method is only good for the development environments deployed on-site. Since the modifications are
implemented directly in the database, they are not bound to any package. That is why the modifications will
not be implemented in the database if the package with the view models and the tile view models is installed
into another application. For correct transfer of the developed functions you need to bind the SQL-scripts that
implement the corresponding modifications in the database when installing the package.

Fig. 5. Editing data via the dbForge Studio Express for SQL Server

Add the following configuration object to the Data column using the above mentioned algorithm:

{
 "entitySchemaName": "UsrBook",
 "viewModelClassName": "Terrasoft.UsrBookTimelineItemViewModel",
 "viewClassName": "Terrasoft.UsrBookTimelineItemView",
 "orderColumnName": "CreatedOn",
 "authorColumnName": "UsrAuthor",
 "captionColumnName": "UsrName",
 "messageColumnName": "UsrDEscription",
 "columns": [
 {
 "columnName": "UsrISBN",
 "columnAlias": "UsrISBN"
 },
 {
 "columnName": "UsrPrice",
 "columnAlias": "UsrPrice"

Bpm’online developer guide 562

 }
]
}

You need to indicate the additional field array whose display is configured in the UsrBookTimelineItemView view
model in addition to the primary fields inherited from the base tile (see step 2).

Add SVG-format data to the Image column to display the icon that corresponds to the section icon (Fig.6).

<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 52 52" enable-background="new 0
0 52 52">
<path d="M46.072,31.384c-0.011-0.026-0.025-0.048-0.039-0.073c-0.036-0.064-0.077-
0.125-0.123-0.182
 c-0.018-0.022-0.034-0.044-0.053-0.064c-0.034-0.036-0.068-0.07-0.105-0.104c-0.062-
0.055-0.431-0.3-0.819-0.559
 c-1.958-1.307-7.465-4.978-9.424-6.284c-0.388-0.258-0.703-0.845-0.703-
1.312V3.938c0-0.401-0.19-0.777-0.512-1.017
 c-0.322-0.239-0.739-0.311-1.122-0.193L15.015,8.254c-0.446,0.136-1.154,0.097-
1.583-0.086l-1.094-0.467
 c-0.428-0.184-0.414-0.442,0.031-0.578l15.213-4.646c0.668-0.204,1.045-0.911,0.841-
1.58s-0.912-1.047-1.58-0.841L7.507,5.961

C7.454,5.982,7.429,5.994,7.403,6.005C7.338,6.031,7.276,6.062,7.217,6.097C7.205,6.104,
7.191,6.108,7.178,6.116
 c-0.015,0.01-0.026,0.025-0.041,0.035C7.081,6.191,7.03,6.236,6.982,6.284c-
0.02,0.021-0.041,0.039-0.06,0.062

C6.864,6.412,6.813,6.485,6.77,6.562C6.716,6.659,6.683,6.748,6.658,6.838C6.651,6.864,6
.648,6.89,6.642,6.916

C6.628,6.985,6.619,7.054,6.616,7.125C6.615,7.142,6.61,7.156,6.61,7.173V29.85c0,0.466-
0.036,0.86-0.081,0.88l-0.081,0.036
 c-0.109,0.058-0.18,0.101-0.246,0.15c-0.025,0.018-0.046,0.037-0.069,0.058c-
0.056,0.049-0.107,0.103-0.154,0.161
 c-0.015,0.019-0.032,0.035-0.046,0.056c-0.057,0.079-0.105,0.164-0.142,0.257c-
0.006,0.015-0.008,0.03-0.014,0.045
 c-0.029,0.077-0.049,0.158-0.062,0.241c-0.002,0.015-0.009,0.027-0.01,0.042c-
0.002,0.018,0.002,0.036,0.001,0.054
 c-0.003,0.031-0.009,0.062-
0.009,0.094v7.312c0,0.393,0.182,0.762,0.493,1.002l14.766,11.391c0.226,0.175,0.499,0.2
64,0.773,0.264
 c0.212,0,0.424-0.053,0.616-0.16l23.203-12.938c0.401-0.224,0.649-0.646,0.649-
1.105v-5.766c0-0.09-0.01-0.177-0.027-0.261
 C46.145,31.555,46.113,31.468,46.072,31.384z M15.4,11.625c0-0.466,0.361-
0.953,0.807-1.089l15.261-4.645
 c0.446-0.136,0.807,0.132,0.807,0.598v14.63c0,0.467-0.314,0.635-0.702,0.376l-
1.127-0.752c-0.361-0.24-0.819-0.278-1.216-0.104
 l-13.059,5.805c-0.426,0.189-0.771-0.034-0.771-
0.501C15.4,25.943,15.4,11.625,15.4,11.625z M28.851,23.579
 c0.425-0.189,1.085-0.134,1.473,0.125l11.43,7.62c0.388,0.259,0.368,0.644-
0.045,0.86l-18.404,9.662
 c-0.412,0.216-1.047,0.163-1.418-0.121l-11.789-9.001c-0.371-0.283-0.326-0.665,0.1-
0.854L28.851,23.579z M9.142,9.932
 c0-0.466,0.348-0.695,0.776-
0.512l2.174,0.929c0.429,0.183,0.776,0.708,0.776,1.175v2.158c-1.57-0.068-2.894-0.916-
3.727-1.61
 L9.142,9.932L9.142,9.932z
M9.142,13.152c0.931,0.671,2.22,1.323,3.727,1.372v7.633c-1.57-0.066-2.894-0.915-3.727-
1.609
 C9.142,20.548,9.142,13.152,9.142,13.152z
M9.142,21.627c0.931,0.671,2.22,1.323,3.727,1.372v3.992c0,0.466-0.35,0.985-0.782,1.16
 l-2.163,0.876c-0.432,0.175-0.782-0.061-0.782-0.527V21.627z

Bpm’online developer guide 563

M43.666,36.101c0,0.467-0.33,1.027-0.737,1.255L22.578,48.702
 c-0.407,0.228-1.036,0.18-1.405-0.104L8.897,39.127c-0.369-0.284-0.668-0.893-0.668-
1.358v-2.444c0-0.466,0.3-0.614,0.671-0.332
 l12.764,9.748c0.225,0.171,0.496,0.26,0.768,0.26c0.201,0,0.403-0.048,0.588-
0.146l19.899-10.447
 c0.413-0.217,0.747-0.015,0.747,0.452V36.101z" style="fill:#6c91de;"/>
<path d="M33.81,34.064c0.072,0.049,0.155,0.073,0.239,0.073c0.072,0,0.145-0.018,0.209-
0.055l4.505-2.575
 c0.126-0.072,0.207-0.204,0.212-0.349c0.006-0.146-0.063-0.283-0.183-0.365l-9.011-
6.192c-0.118-0.08-0.268-0.097-0.399-0.042
 l-5.157,2.123c-0.143,0.059-0.243,0.191-0.259,0.346c-
0.017,0.154,0.053,0.304,0.181,0.392L33.81,34.064z M29.492,25.426
 l8.269,5.682l-3.692,2.11l-8.803-6.052L29.492,25.426z" style="fill:#6c91de;"/>
</svg>

Fig. 6. Editing the Image column data via the dbForge Studio Express for SQL Server

5. Editing the record that enables the tile display on the [Timeline] tab of the account
page in the TimelinePageSettings table.

For the [Accounts] section there already exists a record in the TimelineTileSettings table with settings of tiles bound
to other sections. This is the record containing the "AccountPageV2” value in the Key column (Fig.7).

Fig. 7. Editing the Image column data via the dbForge Studio Express for SQL Server

Bpm’online developer guide 564

ATTENTION

Since there are several tiles used on the [Accounts] section page timeline, the array of configuration objects
enabling the corresponding tile is stored in the Data column.

Using the algorithm mentioned in step 4, change the configuration object array by adding a new record to it.

[
 {
 "entityConfigKey": "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",
 "referenceColumnName": "UsrPublisher",
 "entitySchemaName": "UsrBook",
 "masterRecordColumnName": "Id"
 },
 ...
]

Here the "entityConfigKey” property: "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx” should contain the
TimelineTileSettings table record identifier created on step 4. In our case it is the "c57d375e-4ffa-4d65-a59e-
d88e53f25803” value (Fig.5 and Fig.7).

ATTENTION

The "entityConfigKey” should be obligatory indicated. It should match the Id column value of the record
containing settings of the necessary tile in the TimelineTileSettings table.

Since the identifiers of the added records are generated at random, the generated identifier in your database
will be different from the one we have in our case, when you repeat step 4.

ATTENTION

Be careful when modifying the Data column value. Incorrect modifications can disrupt the operation of all
existing timeline tiles in a section.

Bpm’online developer guide 565

As a result of case implementation you will have the tiles bound to the [Book] custom section displayed on the
[Timeline] tab of the [Accounts] section page. These tiles contain all the fields we described in our case conditions.
The short book description will only be displayed when you deploy the tile (Fig.8).

Fig. 8. Case result

Adding multi-language email templates to a custom section

Introduction
You can set up custom logic for selecting languages of multi-language email templates. You can select email
templates in the needed language using the action dashboard of a section record. The selection is based on special
rules that can be specified for the section. If special rules are not defined, the selection is based on the contact,
bound to the edited record (the [Contact] column). If a section object does not have a column for connecting with a
contact, the DefaultMessageLanguage system setting value is used.

To add custom logic for selecting multi-language templates (localization):

1. Create a class or classes inherited from BaseLanguageRule and define the language selection rules (one class
defines one rule).

2. Create a class inherited from BaseLanguageIterator. Define the LanguageRules property in the class constructor
as a class instance array created on the previous step. The sequence corresponds to the rule priority.

3. Create a class inherited from AppEventListenerBase that will bind the class defining the language selection rules
to the section.

4. Add the necessary multi-language templates to the [Email templates] lookup.

Bpm’online developer guide 566

Case description
Add logic of selecting an email template language to a custom section based on the UsrContact column of the
primary section object. Use English and Spanish languages.

Source code
You can download the package with case implementation using the following link.

ATTENTION

You can install the package for bpm’online products, containing the EmailTemplates package. Make sure all
the below described preliminary settings are performed after you install the package.

Preliminary settings
For correct case implementation:

1. Make sure that the [Customer languages] lookup contains English and Spanish languages (Fig.1).

Fig. 1. [Customer languages] lookup

2. Use the section wizard to check that there is the UsrContact column bound to the [Contact] lookup on the edit
page of the custom section record (Fig.2).

Fig. 2. The UsrContact column

Bpm’online developer guide 567

https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkMLangEmailTpl_18.05.16_11.53.39.zip

Case implementation algorithm
1. Adding a language selection rule

Create a [Source code] schema in the custom package (see “Creating the [Source code] schema”).

For the created schema specify (Fig. 3):

[Name] – "UsrContactInUsrTestLanguageRule"
[Title] – "User defined email template rule”

Fig. 3. The [Source code] schema properties

Bpm’online developer guide 568

Add the following source code to the schema:

namespace Terrasoft.Configuration
{
 using System;
 using Terrasoft.Core;
 using Terrasoft.Core.Entities;
 public class ContactInUsrTestLanguageRule : BaseLanguageRule
 {
 public ContactInUsrTestLanguageRule (UserConnection userConnection) :
base(userConnection)
 {
 }
 // Defines the user preferred language identifier.
 // recId — current record identifier.
 public override Guid GetLanguageId(Guid recId)
 {
 // Creating the EntitySchemaQuery instance for the custom section primary
object.
 var esq = new EntitySchemaQuery(UserConnection.EntitySchemaManager,
"UsrMLangEmailTpl");
 // Defining the contact language column name.
 var languageColumnName = esq.AddColumn("UsrContact.Language.Id").Name;
 // Obtaining current record instance.
 Entity usrRecEntity = esq.GetEntity(UserConnection, recId);
 // Obtaining the value of user preferred language identifier.
 Guid languageId = usrRecEntity.GetTypedColumnValue<Guid>
(languageColumnName);
 return languageId;
 }
 }
}

Publish the schema.

2. Defining the order sequence of language selection rules

Create a [Source code] schema in the custom package (see “Creating the [Source code] schema”).

For the created schema specify (Fig. 3):

[Name] – "UsrTestLanguageIterator”
[Title] – "User defined language iterator”

Add the following source code to the schema:

namespace Terrasoft.Configuration
{
 using Terrasoft.Core;
 public class UsrTestLanguageIterator: BaseLanguageIterator
 {
 public UsrTestLanguageIterator(UserConnection userConnection):

Bpm’online developer guide 569

base(userConnection)
 {
 // Language selection rule array.
 LanguageRules = new ILanguageRule[] {
 // Custom rule.
 new ContactInUsrTestLanguageRule (UserConnection),
 // Default rule.
 new DefaultLanguageRule(UserConnection),
 };
 }
 }
}

DefaultLanguageRule. is the second array element The rules uses the DefaultLanguage system setting for obtaining
the language and is used by default if the language was not detected by higher priority rules.

Publish the schema.

3. Binding language selection iterator to the section

Create a [Source code] schema in the custom package (see “Creating the [Source code] schema”).

For the created schema specify (Fig. 3):

[Name] – "UsrTestMLangBinder”
[Title] – "UsrTestMLangBinder"

Add the following source code to the schema:

namespace Terrasoft.Configuration
{
 using Terrasoft.Core.Factories;
 using Terrasoft.Web.Common;
 public class UsrTestMLangBinder: AppEventListenerBase
 {
 public override void OnAppStart(AppEventContext context)
 {
 // Calling the basic logics.
 base.OnAppStart(context);
 // Binding iterator to a custom section.
 // UsrMLangEmailTpl — name of the section primary object.
 ClassFactory.Bind<ILanguageIterator, UsrTestLanguageIterator>
("UsrMLangEmailTpl");
 }
 }
}

Publish the schema.

4. Adding the necessary multi-language templates

Add a new record (Fig.4) to the [Email Templates] lookup and define the email templates in the necessary languages
(Fig.5).

Fig. 4. A new record in the [Email templates] lookup

Bpm’online developer guide 570

Fig. 5. Adding templates in the necessary languages

As a result of case implementation, in the action dashboard panel (Fig. 6. 1) of the custom section record edit page
(Fig.6) the email templates (Fig. 6. 2) will be selected automatically in the language (Fig. 6. 3) specified as the
contact’s preferred language (Fig.7).

Fig. 6. Case result

Bpm’online developer guide 571

Fig. 7. Contact preferred language

Analytics

Contents
How to create macros for a custom report in Word

How to create macros for a custom report in Word

Introduction
You can set up a printable using standard BPMonline MS Word Report Designer tools. MS Word printable setup is
covered in the “Setting up MS Word printables in bpm’online” article.

To implement specific printable setup tasks, you need to use macros. Basic macros are covered in the “Basic

Bpm’online developer guide 572

http://academy.bpmonline.com/documents/?product=studio&ver=7&id=1247

macros in the MS Word printables” article. A macro for setting up a printable is a class implementing the
IExpressionConverter interface (see the ExpressionConverter schema of the NUI package).

To be able to call a custom macro from the printable template, it must be marked by the
ExpressionConverterAttribute attribute with a specified name. Example:

[ExpressionConverterAttribute("CurrentUser")]

The Evaluate(object value, string arguments = "") interface method must be implemented in the class. The method
accepts a printable template field value as an argument and returns the string type value that will be inserted
instead of this field in the ready printable.

Algorithm of creating a custom macro for a printable

1. Create a printable and add the [Id] column to the list of printable columns that will be the incoming
parameter for the macro.

2. Add the source code module to the custom package, where you need to describe the class-inheritor of the
IExpressionConverter interface. The class must be marked by the ExpressionConverterAttribute attribute
with the name of the macro. Implement the Evaluate(object value, string arguments = "") method in it.

3. Add a tag with the name of the macro in the [#MacrosName#] format to the [Id] column in the printable
template.

4. Publish the source code module and download the updated printable template into the printable.

Case description
Create the [Account summary] printable for the [Accounts] section edit page that will contain the [Name], [Type]
and [Primary contact] general fields and the [Additional information] field, which will display the annual turnover
for the [Customer] type accounts, and the number of employees for the [Partner] type accounts. Besides, the
printable must contain information about the date of creation and the name of employee who created it.

Source code
You can download the package with case implementation using the following llink.

Case implementation algorithm
1. Creating the [Account summary] printable for the [Accounts] section edit page

Add the [Id], [Name], [Type], [Primary contact] columns to the list of columns.

Fig. 1. Column list of the printable

Bpm’online developer guide 573

https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkPrintFormMacros_18.06.18_02.44.45.zip

You can add the necessary macros to columns at the stage of their setup. To do this, go to the [Selected columns]

field and select the necessary column. Click the edit button and add a macro in the opened column edit window
(fig.2).

Fig. 2. Adding a macro to the column

Creating the MS Word printable is covered in the “Setting up MS Word printables in bpm’online” article.

2. Exporting the printable template and locating the fields

After you add the fields, your template may look as shown in fig.3. Editing the MS Word printable is covered in the
“Setting up MS Word printables in bpm’online” article.

Fig. 3. Locating fields in the template

Bpm’online developer guide 574

http://academy.terrasoft.ru/documents/?product=studio&ver=7&id=1247
http://academy.terrasoft.ru/documents/?product=studio&ver=7&id=1414

3. Adding source code modules to the custom package that would implement macros

3.1 Macro of receiving additional information depending on the account type

Add the source code type schema (see Creating the [Source code] schema) with the following properties:

[Name] – “UsrAccountInfoByTypeConverter”
[Title] – “AccountInfoByTypeConverter”

Add localizable strings, whose properties are listed in table 1 to the schema.

Table 1. Localizable string properties

Name Value

PartnerAdditional “Number of employees {0} persons”

CustomerAdditional “Annual turnover {0}”

Create a macro class in the schema source code for receiving additional information depending on the account type:

namespace Terrasoft.Configuration
{
 using System;
 using System.CodeDom.Compiler;
 using System.Collections.Generic;
 using System.Data;
 using System.Linq;
 using System.Runtime.Serialization;
 using System.ServiceModel;
 using System.ServiceModel.Web;
 using System.ServiceModel.Activation;
 using System.Text;
 using System.Text.RegularExpressions;
 using System.Web;
 using Terrasoft.Common;
 using Terrasoft.Core;
 using Terrasoft.Core.DB;
 using Terrasoft.Core.Entities;
 using Terrasoft.Core.Packages;
 using Terrasoft.Core.Factories;

 // The [AccountInfoByType] attribute with the macro name.
 [ExpressionConverterAttribute("AccountInfoByType")]
 // The class must implement the IExpressionConverter interface.

Bpm’online developer guide 575

 class AccountInfoByTypeConverter : IExpressionConverter
 {
 private UserConnection _userConnection;
 private string _customerAdditional;
 private string _partnerAdditional;
 // Calling the values of localizable strings
 private void SetResources() {
 string sourceCodeName = "UsrAccountInfoByTypeConverter";
 _customerAdditional = new
LocalizableString(_userConnection.ResourceStorage, sourceCodeName,
 "LocalizableStrings.CustomerAdditional.Value");
 _partnerAdditional = new
LocalizableString(_userConnection.ResourceStorage, sourceCodeName,
 "LocalizableStrings.PartnerAdditional.Value");
 }
 // Implementing the Evaluate method of the IExpressionConverter interface.
 public string Evaluate(object value, string arguments = "")
 {
 try
 {
 _userConnection =
(UserConnection)HttpContext.Current.Session["UserConnection"];
 Guid accountId = new Guid(value.ToString());
 return getAccountInfo(accountId);
 }
 catch (Exception err)
 {
 return err.Message;
 }
 }
 // Method of receiving additional infomration depending on the account type.
 // The account Id is used as the incoming parameter.
 private string getAccountInfo(Guid accountId)
 {
 try
 {
 // Saving the EntitySchemaQuery class object with the [Account] root
schema.
 EntitySchemaQuery esq = new
EntitySchemaQuery(_userConnection.EntitySchemaManager, "Account");
 // Adding the [Name] column to the schema from the [Type] lookup
field.
 var columnType = esq.AddColumn("Type.Name").Name;
 // Adding the [Name] column to the schema from the [EmployeesNumber]
lookup field.
 var columnNumber = esq.AddColumn("EmployeesNumber.Name").Name;
 // Adding the [Name] column to the schema from the[AnnualRevenue]
lookup field.
 var columnRevenue = esq.AddColumn("AnnualRevenue.Name").Name;
 // Records are filtered by the account Id.
 var accountFilter = esq.CreateFilterWithParameters(
 FilterComparisonType.Equal,
 "Id",
 accountId
);
 esq.Filters.Add(accountFilter);
 // Receiving the entity collection.
 EntityCollection entities = esq.GetEntityCollection(_userConnection);
 // If the collection contains elements, the method returns
correspondent information
 // depending on the account type.
 if (entities.Count > 0)

Bpm’online developer guide 576

 {
 Entity entity = entities[0];
 var type = entity.GetTypedColumnValue<string>(columnType);
 switch (type)
 {
 case "Customer":
 return String.Format(_customerAdditional,
entity.GetTypedColumnValue<string>(columnRevenue));
 case "Partner":
 return String.Format(_partnerAdditional,
entity.GetTypedColumnValue<string>(columnNumber));
 default:
 return String.Empty;
 }
 }
 return String.Empty;
 }
 catch (Exception err)
 {
 throw err;
 }
 }
 }
}

Publish the module.

3.2 Macro of receiving the current date

Add the source code type schema (see Creating the [Source code] schema) with the following properties:

[Name] – “UsrCurrentDateConverter”
[Title] – “CurrentDateConverter”

Create a macro class in the schema source code for receiving the current date:

namespace Terrasoft.Configuration
{
 using System;
 using System.CodeDom.Compiler;
 using System.Collections.Generic;
 using System.Data;
 using System.Linq;
 using System.Runtime.Serialization;
 using System.ServiceModel;
 using System.ServiceModel.Web;
 using System.ServiceModel.Activation;
 using System.Text;
 using System.Text.RegularExpressions;
 using System.Web;
 using Terrasoft.Common;
 using Terrasoft.Core;
 using Terrasoft.Core.DB;
 using Terrasoft.Core.Entities;
 using Terrasoft.Core.Packages;
 using Terrasoft.Core.Factories;

 // The [CurrentDate] attribute with the macro name.
 [ExpressionConverterAttribute("CurrentDate")]
 // The class must implement the IExpressionConverter interface.
 class CurrentDateConverter : IExpressionConverter
 {
 private UserConnection _userConnection;

Bpm’online developer guide 577

 // Implementing the Evaluate method of the IExpressionConverter interface.
 public string Evaluate(object value, string arguments = "")
 {
 try
 {
 _userConnection =
(UserConnection)HttpContext.Current.Session["UserConnection"];
 // The method returns the current date.
 return
_userConnection.CurrentUser.GetCurrentDateTime().Date.ToString("d MMM yyyy");
 }
 catch (Exception err)
 {
 return err.Message;
 }
 }
 }
}

Publish the module.

3.3 Macro of receiving the current user

Add the source code type schema (see Creating the [Source code] schema) with the following properties:

[Name] – “UsrCurrentUserConverter”
[Title] – “CurrentUserConverter”

Create a macro class in the schema source code for receiving the current user:

namespace Terrasoft.Configuration
{
 using System;
 using System.CodeDom.Compiler;
 using System.Collections.Generic;
 using System.Data;
 using System.Linq;
 using System.Runtime.Serialization;
 using System.ServiceModel;
 using System.ServiceModel.Web;
 using System.ServiceModel.Activation;
 using System.Text;
 using System.Text.RegularExpressions;
 using System.Web;
 using Terrasoft.Common;
 using Terrasoft.Core;
 using Terrasoft.Core.DB;
 using Terrasoft.Core.Entities;
 using Terrasoft.Core.Packages;
 using Terrasoft.Core.Factories;

 // The [CurrentUser] attribute with the macro name.
 [ExpressionConverterAttribute("CurrentUser")]
 // The class must implement the IExpressionConverter interface.
 class CurrentUserConverter : IExpressionConverter
 {
 private UserConnection _userConnection;
 // Implementing the Evaluate method of the IExpressionConverter interface.
 public string Evaluate(object value, string arguments = "")
 {
 try
 {

Bpm’online developer guide 578

 _userConnection =
(UserConnection)HttpContext.Current.Session["UserConnection"];
 // The method returns the contact of the current user.
 return _userConnection.CurrentUser.ContactName;
 }
 catch (Exception err)
 {
 return err.Message;
 }
 }
 }
}

4. Adding tags with the macro names to the report template fields

Select the [Edit Field] option in the template field context menu (Fig. 4).

Fig. 4. A template field context menu

Add tags with macro names to the field names (fig. 5, 6, 7).

NOTE

You can use any template field to receive data about the current date and user, since the handler-macros for
this data do not use incoming parameters. You can use the [Id] field in both cases of the case.

Fig. 5. Adding the AccountInfoByType tag for receiving additional information about the account

Bpm’online developer guide 579

Fig. 6. Adding the CurrentDate tag for receiving the current date

Fig. 7. Adding the CurrentUser tag for receiving the current user

Bpm’online developer guide 580

As a result, the template will look as shown in Fig. 8.

Fig. 8. A printable template.

5. Saving the template and downloading it into the printable

Downloading the template into a printable is covered in the “Setting up MS Word printables in bpm’online” article.

The new [Account summary] printable will be displayed in the [Print] button menu of the account edit page after
you download the template (fig.9).

Fig. 9. The new printable in the [Accounts] section

Bpm’online developer guide 581

http://academy.bpmonline.com/documents/?product=studio&ver=7&id=1414

Information in the printable will depend on the account type (fig.10, 11).

Fig. 10. Printable for the [Customer] type account

Fig. 11. Printable for the [Partner] type account

Working with data

Contents

Bpm’online developer guide 582

CRUD-operations in configuration
CRUD-operations on server side
Web-services in configuration
Reading multilingual data with EntitySchemaQuery
Views localization
Working with the localized data via Entity
Adding a multilingual terminator to an object schema
Using the DBExecutor for working with the database

CRUD-operations in configuration

Contents
The use of EntitySchemaQuery implementation on client

The use of EntitySchemaQuery implementation on client

Contents
Building of paths to columns relative to root schema
Adding columns to a query
Getting query result
EntitySchemaQuery filters handling

Building of paths to columns relative to root schema

Building of paths to columns relative toroot schema.
Examples
The starting point of the EntitySchemaQuery building mechanism is a root schema and feedback principle (for
more details see article The use of EntitySchemaQuery for creation of queries in database).

In order to add a column from a table to a query you must build the path to this column. There are different variants
for adding columns to queries. Examples of the name formation of columns in each variant are shown below.

1) Root schema column

In this case, the column name is built as [Column name in root schema].

Root schema: Contact
Example: column with contact address
Column name: Address
Example of creation of the EntitySchemaQuery query that returns values of this column:

Example 1

// Let's create [EntitySchemaQuery] class instance with [Contact] root schema.
var esq = this.Ext.create("Terrasoft.EntitySchemaQuery", {
 rootSchemaName: "Contact"

Bpm’online developer guide 583

});
// Add [Address] column then add [Address] alias to it.
esq.addColumn("Address", "Address");

2) Schema column, lookup column of current schema refers to

The column name is built on the principle [Lookup column name].[Schema column name, lookup refers
to].

Country schema are jointed to City root schema by the JOIN operator (LEFT OUTER JOIN by default) in a resultant
query. A joint condition (On condition of JOIN operator) is formed on the following principle:
[Name of joinable schema].[Id] = [Root schema name].[Name of column that refers to joinable schema + Id]

In common cases you can continue to build a feedback chain.

Root schema: Contact
Example: column with account name, column with name of main contact of account
Column names: Account.Name, Account.PrimaryContact.Name
Example of creation of EntitySchemaQuery query that returns values of these columns:

Example 2

//Let's create [EntitySchemaQuery] class instance with [Contact] root schema.
var esq = this.Ext.create("Terrasoft.EntitySchemaQuery", {
 rootSchemaName: "Contact"
});
// Add [Account] lookup column.
// Then add [Name] column from [Account] schema,
// to which [Account] lookup column refers, and assign [AccountName] alias to it .
esq.addColumn("Account.Name", "AccountName");
// Add [Account] lookup column.
// Then add [PrimaryContact] lookup column from [Account] schema,
// to which [Account] lookup column refers.
// Add [Name] column from [Contact] schema,
// to which [PrimaryContact] lookup column refers and assign [PrimaryContactName]
alias to it.
esq.addColumn("Account.PrimaryContact.Name", "PrimaryContactName");

3) Schema column on random external key

Column name is built on the following principle [Name of _ joinable_schema: Name of
_column_for_linking of_joinable_schema:Name of_column_for_ linking of _current_schema].

If ID column is used as column for linking in current schema, it can be omitted, i.e. column name will have the
following view:
[Name of_ joinable _ schema:Name of _ column_ for _linking of _joinable _schema].

In general, you can build the column names by the chains of reverse connections of any length.

Example: column with name of the contact that has added city
Column name: [Contact:Id:CreatedBy].Name
Example of creation of EntitySchemaQuery of returning value of this column:

Example 3

// Let's create [EntitySchemaQuery] class instance with root schema [Contact].
var esq = this.Ext.create("Terrasoft.EntitySchemaQuery", {
 rootSchemaName: "Contact"
});
// Add one more [Contact] schema to [Owner] column
// and select [Name] column from it. Assign [OwnerName] alias to it.
esq.addColumn("[Contact:Id:Owner].Name", "OwnerName");
// Let's joint [Contact] schema to [Acount] lookup column on [PrimaryContact] column
// and select [Name] column from it.
// Assign [PrimaryContact] alias to it.
esq.addColumn("Account.[Contact:Id:PrimaryContact].Name", "PrimaryContactName");

Bpm’online developer guide 584

Adding columns to a query

Terrasoft.EntitySchemaQuery query column is Terrassoft.EntityQueryColumn class instance. You can specify main
characteristics of column instance in its properties: title, display value, checkboxes, sorting order and direction etc.

addColumn() method that returns instance of column, added to query, is designed for adding columns to queries.
The column name relative to root schema is formed in addColumn() methods in accordance with rules, described in
Building of paths to columns relative to root schema. This method has several variants that allow for adding
columns with different parameters to a query (table 1).

Table 1. — Method of adding columns to query

Method
addColumn(column,[columnAlias])
Creates and adds Terrasoft.Entity.QueryColumn column instance to query column collection.

column String/Terrasoft.BaseQueryColumn Is a column adding path (is specified relative
torootSchema) or query column instance
Terrasoft.BaseQueryColumn.

columnAlias String (optional) Column alias.

addAggregationSchemaColumn(columnPath, aggregationType, [columnAlias], aggregationEvalType)
Creates and adds Terrasoft.FunctionQueryColumn functional column instance with set aggregation type
(Terrasoft.FunctionType.AGGREGATION) to query column collection.

columnPath String Is a column adding path (it is specified relative
torootSchema).

aggregationType Terrasoft.AggregationType Is a type of used aggregation function.

columnAlias String (optional) Is a column alias.

aggregationEvalType Terrasoft.AggregationEvalType Is an application field of aggregation function.

Aggregation types (Terrasoft.AggregationType)

AVG Is an average value of all times.

COUNT Is a number of all items.

MAX Is a maximum value among all items.

MIN Is a minimum value among all items.

NONE Means that the type of aggregation function is not determined.

SUM Is a sum of the values of all items.

Application field of aggregation function (Terrasoft.AggregationEvalType)

NONE Means that application field of aggregation function is not determined.

ALL Means that this function is applied to all items.

DISTINCT Means that this function is applied to unique values.

addParameterColumn(paramValue, paramDataType, [columnAlias])
It creates and adds Terrasoft.ParemeterQueryColumn parameter column instance to column correlation.

paramValue Mixed Is a parameter value. The value should correspond to
data type.

Bpm’online developer guide 585

paramDataType Terrasoft.DataValueType Is a parameter data type.

columnAlias String (optional) Is a column alias.

addFunctionColumn(columnPath, functionType, [columnAlias])
It creates and adds Terrasoft.FunctionQueryColumn function column instance to column collection.

columnPath String Is a column adding path (it is specified relative
torootSchema).

functionType Terrasoft.FunctionType Is a function type.

columnAlias String (optional) Is a column alias.

Function type (Terrasoft.FunctionType)

NONE Means that functional expression type is not determined.

MACROS Is a macro substitution.

AGGREGATION Is an aggregation function.

DATE_PART Is a date part.

LENGTH Is a length of byte value.

addDatePartFunctionColumn(columnPath, datePartType, [columnAlias])
It creates and adds Terrasoft.FunctionQueryColumn function column instance with [Date Part] type
(Terrasoft.FucntionType.DATE_PART) to query column collection.

columnPath String Is a column adding path (it is specified relative
torootSchema).

datePartType Terrasoft.DatePartType Is a data part, used as a value.

columnAlias String (optional) Column alias.

Data part(Terrasoft.DatePartType)

NONE Is a blank field.

DAY Is a day.

WEEK Is a week.

MONTH Is a month.

YEAR Is a year.

WEEK_DAY Is a week day.

HOUR Is an hour.

HOUR_MINUTE Is a minute.

addMacrosColumn(macrosType, [columnAlias])
It creates and adds Terrasoft.FunctionQueryColumn function column instance with [Macros] type
(Terrasoft.FunctionType.MACROS) that doesn't require parameterization (for example, current month, current
user, primary column etc.) to column collection.

macrosType Terrasoft.QueryMacrosType Is a column macros type.

columnAlias String (optional) Is a column alias.

Macros column types (Terrasoft.QueryMacrosType)

NONE Means that macros type is not determined.

CURRENT_USER Means current user.

CURRENT_USER_CONTACT Means current user contact.

Bpm’online developer guide 586

YESTERDAY Means yesterday.

TODAY Means today.

TOMORROW Means tomorrow.

PREVIOUS_WEEK Means previous week.

CURRENT_WEEK Means current week.

NEXT_WEEK Means next week.

PREVIOUS_MONTH Means previous month.

CURRENT_MONTH Means current month.

NEXT_MONTH Means next month.

PREVIOUS_QUARTER Means previous quarter.

CURRENT_QUARTER Means current quarter.

NEXT_QUARTER Means next quarter.

PREVIOUS_HALF_YEAR Means previous half year.

CURRENT_HALF_YEAR Means current half year.

NEXT_HALF_YEAR Means next half year.

PREVIOUS_YEAR Means previous year.

CURRENT_YEAR Means current year.

PREVIOUS_HOUR Means previous hour.

CURRENT_HOUR Means current hour.

NEXT_HOUR Means next hour.

NEXT_YEAR Means next year.

NEXT_N_DAYS Means next N days. It requires parameterization.

PREVIOUS_N_DAYS Means previous N days. It requires parameterization.

NEXT_N_HOURS Means next N hours. It requires parameterization.

PREVIOUS_N_HOURS Means previous N hours. It requires parameterization.

PRIMARY_COLUMN Means primary column.

PRIMARY_DISPLAY_COLUMN Means primary display column.

PRIMARY_IMAGE_COLUMN Means primary image column.

addDatePeriodMacrosColumn(macrosType, [macrosValue], [columnAlias])
It creates and adds Terrasoft.FunctionQueryColumn function column instance with [Macros] type
(Terrasoft.FucntionType.MACROS) to query column columns. The function adds column with macros type that
requires parameterization. For example, next N days, the 3d quarter of the year etc.

macrosType Terrasoft.QueryMacrosType Is a macros column type.

macrosValue Number/Date (optional) Is an auxiliary variable for macros.

columnAlias String (optional) Is a column alias.

Examples of addition of columns to query

Example 1. — Adding query column from root schema to query column collection

var esq = this.Ext.create(Terrasoft.EntitySchemaQuery, {
 rootSchemaName: "Activity"
});
esq.addColumn("DurationInMinutes", "ActivityDuration");

Bpm’online developer guide 587

Example 2. — Adding aggregation column query with SUM aggregation type, applied to all table records, to query
column collection

var esq = this.Ext.create(Terrasoft.EntitySchemaQuery, {
 rootSchemaName: "Activity"
});
esq.addAggregationSchemaColumn("DurationInMinutes", Terrasoft.AggregationType.SUM,
"ActivitiesDuration", Terrasoft.AggregationEvalType.ALL);

Example 3. — Adding aggregation column query with COUNT aggregation type, applied to table unique records, to
query column collection

var esq = this.Ext.create(Terrasoft.EntitySchemaQuery, {
 rootSchemaName: "Activity"
});
esq.addAggregationSchemaColumn("DurationInMinutes", Terrasoft.AggregationType.COUNT,
"UniqueActivitiesCount", Terrasoft.AggregationEvalType.DISTINCT);

Example 4. — Adding parameter column with TEXT data type to query column type

var esq = this.Ext.create(Terrasoft.EntitySchemaQuery, {
 rootSchemaName: "Activity"
});
esq.addParameterColumn("DurationInMinutes", Terrasoft.DataValueType.TEXT,
"DurationColumnName");

Example 5. — Adding function column with LENGTH function type (value size in bytes) to query column collection

var esq = this.Ext.create(Terrasoft.EntitySchemaQuery, {
 rootSchemaName: "Activity"
});
esq.addFunctionColumn("Photo.Data", Terrasoft.FunctionType.LENGTH, "PhotoLength");

Example 6. — Adding function column with Date-Part function type (date part) to query column collection. Week
day is used as a value

var esq = this.Ext.create(Terrasoft.EntitySchemaQuery, {
 rootSchemaName: "Activity"
});
esq.addDatePartFunctionColumn("StartDate", Terrasoft.DatePartType.WEEK_DAY,
"StartDay");

Example 7. — Adding function column with MACROS type that don't require parameterization, i.e.
PRIMARY_DISPLY-COLUMN (Primary Display Column), to query column collection

var esq = this.Ext.create(Terrasoft.EntitySchemaQuery, {
 rootSchemaName: "Activity"
});
esq.addMacrosColumn(Terrasoft.QueryMacrosType.PRIMARY_DISPLAY_COLUMN,
"PrimaryDisplayColumnValue");

Getting query result

The EntitySchemaQuery query result is a bpm'online property collection. Each instance of a collection is a string of a
data set, returnable by query. You can get query results in the following ways:

Get a definite string of a data set by a primary key through calling the getEntity method (example 1).

Bpm’online developer guide 588

Get entire resultant data set by calling getEntityCollection method (example 2).

Example 1. — Getting a definite data set string

// Get [Id] of card object.
var recordId = this.get("Id");
// Create Terrasoft.EntitySchemaQuery class instance with [Contact] root schema.
var esq = this.Ext.create("Terrasoft.EntitySchemaQuery", {
 rootSchemaName: "Contact"
});
// Add column with name of main contact of accounts that refers to given contact.
esq.addColumn("Account.PrimaryContact.Name", "PrimaryContactName");
// Get one record from selection on the basis of [Id] of card object and display it
// in an info window.
esq.getEntity(recordId, function(result) {
 if (!result.success) {
 // error processing/logging, for example
 this.showInformationDialog("Data query error");
 return;
 }
 this.showInformationDialog(result.entity.get("PrimaryContactName"));
}, this);

Example 2. — Getting entire data set

var message = "";
// Create Terrasoft.EntitySchemaQuery class instance with [Contact] root schema.
var esq = Ext.create("Terrasoft.EntitySchemaQuery", {
 rootSchemaName: "Contact"
});
// Add column with account name that refers to given account.
esq.addColumn("Account.Name", "AccountName");
// Add column with name of main contact account that refers to given contact.
esq.addColumn("Account.PrimaryContact.Name", "PrimaryContactName");
// Get entire record colelction and display it in an infor window.
esq.getEntityCollection(function (result) {
 if (!result.success) {
 // error processing/logging, for example
 this.showInformationDialog("Data query error");
 return;
 }
 result.collection.each(function (item) {
 message += "Account name: " + item.get("AccountName") +
 " - primary contact name: " + item.get("PrimaryContactName") + "\n";
 });
 this.showInformationDialog(message);
}, this);

NOTES

When retrieving the lookup columns, this.get() method returns object but not the database record identifier.
To access identifier, use the "value" property, for example, this.get('Account').value.

Table 1. — Query result getting method

Method
getEntity(primaryColumnValue, callback, scope)
returns entity instance on set primary key [primaryColumnValue]. It calls [callback] function in [scope] context
after data receipt.

primaryColumnValue String/Number Is a primary key value.

Bpm’online developer guide 589

callback Function Is a function, called upon receipt of server response.

scope Object Context where [callback] function will be called.

getEntityCollection(callback, scope)
returns collection of entity instances that represent current query results. It calls [callback] function in [scope]
context after data receipt.

callback Function Is a function that will be called upon receipt of server
response.

scope Object Is a context where [callback] function will be called.

EntitySchemaQuery filters handling

A filter is a set of conditions, applied to query data display. According to SQL terms, a filter is a separate predicate
(condition) of the WHERE operator.

Creation and application of filters in EntitySchemaQuery

To create simple filter in EntitySchemaQuery use CreateFilter() method that returns created
Terrasoft.CompareFilter filter object. In addition to simple filters, methods for special filter types are implemented
in EntitySchemaQuery (Table 1).

Table 1. — EntitySchemaQuery methods for creation of filters

Filter creation method
createFilter(comparisonType, leftColumnPath, rightColumnPath)
Creates instance of Terrasoft.comparefilter class filter for comparing values of two columns.

comparisonType Terrasoft.ComparisonType Is a comparison operation type.

leftColumnPath String Is a path to verified column relative to root schema
rootSchema.

rightColumnPath String Is a path to column filter relative to root schema
rootSchema.

createInFilter(leftExpression, rightExpressions)
Creates In-filter instance.

leftExpression Terrasoft.BaseExpression Is an expression, verified in a filter.

rightExpressions Terrasoft.BaseExpression[] Is an array of expressions that will be compared with
left expresion.

createBetweenFilter(leftExpression, rightLessExpression, rightGreaterExpression)
Creates Between-filter instance.

leftExpression Terrasoft.BaseExpression Is an expression, verified in a filter.

rightLessExpression Terrasoft.BaseExpression Is an initial expression of filtration range.

rightGreaterExpression Terrasoft.BaseExpression Is a final expression of filtration range.

createCompareFilter(comparisonType, leftExpression, rightExpression)
Creates Compare-filter instance.

Bpm’online developer guide 590

comparisonType Terrasoft.ComparisonType Is a type of comparison operation.

leftExpression Terrasoft.BaseExpression Is an expression, verified in a filter.

rightExpression Terrasoft.BaseExpression Is a filtration expression.

createExistsFilter(columnPath)
Creates Exists-filter instance for comparison of [Exists on set condition] types and sets value of expression of
column, located on set path, as verified value.

columnPath String Path to column, for the expression of which the filter
is built.

createIsNotNullFilter(leftExpression)
Creates IsNull-filter instance.

leftExpression Terrasoft.BaseExpression Is an expression that is verified on IS NOT NULL
condition.

createIsNullFilter(leftExpression)
Creates IsNull-filter instance.

leftExpression Terrasoft.BaseExpression Is an expression that is verified on IS NULL condition.

createNotExistsFilter(columnPath)
Creates Exists-filter instance for comparison [Out of set condition] and set expression of the column, located in
set path, as verified value.

columnPath String Is a path to the verified column, for expression of
which the filter is built.

createColumnFilterWithParameter(comparisonType, columnPath, paramValue)
Creates Compare-filter instance for comparison of the column with set value.

comparisonType Terrasoft.ComparisonType Is a type of comparison operation.

columnPath String Is a path to the verified column relative to root
schema rootSchema.

paramValue Mixed Is a parameter value.

createColumnInFilterWithParameters(columnPath, paramValues)
Creates In0filter instance for verification of coincidence of set column value with the value of one of parameters.

columnPath String Is a path to the verified column relative to root schema
rootSchema.

paramValues Array Is a parameter value array.

createColumnBetweenFilterWithParameters(columnPath, lessParamValue, greaterParamValue)
Creates Between-filter instance that verifies whether the column is within set range.

columnPath String Is a path to the verified column relative to root schema
rootSchema.

lessParamValue Mixed Initial value of the filter.

greaterParamValue Mixed Final value of the filter.

createColumnIsNotNullFilter(columnPath)
Creates IsNull-filter for verification of set column.

columnPath String Is a path to the verified column relative to root schema
rootSchema.

Bpm’online developer guide 591

createColumnIsNullFilter(columnPath)
Creates IsNull-filter instance for verification of set column.

columnPath String Is a path to verified column relative to root schema
rootSchema.

createPrimaryDisplayColumnFilterWithParameter(comparisonType, paramValue)
Creates filter object for comparison of primary column for the purpose of displaying with parameter value.

comparisonType Terrasoft.ComparisonType Comparison type.

paramValue Mixed Parameter value.

The EntitySchemaQuery instance has a filter property that is a collection of filters of a given query. The filter
property is the Terrasoft.FilterGroup class instance that, in its turn, is a collection of Terrasoft.BaseFilter items. To
add a filter to a query, take the following actions:

create filter instance for given query (createFilter method (), methods for creation of special type filters);
add created filter instance or query filters collection (add() method of collection).

All filters added to the Filters collection are interconnected by the AND logical operation. With the LogicalOperation
property of the filters collection, the user can specify a logical operation by which filters should be joined. The
property takes the following values from Terrasoft.core.enums.LogicalOperatorType list:

AND
OR

The possibility for controlling filters, used in building of a resultant data set, is implemented in EntitySchemaQuery.
Each filter collection item has the isEnabled property that determines whether this item takes part in building of
resultant queries (true means that it takes part and false means that it doesn't take part). Similarly, the isEnabled
property is also determined for the entire filter collection. Set this property to false to deactivate filtration for a
query. The collection of query filters will remain unchanged. If a query filter collection is created initially, you can
use different combinations for filtering queries in the future while not introducing changes directly into the
collection.

Example of control of filters in query is shown below (example 1).

Example 1

// Creation of query instance with "Contact" root schema.
var esq = Ext.create("Terrasoft.EntitySchemaQuery", {
 rootSchemaName: "Contact"
});
esq.addColumn("Name");
esq.addColumn("Country.Name", "CountryName");

// Creation of the first filter instance.
var esqFirstFilter =
esq.createColumnFilterWithParameter(Terrasoft.ComparisonType.EQUAL, "Country.Name",
"Mexico");

// Creation of the second filter instance.
var esqSecondFilter =
esq.createColumnFilterWithParameter(Terrasoft.ComparisonType.EQUAL, "Country.Name",
"USA");

// Filters will be updated by OR logical operator in query filters collection.
esq.filters.logicalOperation = Terrasoft.LogicalOperatorType.OR;

// Adding created filters to collection.
esq.filters.add("esqFirstFilter", esqFirstFilter);
esq.filters.add("esqSecondFilter", esqSecondFilter);

// This collection will include objects, i.e. query results, filtered by two filters.

Bpm’online developer guide 592

esq.getEntityCollection(function (result) {
 if (result.success) {
 result.collection.each(function (item) {
 // Processing element collection.
 });
 }
}, this);

// It is indicated that the second filter will be used in building of resultant
query.
// This filter is not deleted from query filters collection.
esqSecondFilter.isEnabled = false;

// This collection will include objects, i.e. query results, filtered only by the
first filter.
esq.getEntityCollection(function (result) {
 if (result.success) {
 result.collection.each(function (item) {
 // Processing of collection items.
 });
 }
}, this);

Column paths are built in the EntitySchemaQuery filters in accordance with common rules for building paths to
columns relative to root schema (described in article Building of paths to columns relative to root schema).

Examples of the use of other methods for creating filters are represented below.

Example 2

// Creation of query instance with "Contact" root schema.
var esq = Ext.create("Terrasoft.EntitySchemaQuery", {
 rootSchemaName: "Contact"
});
esq.addColumn("Name");
esq.addColumn("Country.Name", "CountryName");

// Select all contacts where country is not specified.
var esqFirstFilter = esq.createColumnIsNullFilter("Country");

// Select all contacts, date of birth of which fall at the period from 1.01.1970 to
1.01.1980.
var dateFrom = new Date(1970, 0, 1, 0, 0, 0, 0);
var dateTo = new Date(1980, 0, 1, 0, 0, 0, 0);
var esqSecondFilter = esq.createColumnBetweenFilterWithParameters("BirthDate",
dateFrom, dateTo);

// Add created filters to query collection.
esq.filters.add("esqFirstFilter", esqFirstFilter);
esq.filters.add("esqSecondFilter", esqSecondFilter);

// This collection will include objects, i.e. query results, filtered by two filters.
esq.getEntityCollection(function (result) {
 if (result.success) {
 result.collection.each(function (item) {
 // Processing of collection items.
 });
 }
}, this);

CRUD-operations on server side

Bpm’online developer guide 593

Contents
Composing add data queries
The use of EntitySchemaQuery for creation of queries in database
Composing modify data queries
Composing delete data queries

Composing add data queries

The Insert class is used to add data to the bpm'online database.

The Insert class constructor uses the following objects as parameters:

User connection (Insert (UserConnection)).
Other object Insert (Insert (Insert)). This will create a copy of an Insert request included in the parameter.

Here is a number of examples.

Examples of simple requests
Example 1.

C#

var insert = new Insert(userConnection).Into("Contact")
 .Set("Name", Column.Parameter("ParameterNameValue"))
 .Set("Address", Column.Parameter("ParameterAddressValue"));

MS SQL

INSERT INTO [dbo].[Contact] ([Name], [Address]) VALUES (@P1, @P2)

Example 2

C#

var insert = new Insert(userConnection).Into("Contact")
 .Set("Name", Column.Const("NameValue"))
 .Set("Address", Column.Const("AddressValue"));

MS SQL

INSERT INTO [dbo].[Contact] ([Name], [Address]) VALUES ('NameValue', 'AddressValue')

Example 3

C#

var insert = new Insert(userConnection).Into("Contact")
 .Set("Name", Func.IsNull(Column.Parameter(string.Empty),
Column.Parameter("ParameterValue")));

MS SQL

INSERT INTO [dbo].[Contact] ([Name]) VALUES (ISNULL(@P1, @P2))

Bpm’online developer guide 594

Examples of requests with conditions
Example 1

C#

var insert = new Insert(userConnection).Into("City")
 .Set("CreatedById",
 new Select(userConnection).Top(1)
 .Column("Id")
 .From("Contact")
 .Where("Name").IsEqual(Column.Parameter("Supervisor")))
 .Set("ModifiedById",
 new Select(userConnection).Top(1)
 .Column("Id")
 .From("Contact")
 .Where("Name").IsEqual(Column.Parameter("User1")));

MS SQL

INSERT INTO [dbo].[City] ([CreatedById], [ModifiedById])

VALUES((SELECT TOP 1 [Id]

FROM [dbo].[Contact]

WHERE [Name] = @P1),

(SELECT TOP 1 [Id]

FROM [dbo].[Contact]

WHERE [Name] = @P2))

The use of EntitySchemaQuery for creation of queries in database

General information
Purpose of the EntitySchemaQuery. Difference between the “Select” and
“EntitySchemaQuery”

EntitySchemaQuery – is a high level class whose purpose is to build data select queries to database. To execute the
database queries in bpm’online the Select class is also used. There is a number of principal differences between the
Select and EntitySchemaQuery classes.

The Select class is the standard SQL instruction SELECT, which enables selecting one or more lines or columns from
one or more tables in the database. The query is built “as is”: columns are added to the query, the data sources are
specified, filters and conditions are applied. The results of the query execution are returned as an IDataReader
instance. Below is the example of using the Select class for retrieving a set of contacts (Example 1).

Using directives should be added to the project for successful compilation of parameters below:

using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Data;
using Terrasoft.Common;

Bpm’online developer guide 595

http://msdn.microsoft.com/en-us/library/ms189499.aspx

using Terrasoft.Core;
using Terrasoft.Core.DB;
using Terrasoft.Core.Entities;

Example 1

// Creation of query instance, adding of columns and data source to query.
Select selectQuery = new Select(UserConnection)
 .Column("Id")
 .Column("Name")
 .From("Contact");
// Execution of query to database and receipt of resulting data set.
using (DBExecutor dbExecutor = UserConnection.EnsureDBConnection())
{
 using (IDataReader reader = selectQuery.ExecuteReader(dbExecutor))
 {
 while (reader.Read())
 {
 // Processing of query results.
 }
 }
}

EntitySchemaQuery class is a functionality that is similar to Select and extended with additional functions on access
right control and bpm'online repository (cache) handling. EntitySchemaQuery is a functionally extended add-in of
Select class. All additional properties and parameters of EntitySchemaQuery are projected onto Select instance that
returns resultant data array.

GetSelectQuery() method returns Select instance, associated with definite query EntitySchemaQuery (Example 2).

Example 2

// Creation of query example EntitySchemaQuery.
EntitySchemaQuery esq = new EntitySchemaQuery(UserConnection.EntitySchemaManager,
"SomeSchema");
esq.AddColumn("SomeColumn");

// Receipt of Select instance, associated with created query EntitySchemaQuery.
Select selectEsq = esq.GetSelectQuery(UserConnection);

Result of execution of query EntitySchemaQuery is a collection of bpm'online entities. i.e. collection of instances of
the Entity class (EntityCollection instance). Each Entity instance in a collection is a string of data array, returned by
query. You can get query results in the following way (example 3):

Get entire resultant data array by calling method GetEntityCollection.
Get definite string of data array for set primary key by calling GetEntity.

Example 3

// Creation of query in City schema, adding of Name column to query.
var esqResult = new EntitySchemaQuery(UserConnection.EntitySchemaManager, "City");
esqResult.AddColumn("Name");

// Execution of query to database and getting of all resultant data collection.
var entities = esqResult.GetEntityCollection(UserConnection);

// Execution of query to database and getting object with set identifier.
var entity = esqResult.GetEntity(UserConnection, new Guid("100B6B13-E8BB-DF11-B00F-
001D60E938C6"));

Main features of EntitySchemaQuery are as follows:

Bpm’online developer guide 596

1) Access right support

Data extraction query of EntitySchemaQuery is built in a way that considers rights of current user. In other words,
only data that are accessed by current user in accordance with its rights will get into resultant array. This is ensured
through application of additional filters (conditions) upon formation of resultant query to database. You can adjust
conditions of application of rights to linked tables, being available in query (that joint query by JOIN sentence),
additionally for EntitySchemaQuery. These conditions are determined by the value of JoinRightState property of
instance of EntitySchemaQuery. Conditions for application of rights to linked query tables are described in details
below.

2) Caching mechanism

Mechanism for handling of repository (bpm'online cache or random repository, determined by the user) is
implemented in EntitySchemaQuery). Cache handling optimizes operation effectiveness through access to cached
query results without an additional query to the database. Upon execution of query EntitySchemaQuery the data,
received from server database, are placed in cache that is determined by Cache property with key that is set by
CacheItemName. Bpm'online cache of session level (data are available only in session of current user) with local
data storage is the cache of EntitySchemaQuery by default. In general, a random repository, implementing
ICacheStore can be used as query cache. Example of handling of query cache EntitySchemaQuery is represented
below (Example 4).

Example 4

// Creation of query to City schema, adding Name column to query.
var esqResult = new EntitySchemaQuery(UserConnection.EntitySchemaManager, "City");
esqResult.AddColumn("Name");

// Determination of the key, under which query execution results will be stored in
cache.
// BPMonlin cache of session level with local data cashing (since Cache property of
the object is not determined)
// is used as cache.
esqResult.CacheItemName = "EsqResultItem";

// Collection, to which query execution results will be added.
var esqCityNames = new Collection<string>();

//Collection, to which cached query execution results will be added.
var cachedEsqCityNames = new Collection<string>();

// Execution of cache to database and getting resultant collections of objects.
// Query results will be placed in cache after completion of this operation.
var entities = esqResult.GetEntityCollection(UserConnection);

//Processing of query execution results and filling of esqCityNames collection.
foreach (var entity in entities)
{
 esqCityNames.Add(entity.GetTypedColumnValue<string>("Name"));
}

// Getting of link to esqResult query cache on the basis of CacheItemName key in the
form data table in memory.
var esqCacheStore = esqResult.Cache[esqResult.CacheItemName] as DataTable;

// Filling of CachedEsqCityNames collection with values from query cache.
if (esqCacheStore != null)
{
 foreach (DataRow row in esqCacheStore.Rows)
 {
 cachedEsqCityNames.Add(row[0].ToString());
 }
}

Bpm’online developer guide 597

3) Additional query settings

You can set additional settings that determine parameters for page-by-page output of query execution results and
also parameters of building of hierarchical query for EntitySchemaQuery. EntitySchemaQueryOptions is designed
for these purposes. Properties of this class determine the following:

HierarchicalColumnName – column name, used for building of hierarchical query;
HierarchicalColumnValue – initial value of hierarchical column, on the basis of which hierarchy will be built;
HierarchicalMaxDepth – maximum nesting level of hierarchical query;
PageableConditionValues – value of page-by-page output conditions;
PageableDirection – direction of page-by-page output conditions;
PageableRowCount – umber of page records of resultant data array, returned by query.

One and the same EntitySchemaQueryOptions instance can be used for getting of different query execution results
by transferring it to GetEntityCollection() of corresponding query (example 5) as parameter.

Example 5

// Creation of query instance with City root schema.
var esqCities = new EntitySchemaQuery(UserConnection.EntitySchemaManager, "City");
esqCities.AddColumn("Name");

// Creation of query with Country root schema.
var esqCountries = new EntitySchemaQuery(UserConnection.EntitySchemaManager,
"Country");
esqCountries.AddColumn("Name");

// Creation of setting instance for returning the first 5 settings through query.
var esqOptions = new EntitySchemaQueryOptions()
{
 PageableDirection = PageableSelectDirection.First,
 PageableRowCount = 5,
 PageableConditionValues = new Dictionary<string, object>()
};

// Getting Cities collection that will contain the first 5 cities of resultant data
array.
var cities = esqCities.GetEntityCollection(UserConnection, esqOptions);

// Getting of countries collection that will contain the first 5 countries o f
resultant data array.
var countries = esqCountries.GetEntityCollection(UserConnection, esqOptions);

Definition of root schema. Creation of paths to columns against root schema.
Examples.

The starting point of mechanisms for creating of EntitySchemaQuery is a root schema.

Root schema is a schema (table in database), whose paths are created in all columns in query, including columns of
added tables.

Upon creation of paths, the feedback principle is applied to columns. The name of a random column, added to a
query, can be built in the form of a chain of interconnected links. Each link represents the "context" of definite
schema that is connected to a previous one on an external key (figure 1).

Figure 1. Interconnections of schemas on keys

Bpm’online developer guide 598

In a common case, the format for building of a user column name built from N schema can be represented in the
following form:

[Context of schema 1].[...].[Context of schema N].[Name of _ column]

In order to add column from a random table to a query on feedbacks, build the path to this column correctly.
Different variants for adding columns to query and examples of name formation for column in each variant are
described below. A city schema is used as a root schema for all examples, listed below.

1) Root schema column

In this case, the column name is built as [Column name in root schema].

Example: column with city name
Column name: Name
EntitySchemaQuery creation example that returns values of this column:

// Creation of EntitySchemaQuery query instance with "City" root schema.
var esqQuery = new EntitySchemaQuery(UserConnection.EntitySchemaManager, "City");

// Adding to the column query with city name.
esqQuery.AddColumn("Name");

// Getting text if resultant sql-query.
string esqSqlText = esqQuery.GetSelectQuery(UserConnection).GetSqlText();

Resultant sql-query (MS SQL):

SELECT
[City].[Name] [Name]
FROM
[dbo].[City] [City]

2) Schema column, to which lookup column of current schema refers

The column name is built on the basis of [Lookup column name].[Name of column of schema, to which
lookup refers].

Joining the operator (Left Outer Join by default) will join the Country schema in a resulting query to the City root
schema. Joining a condition (On condition of JOIN operator) is formed by the following principle :

[Name of joinable schema].[Id] = [Name of root schema].[Name of column that refers to joinable schema +Id]

Example: column with name of the country, to which the city belongs]
Column name: Country.Name
EntitySchemaQuery creation example that returns values of this column:

//Creation of EntitySchemaQuery query instance with "City" root schema.
var esqQuery = new EntitySchemaQuery(UserConnection.EntitySchemaManager, "City");

// Adding of column with country name, to which the city belongs, to query.
esqQuery.AddColumn("Country.Name");

// Getting text of resultant sql-query.
string esqSqlText = esqQuery.GetSelectQuery(UserConnection).GetSqlText();

Resultant sql-query (MS SQL):

Bpm’online developer guide 599

SELECT
[Country].[Name] [Country.Name]
FROM
[dbo].[City] [City]
LEFT OUTER JOIN [dbo].[Country] [Country] ON ([Country].[Id] = [City].[CountryId])

In a common case, you can continue to build the feedback chain.

Example: contact name that has added country of definite city
Column name: Country.CreatedBy.Name
EntitySchemaQuery creation example that returns values of this column:

// Creation of the example of EntitySchemaQuery query with "City" root schema.
var esqQuery = new EntitySchemaQuery(UserConnection.EntitySchemaManager, "City");

// Adding column with contact name, which has added country of definite city, to
query.
esqQuery.AddColumn("Country.CreatedBy.Name");

// Getting text of resultant sql-query.
string esqSqlText = esqQuery.GetSelectQuery(UserConnection).GetSqlText();

Resultant sql-query (MS SQL):

SELECT
[CreatedBy].[Name] [CreatedBy.Name]
FROM
[dbo].[City] [City]
LEFT OUTER JOIN [dbo].[Country] [Country] ON ([Country].[Id] = [City].[CountryId])
LEFT OUTER JOIN [dbo].[Contact] [CreatedBy] ON ([CreatedBy].[Id] =
[Country].[CreatedById])

3) Schema column on random external key

Column name is built in accordance with the following principle
[Name_of_joinable_schema:Name_of_column_for_linking_of_joinable_schema:Name of
column for_connection_of_current_schema].

If the ID column is used as a linking column in the current schema, it can be omitted, i.e. the column name will have
the following view:

[Name_of_joinable_schema:Name_of_column_for_linking_of_joinable_schema] .

Example: column with the name of the contact that has an added city
Column name: [Contact:Id:CreatedBy].Name
Example of creation of EntitySchemaQuery of returning value of this column:

//Creation of instance of EntitySchemaQuery query with "City" root schema.
var esqQuery = new EntitySchemaQuery(UserConnection.EntitySchemaManager, "City");

// Adding column with name of the contact that has added city, to query.
esqQuery.AddColumn("[Contact:Id:CreatedBy].Name");

// Getting text of resultant sql-query.
string esqSqlText = esqQuery.GetSelectQuery(UserConnection).GetSqlText();

Resultant sql-query (MS SQL):

SELECT
[Contact].[Name] [Contact.Name]
FROM
[dbo].[City] [City]
LEFT OUTER JOIN [dbo].[Contact] [Contact] ON ([Contact].[Id] = [City].[CreatedById])

Bpm’online developer guide 600

In general, you can build a column name on the basis of feedback chains of random length. The example below
shows an alternative variant of name building for a column with the name of the contact that has added a country of
a definite city (see clause 2).

Example: column with name of the contact that has added country of definite city
Column name: Country.[Contact: Id:CreatedBy].Name
Example for creation of EntitySchemaQuery that retuns values of this column:

// Creation of EntitySchemaQuery instance with "City" root schema.
var esqQuery = new EntitySchemaQuery(UserConnection.EntitySchemaManager, "City");

// Adding column with contact name, which has added country of definite city, to
query.
esqQuery.AddColumn("Country.[Contact:Id:CreatedBy].Name");

// Getting text of resultant sql-query.
string esqSqlText = esqQuery.GetSelectQuery(UserConnection).GetSqlText();

Resultant sql-query (MS SQL):

SELECT
[Contact].[Name] [Contact.Name]
FROM
[dbo].[City] [City]
LEFT OUTER JOIN [dbo].[Country] [Country] ON ([Country].[Id] = [City].[CountryId])
LEFT OUTER JOIN [dbo].[Contact] [Contact] ON ([Contact].[Id] =
[Country].[CreatedById])

Adding columns to query
The column of the EntitySchemaQuery query is an instance of EntitySchemaQueryColumn class. You can indicate
the main characteristics of a column instance in its properties: titles, view values, checkboxes, sorting order and
position etc. A full list of properties and methods of EntitySchemaQueryColumn class is shown in the corresponding
section of the SDK class description.

The AddColumn() method) that returns an instance of a column, added to a query, is designed for adding columns
to a query. The column name related to the root schema is formed in the AddColumn() method in accordance with
above-mentioned rules. This method has some overloads. This allows adding columns with different parameters
(table 1) to a query.

Table 1. The list of overloads of the AddColumn() method

Overload Description
EntitySchemaQuery.AddColumn(String,AggregationTypeStrict,EntitySchemaQuery) It creates and adds a

column into an object
schema query in the
form of a subquery that
returns results of
specified aggregating
function on path to
column schema relating
to root schema.

EntitySchemaQuery.AddColumn(EntitySchemaQueryColumn) Adds a passed column to
a columns collection of
an object schema query.

EntitySchemaQuery.AddColumn(String) It creates and adds
column into query to
object schema on set
path to column against
root schema.

Bpm’online developer guide 601

EntitySchemaQuery.AddColumn(EntitySchemaQueryFunction) It creates and adds
column into query to
object schema on
transferred function.

EntitySchemaQuery.AddColumn(Object,DataValueType) It creates and adds
column of "parameter"
type with set value of
definite parameters to
query to object schema.

EntitySchemaQuery.AddColumn(EntitySchemaQuery) It creates and adds
transferred instance of
subquery
EntitySchemaQuery to
object schema as query
column.

Specific of use of jointed tables
JOIN types of jointed tables

If a column from a schema that differs from the root schema is added, this schema will be added to the query by the
JOIN operator. In this case, LEFT OUTER join type is applied by default. EntitySchemaQueryindicates the type of
joining of this schema to the query upon adding the column of a non-root schema. For this purpose you should
indicate the column name in the following form:

[Special join symbol][Column name]

EntitySchemaQuery supports the following types of joins, to which symbols, shown in table 2, correspond.

Table 2. JOIN types of jointed schemas

Join types Special symbol of join type Example of column name
INNER JOIN "=" "=Name"

LEFT OUTER JOIN ">" ">Name"

RIGHT OUTER JOIN "<" "<Name"

FULL OUTER JOIN "<>" "<>Name"

CROSS JOIN "*" "*Name"

Examples of adds to column query with use of different schema joining types are shown below.

Example 6

// Creation of instance of query with City root schema.
var esqResult = new EntitySchemaQuery(UserConnection.EntitySchemaManager, "City");

// Country schema with join type LEFT OUTER JOIN will be added to query.
esqResult.AddColumn("Country.Name");

// Country schema with join type INNER JOIN will be added to query.
esqResult.AddColumn("=Country.Name");

// Two schemas will be added to query:
// 1) Country schema with join type LEFT OUTER JOIN ;
// 2) Contact schema with join type RIGHT OUTER JOIN.
esqResult.AddColumn(">Country.<CreatedBy.Name");

// Text of resultant sql-query (MS SQL):

// SELECT

Bpm’online developer guide 602

// [Country].[Name] [Country.Name],
// [Country1].[Name] [Country1.Name],
// [CreatedBy].[Name] [CreatedBy.Name]
// FROM
// [dbo].[City] [City]
// LEFT OUTER JOIN [dbo].[Country] [Country] ON ([Country].[Id] = [City].
[CountryId])
// INNER JOIN [dbo].[Country] [Country1] ON ([Country1].[Id] = [City].
[CountryId])
// LEFT OUTER JOIN [dbo].[Country] [Country2] ON ([Country2].[Id] =
[City].[CountryId])
// RIGHT OUTER JOIN [dbo].[Contact] [CreatedBy] ON ([CreatedBy].[Id] =
[Country2].[CreatedById])

Application of access rights to jointed schemas
If the root schema of a query is managed by records and there are joinable schemas in the query, access rights of a
current user can be applied to these records. Table 3 shows all possible variants of the application of access rights to
joinable schemas. These values correspond to enumeration members Terrasoft.Core.DB.QueryJoinRightLevel.

Table 3. Variants of application of access rights to joinable query schemas

Value of enumeration member Procedure for application of access rights
EnabledAlways = 0 Always apply access rights.

EnabledForAdditionalColumns = 1 Transfer rights if columns from jointed schema that differ
from primary columns (PrimaryColumn) and primary for
view are used in query.

Disabled = 2 Do not apply access right.

The procedure of changing access rights is determined the value of the JoinRightState property of query. The default
value of this property is determined by the system setting QueryJoinRightLevel that accepts values in accordance
with table 3. If the value of this system setting is not set, its default value is taken to be equal to
EnabledForAdditionalColumns.

EntitySchemaQuery filters handling
Notion of EntitySchemaQuery filter and its structure

A filter is a set of conditions, applied to views of a data query. According to SQL terms, a filter is a separate predicate
(condition) of the WHERE operator.

Any filter, as a query condition, has its structure (figure 2).

Figure 2. Structure of EntitySchemQuery filter

Filter = {[AggregationType] {<LeftExpression> | <LeftExpressionColumnPath>}
<ComparisionType>
{{<RightExpression> | {<RightExpressionColumnPath>,...}} | {<Macros>, [MacrosValue]}}
}

Main components of EntitySchemaQuery filter:

AggregationType is a type of aggregation function that is expressed in the left side of the condition. It is
optional component of the filter. It is set by enumeration values FilterAggregationType.
LeftExpression is an expression in the left part of the filter. It is set by type instance
EntitySchemaQueryExpression.
LeftExpressionColumnPath is a path to column that contains expression of the left part of the filter. It is
set by the string value.
ComparisionType is a type of comparison of expressions in the filter. It is assigned by enumeration value
FilterComparisonType.
RightExpression is an expression in the right part of the filter. It is set by type instance

Bpm’online developer guide 603

EntitySchemaQueryExpression.
RightExpressionColumnPath is a path to column that contains expression of the right part of the filter. It
is set by the string value.
Macros is a macros that returns expression for the right part of the filter. It is assigned enumeration value
EntitySchemaQueryMacrosType.
MacrosValue is a value that is assigned to Macros as parameter. It is an optional parameter. It is assigned
values of different types depending on the type of called macros.

Creation and application of filters in EntitySchemaQuery

The CreateFilter() method that returns instance of type EntitySchemaQueryFilter is used for creation of simple
filter (figure 2) in EntitySchemaQuery . Some reloads are implemented for this method in the EntitySchemaQuery.
This allows creation of filters with different initial parameters. Full list of reloads of the CreateFilter() method with
examples of their implementation is available in bpm'online SDK.

In spite of simple filters methods for creation of special type filters are implemented in EntitySchemaQuery (table
4).

Table 4. EntitySchemaQuery methods for creation of special type filters

Filter creation method Description
CreateFilterWithParameters() It created parameterized filter for record retrieval under

definite conditions. It is overloaded method.

CreateIsNullFilter() It creates type comparison filter [Is null in database].

CreateIsNotNullFilter() It creates type comparison filter [Is not null in database].

CreateExistsFilter() It creates type comparison filter [Exists on set condition].

CreateNotExistsFilter() It creates type comparison filter [Does not exists on set
condition].

EntitySchemaQuery has Filters property) that is represented by collection of filters of given query (instance of
EntitySchemaQueryFilterCollection class that, in its turn, is a classical typified collection of
IEntitySchemaQueryFilterItem) items. In order to add filter to query it is necessary to take the following actions:

create instance of filter for given query (CreateFilter() methods, methods for creation of special type
filters);
add created filter instance to query filter collection (Add() method of collection).

All filters, added to Filters collection, are interconnected through AND logic operation by default. LogicalOperation
property of Filters collection allows user to indicate logic operation, which should be used for joining filters. The
property takes values from the list LogicalOperationStrict.

The possibility for control of filters, used in building of resultant data array, is implemented in EntitySchemaQuery
queries. Each item of Filters collection has IsEnabled property that determines whether this item takes part in
building of a resultant query (true means that it take part and false means that it doesn't take part). A similar
property IsEnabled is also determined for the entire collection of Filters. Set this property to “false” to deactivate
filtration for a query. In this case, a collection of query filters will remain unchanged. Therefore, if a query filter
collection is created initially, you can use different combinations for filtering of this query in the future while not
introducing changes directly into a collection. An example of controlling filters in a query is shown below (example
7).

Example 7

// Creation of query instance with "City" root schema.
var esqCities = new EntitySchemaQuery(UserConnection.EntitySchemaManager, "City");
esqCities.AddColumn("Name");

// Creation of the first filter instance.
var esqFirstFilter = esqCities.CreateFilterWithParameters(FilterComparisonType.Equal,
"Name", "New York");

Bpm’online developer guide 604

// Creation of the second filter instance.
var esqSecondFilter =
esqCities.CreateFilterWithParameters(FilterComparisonType.Equal, "Name", "Boston");

// Filters will be joined in filter collection by OR logic operator.
esqCities.Filters.LogicalOperation = LogicalOperationStrict.Or;

// Adding created filters to query collection.
esqCities.Filters.Add(esqFirstFilter);
esqCities.Filters.Add(esqSecondFilter);

// Objects, i.e. query results, filtered by two filters, will be included into this
collection.
var entities = esqCities.GetEntityCollection(UserConnection);

// It is specified for the second filter that it will be used in building of
resultant query.
// In this case the filter is not deleted for query filter collection.
esqSecondFilter.IsEnabled = false;

// It updates Select instance, associated with query in accordance with actual set of
filters.
esqCities.ResetSelectQuery();

// The objects, namely query results , filtered only by the first filter, will be
included into this collection.
var entities1 = esqCities.GetEntityCollection(UserConnection);

Column paths in EntitySchemaQuery filters are formed in accordance with common rules for building paths to
columns against root schema (as described above).

The example below shows how to select activities results for a definite category from the ActivityCategory root
schema based on feedback. For the purpose of demonstration of use cases of feedbacks for columns in the columns
of filters, the activity identifier column, which is built on feedbacks through ActivityCategoryResultEntry schema,
will be used for selection of a an activity, instead of the Id column of the root schema.

Example 8

// Creation of query instance with ActivityCategory root schema.
var esqResult = new EntitySchemaQuery(UserConnection.EntitySchemaManager,
"ActivityCategory");

// Adding the activity result column to the request on feedbacks.
esqResult.AddColumn("[ActivityCategoryResultEntry:ActivityCategory].ActivityResult");

// Determining the ID of the activity, for which the results will be selected.
var requiredActivityCategoryId = new Guid("42C74C49-58E6-DF11-971B-001D60E938C6");

// Creation of the filter example for selection of the results for definite activity
category.
var filter = esqResult.CreateFilterWithParameters(FilterComparisonType.Equal,
 "
[ActivityCategoryResultEntry:ActivityCategory].ActivityCategory.Id",
 requiredActivityCategoryId);

// Adding filter to the query collection filter.
esqResult.Filters.Add(filter);

// Text of resultant sql-query (MS SQL):

// SELECT
// [ActivityCate1].[ActivityResultId] [ActivityCate1.ActivityResultId],

Bpm’online developer guide 605

// [ActivityResult].[Name] [ActivityResult.Name]
// FROM
// [dbo].[ActivityCategory] [ActivityCategory]
// LEFT OUTER JOIN [dbo].[ActivityCategoryResultEntry] [ActivityCate1]
// ON ([ActivityCate1].[ActivityCategoryId] = [ActivityCategory].
[Id])
// LEFT OUTER JOIN [dbo].[ActivityResult] [ActivityResult]
// ON ([ActivityResult].[Id] = [ActivityCate1].[ActivityResultId])
// WHERE
// EXISTS (
// SELECT
// [ActivityCategory1].[Id] [Id]
// FROM
// [dbo].[ActivityCategory] [ActivityCategory1]
// WHERE
// [ActivityCate1].[ActivityCategoryId] = [ActivityCategory1].[Id]
// AND [ActivityCategory1].[Id] = '{42C74C49-58E6-DF11-971B-
001D60E938C6}')

Composing modify data queries

The Update class is used to update data in the bpm'online database.

The Update class constructor uses the following objects as parameters:

User connection (Update (UserConnection)).
User connection and schema name in which the data will be updated (Update (UserConnection,String)).
User connection and query source object (Update (UserConnection,ModifyQuerySource)).
Other object Update (Update (Update)). This will create a copy of an Update query included in the
parameter.

The following are the examples of using the Update class method used to build queries of varying complexity. In
each example an Update object is created and then an SQL query is provided that will be generated for each
different DBMS (MS SQL).

Example 1

C#

var update = new Update(userConnection, "Contact")
 .Set("Name", Func.IsNull(Column.SourceColumn("Name"),
Column.Parameter("ParameterValue")));

MS SQL

UPDATE [dbo].[Contact] SET [Name] = ISNULL([Name], @P1)

Example 2

C#

var update = new Update(userConnection, "City")
 .Set("CreatedById",
 new Select(userConnection).Top(1)
 .Column("Id")
 .From("Contact")

Bpm’online developer guide 606

 .Where("Name").IsEqual(Column.Parameter("Supervisor")))
 .Set("ModifiedById",
 new Select(userConnection).Top(1)
 .Column("Id")
 .From("Contact")
 .Where("Name").IsEqual(Column.Parameter("User1")));

MS SQL

UPDATE [dbo].[City]

SET [CreatedById] = (SELECT TOP 1 [Id]

FROM [dbo].[Contact]

WHERE [Name] = @P1),

[ModifiedById] = (SELECT TOP 1 [Id]

FROM [dbo].[Contact]

WHERE [Name] = @P2)

Composing delete data queries

The Delete class is used to delete data from the bpm'online database.

The Delete class constructor uses the following objects as parameters:

User connection (Update (UserConnection)).
Other object Delete (Delete (Delete)). This will create a copy of an Delete query included in the parameter.

The following are the examples of using the Delete class method used to build queries of varying complexity. In each
example a Delete object is created and then an SQL query is provided that will be generated for each different DBMS
(MS SQL).

Example 1

C#

var delete = new Delete(userConnection)
 .From("City");

MS SQL

DELETE FROM [dbo].[City]

Example 2

C#

var delete = new Delete(userConnection)
 .From("City")
 .Where("Id").IsEqual(Column.Parameter("{210299B0-7A24-4C4D-9B6F-
658FEFEF2E13}"));

MS SQL

DELETE FROM [dbo].[City] WHERE [Id] = @P1

Bpm’online developer guide 607

Web-services in configuration

Contents
How to create custom configuration service
How to call configuration services with ServiceHelper
Creating anonymous web service
How to call configuration services using Postman

How to create custom configuration service

Introduction
Bpm’online service model implements the base set of web services which you can use for integration of bpm’online
with external applications and systems. The example of system services are: the EntityDataService.svc which
provides the ability to exchange data with bpm'online over the OData protocol and the ProcessEngineService.svc
which provides the launch of bpm’online business process from external applications.

Bpm’online enables to create custom web services that can implement specific integration tasks.

Configuration web service is a RESTful service implemented on the basis on WCF technology. The web service is
available at following address:

[Application Address]/0/rest/[Custom Service Name]/[Custom Service Endpoint]?
[Optional Options]

Example:

http://mysite.bpmonline.com/0/rest/UsrCustomConfigurationService/GetContactIdByName?
Name=User1

ATTENTION

Custom service is available after user authentication via the AuthService.svc (see “The AuthService.svc
authentication service”).

To create custom web service in the configuration:

1. Create a schema of the [Source code] type in the development package.
2. Create a class of the service in the schema source code. Use the namespace in the Terrasoft.Configuration or

any namespace embedded in it. Mark the class with the [ServiceContract] and
[AspNetCompatibilityRequirement] attributes with necessary parameters.

3. Add the implementation of methods corresponding to the service endpoints in the class. Each method off the
service should be marked with the [OperationContract] и [WebInvoke] attributes with necessary parameters.
If you need to send the data of complex type (object instances, collections, arrays, etc.) you can implement
additional classes which instances will receive and return the method of your service. Each class of that type
should be marked with the [DataContract] attribute and the fields of the class should be marked with the
[DataMember] attribute.

4. Perform publication of the source code schema.

After publication of the schema, the created web service will be available for call from the source code of the
configuration schemas and from the external applications (see “ How to call configuration services with
ServiceHelper ”).

Bpm’online developer guide 608

http://www.odata.org/
https://en.wikipedia.org/wiki/Representational_state_transfer
https://msdn.microsoft.com/en-us/library/dd456779(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.servicemodel.servicecontractattribute(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.servicemodel.activation.aspnetcompatibilityrequirementsattribute(v=vs.110).aspx
https://docs.microsoft.com/ru-ru/dotnet/framework/wcf/feature-details/endpoints-addresses-bindings-and-contracts
https://msdn.microsoft.com/en-us/library/system.servicemodel.operationcontractattribute(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.servicemodel.web.webinvokeattribute(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.serialization.datacontractattribute(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.serialization.datamemberattribute(v=vs.110).aspx

Case description
Create custom configuration service that returns Id of the contact of the given name. If there are several contacts
found, then return the Id of only the first contact found. If the contact is not found, the service should return an
empty string.

Source code
You can download the package with case implementation using the following link.

Case implementation algorithm
1. Creating a [Source code] schema

Perform the [Add] – [Source code] action on the [Schemas] tab of the [Configuration] section.

Fig. 1. Adding the [Source Code] schema

Sett following properties for the schema:

[Name] – UsrCustomConfigurationService.
[Title] – UsrCustomConfigurationService.

2. Create class of the service

On the [Source code] tab:

The namespace nested in the Terrasoft.Configuration. The name can be random, for example, the
UsrCustomConfigurationService.
Namespaces whose data types will be used in your class. For this use the using directive. A complete list of
namespaces is provided in the source code below.
Class, for example the UsrCustomConfigurationService class inherited from the
Terrasoft.Nui.ServiceModel.WebService.BaseService. Mark the class with the [ServiceContract] and
[AspNetCompatibilityRequirements(RequirementsMode =
AspNetCompatibilityRequirementsMode.Required)] attributes.

ATTENTION

It is not necessary to inherit the class of the service from other classes. In this example, the class is inherited
from the BaseService only to be able to access the AppConection property.

The source code with a class declaration is available below:

3. Implement the methods that match the service endpoints

Bpm’online developer guide 609

https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkCreateConfigurationService_18.06.18_10.47.21.zip
https://msdn.microsoft.com/en-us/library/system.servicemodel.servicecontractattribute(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.servicemodel.activation.aspnetcompatibilityrequirementsattribute(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.servicemodel.activation.aspnetcompatibilityrequirementsattribute(v=vs.110).aspx

To implement the endpoint of the return of the contact Id by its name, add the GetContactIdByName(string Name)
public string to the class. The Name parameter should receive the name of the contact. After accessing to the
database via the EntitySchemaQuery the method will return the Id of the first found contact (or empty string)
casted to string.

Full source code with the implementation of the service:

namespace Terrasoft.Configuration.UsrCustomConfigurationService
{
 using System;
 using System.ServiceModel;
 using System.ServiceModel.Web;
 using System.ServiceModel.Activation;
 using Terrasoft.Core;
 using Terrasoft.Web.Common;
 using Terrasoft.Core.Entities;

 [ServiceContract]
 [AspNetCompatibilityRequirements(RequirementsMode =
AspNetCompatibilityRequirementsMode.Required)]
 public class UsrCustomConfigurationService: BaseService
 {
 // Link to the UserConnection instance required to access the database.
 private SystemUserConnection _systemUserConnection;
 private SystemUserConnection SystemUserConnection {
 get {
 return _systemUserConnection ?? (_systemUserConnection =
(SystemUserConnection)AppConnection.SystemUserConnection);
 }
 }

 // A method that returns the contact's ID by its name.
 [OperationContract]
 [WebInvoke(Method = "GET", RequestFormat = WebMessageFormat.Json, BodyStyle =
WebMessageBodyStyle.Wrapped,
 ResponseFormat = WebMessageFormat.Json)]
 public string GetContactIdByName(string Name){
 // The default result.
 var result = "";
 // An EntitySchemaQuery instance that accesses the Contact table of the
database.
 var esq = new EntitySchemaQuery(SystemUserConnection.EntitySchemaManager,
"Contact");
 // Adding columns to the query.
 var colId = esq.AddColumn("Id");
 var colName = esq.AddColumn("Name");
 // Filter the query data.
 var esqFilter =
esq.CreateFilterWithParameters(FilterComparisonType.Equal, "Name", Name);
 esq.Filters.Add(esqFilter);
 // Get the result of the query.
 var entities = esq.GetEntityCollection(SystemUserConnection);
 // If the data is received.
 if (entities.Count > 0)
 {
 // Return the value of the "Id" column of the first record of the
query result.
 result = entities[0].GetColumnValue(colId.Name).ToString();
 // You can also use this option:
 // result = entities [0]. GetTypedColumnValue <string> (colId.Name);
 }
 // Return the result.

Bpm’online developer guide 610

 return result;
 }
 }
}

After making changes save and publish the schema.

As a result, the new configuration service UsrCustomConfigurationService will be available in the bpm’online.
When the GetContactIdByName endpoint of this service is called, for example, out of web browser, the contact Id
(Fig. 2) or the empty string (“”) value (Fig. 3) will be returned.

Note

Pay attention to the format of the call result. In the server response, the object that contains property with the
name combined from the name of the called method and the “Return” suffix, will be passed. Value of the
object property contains the value of the contact Id (or an empty string) returned by the service.

Fig. 2. Request result The contact Id is found.

Fig. 3. Request result The contact Id is not found.

ATTENTION

If the service is called without logging to the application, the authorization error will be displayed (Fig. 4).

Fig. 4. Request result No authorization

Bpm’online developer guide 611

How to call configuration services with ServiceHelper

Introduction
To call a configuration web service from the client JavaScript-code:

1. Add the ServiceHelper module as a dependency to the module of the page that was used for calling the
service. This module is an interface for executing server queries via the Terrasoft.AjaxProvider query
provider implemented in the client core.

2. Call the callService(serviceName, serviceMethodName, callback, serviceData, scope) method from the
ServiceHelper module by passing the parameters as listed in table 1.

Table 1. The callService() method parameters

Parameter Details
serviceName Configuration service name. Corresponds to the name of the C# class that

implements the service.

servcieMethodName Name of the configuration service method being called. The method can accept
incoming parameters and return resulting values.

callback(response) The callback function that processes the service response. The function accepts
the response object as a parameter. If the called service method returns any
value, you can receive it on a client via the response object property.

The name of the property that returns the method output-value is generated
according to the following rule: [Service method name] + [Result]

For example, if you call the GetSomeValue() method, the returned value will be
contained in the response.GetSomeValueResult property.

serviceData The object with the initialized incoming parameters for the service method.

scope Execution context.

NOTE

There is an alternative way of calling the callService(config)method, where config is a configuration object
with the following properties:

serviceName – configuration service name
methodName – name of the configuration service method being called
callback – the callback function processing the service response
data – the object with the initialized incoming parameters for the service method

Bpm’online developer guide 612

scope – execution context

ATTENTION

The ServiceHelper module only works with the POST requests. Therefore, the configuration service
methods must be marked by the [WebInvoke] method with the Method = "POST” parameter.

Case description
Add a button calling the configuration web service to the new contact adding page. As a result, the information
window of the page will display the result returned by the web service method.

Source code
You can download the package with case implementation using the following link.

Case implementation algorithm
1. Creating configuration service

The current case uses the web service from the “How to create custom configuration service” article. The
“Method” parameter of the “WebInvoke” attribute is changed for POST in the service.

Service source code:

namespace Terrasoft.Configuration.UsrConfigurationService
{
 using System;
 using System.ServiceModel;
 using System.ServiceModel.Web;
 using System.ServiceModel.Activation;
 using Terrasoft.Core;
 using Terrasoft.Web.Common;
 using Terrasoft.Core.Entities;

 [ServiceContract]
 [AspNetCompatibilityRequirements(RequirementsMode =
AspNetCompatibilityRequirementsMode.Required)]
 public class UsrConfigurationService: BaseService
 {
 // Link to the UserConnection instance needed for addressing the database.
 private SystemUserConnection _systemUserConnection;
 private SystemUserConnection SystemUserConnection {
 get {
 return _systemUserConnection ?? (_systemUserConnection =
(SystemUserConnection)AppConnection.SystemUserConnection);
 }
 }

 // Method returning the contact identifier by name.
 [OperationContract]
 [WebInvoke(Method = "POST", RequestFormat = WebMessageFormat.Json, BodyStyle
= WebMessageBodyStyle.Wrapped,
 ResponseFormat = WebMessageFormat.Json)]
 public string GetContactIdByName(string Name){
 // Default result.
 var result = "";
 // The EntitySchemaQuery instance, addressing the Contact database table.
 var esq = new EntitySchemaQuery(SystemUserConnection.EntitySchemaManager,
"Contact");

Bpm’online developer guide 613

https://msdn.microsoft.com/en-us/library/system.servicemodel.web.webinvokeattribute(v=vs.110).aspx
https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/Packages/sdkCallConfigurationService_18.06.30_03.14.53.zip

 // Adding columns to query.
 esq.AddColumn("Id");
 var colName = esq.AddColumn("Name");
 // Query data filtering.
 var esqFilter =
esq.CreateFilterWithParameters(FilterComparisonType.Equal, "Name", Name);
 esq.Filters.Add(esqFilter);
 // Receiving the query results.
 var entities = esq.GetEntityCollection(SystemUserConnection);
 // If data are received.
 if (entities.Count > 0)
 {
 // Return the "Id" column value of the first query result record.
 result = entities[0].GetColumnValue(colId.Name).ToString();
 // You can also use the folowing variant:
 // result = entities[0].GetTypedColumnValue<string>(colId.Name);
 }
 // Return result.
 return result;
 }
 }
}

2. Creating a replacing edit page

Create a replacing client module and specify [Display schema – Contact card] (ContactPageV2) as the parent object
in the custom package (Fig. 1). Creating a replacing page is covered in the “Creating a custom client module
schema” article.

Add the ServiceHelper module as a dependency to declaring the edit page module.

2. Adding a button to the edit page

Adding a button to the edit page is described in the “How to add a button to an edit page in the new record
add mode” and “How to add the button on the edit page in the combined mode” articles.

Add a localizable string with the button caption to the replacing module schema of the contact edit page, for
example:

[Name] – “GetServiceInfoButtonCaption”
[Value] – “Call service”

3. Adding the button handler and calling the web service method

Use the callService() method of the ServiceHelper module to call the web service and pass the following values as
parameters:

name of the configuration service class (UsrCustomConfigurationService)
name of the called service method (GetContactIdByName)
the object with the initialized incoming parameters for the service method (serviceData)
the callback function where processing of service results is executed
execution context

The source code of the edit page replacing module:

define("ContactPageV2", ["ServiceHelper"],
 function(ServiceHelper) {
 return {
 // Name of the edit page object schema.
 entitySchemaName: "Contact",
 details: /**SCHEMA_DETAILS*/{}/**SCHEMA_DETAILS*/,
 // View model methods of the edit page.
 methods: {
 // Verifies if the [Full name] field is populated on the page.

Bpm’online developer guide 614

 isContactNameSet: function() {
 return this.get("Name") ? true : false;
 },
 // Handler-method of clicking the button.
 onGetServiceInfoClick: function() {
 var name = this.get("Name");
 // Object initializing incoming parameters for the service
method.
 var serviceData = {
 // The property name corresponds to the incoming parameter
name of the service method.
 Name: name
 };
 // Calling the web service and processing the results.
 ServiceHelper.callService("UsrConfigurationService",
"GetContactIdByName",
 function(response) {
 var result = response.GetContactIdByNameResult;
 this.showInformationDialog(result);
 }, serviceData, this);
 }
 },
 diff: /**SCHEMA_DIFF*/[
 // Metadata for adding a custom button to a page.
 {
 // Executing the operation of adding the element to page.
 "operation": "insert",
 // Name of the parent control element where the button is added.
 "parentName": "LeftContainer",
 // The button is added to the control element collection
 // of the parent element (whose metaname is specified in
parentName).
 "propertyName": "items",
 // Name of the added button.
 "name": "GetServiceInfoButton",
 // Additional field property.
 "values": {
 // The added element type - button.
 itemType: Terrasoft.ViewItemType.BUTTON,
 // Binding the button caption to the localizable schema
string.
 caption: {bindTo:
"Resources.Strings.GetServiceInfoButtonCaption"},
 // Binding the handler-method of clicking the button.
 click: {bindTo: "onGetServiceInfoClick"},
 // Binding the "enabled" property ot the button.
 enabled: {bindTo: "isContactNameSet"},
 // Field location setup.
 "layout": {"column": 1, "row": 6, "colSpan": 2, "rowSpan": 1}
 }
 }
]/**SCHEMA_DIFF*/
 };
 });

After you save the schema and update the application page, the [Call service] button will appear on the contact edit
page. When you click the button, the configuration service method will be called (fig. 1).

Fig. 1. Case implementation result

Bpm’online developer guide 615

Creating anonymous web service

Introduction
Bpm’online service model implements the base set of web services, which you can use for integration of bpm’online
with external applications and systems. Examples of system services are: the EntityDataService.svc, which enables
exchanging data with bpm'online via the OData protocol and the ProcessEngineService.svc, which provides the
launch of bpm’online business process from external applications. These services are implemented based
on the WCF technology and are managed at IIS level.

There also exist configuration web services in bpm’online that can be called from the custom part of the application.
You can implement specific integration tasks via configuration web services. More information about creation of a
custom configuration web service can be found in the “How to create custom configuration service” article.

Most of WCF-services require preliminary user authentication. However, there exist services that permit anonymous
usage. An example of such a service is AuthService.svc.

ATTENTION

Since configuration services are managed directly by the application and not by IIS, you cannot make them
anonymous.

To create a WCF-service that would be accessible without user authentication:

1. Create a configuration web service (if needed).
2. Register the WCF-service.
3. Configure WCF-service for the http and https protocols.
4. Set up access to WCF-service for all users.

ATTENTION

You need to change the application configuration files to set up anonymous web-service. When updating the
application, all the configuration files are changed by the new ones. Thus, you need to set up the web service

Bpm’online developer guide 616

http://www.odata.org/
https://msdn.microsoft.com/en-us/library/dd456779(v=vs.110).aspx

again after the application update.

Case description
Create custom configuration service that returns the Id of a contact by the provided name. If there are several
contacts found, it is only necessary to return the Id of the first contact. If the contact is not found, the service should
return an empty string.

Note

You can use the service created based on the example covered in the “How to create custom
configuration service” article as the configuration web service.

Case implementation algorithm
1. Creating configuration service

How to create the configuration service that would meet the case conditions is covered in the “How to create
custom configuration service” article.

2. Registering the WCF-service.

Create the UsrCustomConfigurationService.svc file in the ..\Terasoft.WebApp\ServiceModel catalog and add the
following record into it:

<%@ ServiceHost Language="C#" Debug="true"
Service="Terrasoft.Configuration.UsrCustomConfigurationService.UsrCustomConfiguration
Service" %>

In the Service attribute specify the full name of the configuration service class. Read more about the @ServiceHost
WCF-directive in Microsoft documentation.

3. Configuring WCF-service for the http and https protocols.

Add the following record to the services.config files located at ..\Terasoft.WebApp\ServiceModel\http and
..\Terasoft.WebApp\ServiceModel\https catalogs:

<services>
 ...
 <service
name="Terrasoft.Configuration.UsrCustomConfigurationService.UsrCustomConfigurationSer
vice">
 <endpoint name="UsrCustomConfigurationServiceEndPoint"
 address=""
 binding="webHttpBinding"
 behaviorConfiguration="RestServiceBehavior"
 bindingNamespace="http://Terrasoft.WebApp.ServiceModel"

contract="Terrasoft.Configuration.UsrCustomConfigurationService.UsrCustomConfiguratio
nService" />
 </service>
</services>

Configure the service here. The <services> element contains a list of configurations of all application services (the
<service> nested elements). The name attribute contains the name of type (class or interface) implementing the
service contract. The <endpoint> nested element requires address, binding and interface that define the service
contract specified in the name attribute of the <service> element.

You can find detailed description of the service configuration elements in the documentation.

4. Setting up access to WCF-service for all users.

Bpm’online developer guide 617

https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/wcf-directive/servicehost
https://docs.microsoft.com/en-us/dotnet/framework/wcf/configuring-services-using-configuration-files

Perform the following changes in the ..\Terasoft.WebApp\Web.config file:

Add the <location> element defining the relative path and access rights to the service.
In the <appSettings> element change the value value for the “AllowedLocations” key by adding the
relative path to the service into it.

An example of changes in the ..\Terasoft.WebApp\Web.config file:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 ...
 <location path="ServiceModel/UsrCustomConfigurationService.svc">
 <system.web>
 <authorization>
 <allow users="*" />
 </authorization>
 </system.web>
 </location>
 ...
 <appSettings>
 ...
 <add key="AllowedLocations" value="[Предыдущие
значения];ServiceModel/UsrCustomConfigurationService.svc" />
 ...
 </appSettings>
 ...
</configuration>

After reloading the application pool in IIS, the service will become available at:

[Application Address]/0/ServiceModel/[Custom Service Name].svc/[Custom Service
Endpoint]?[Optional parameters]

For example:

http://mysite.bpmonline.com/0/ServiceModel/UsrCustomConfigurationService.svc/GetConta
ctIdByName?Name=Supervisor

You can address the service, e.g., from a browser (fig.1) either with preliminary login or without it.

Fig. 1. Example of access to the anonymous service from browser.

How to call configuration services using Postman

Bpm’online developer guide 618

Introduction
To integrate with bpm’online configuration services you need to execute HTTP requests to these services.
Requests can be compiled in any programming language: C#, PHP, etc. However, it is recommended to use HTTP
request debugging tools, such as Postman or Fiddler for better understanding of general principles for request
formatting. This article provides examples of requests to bpm’online configuration services using Postman.

Note

An example of a request to bpm’online service using Fiddler is described in the “Executing OData queries
using Fiddler” article.

Preliminary settings
This article uses a custom configuration service created as described in the “How to create custom
configuration service article. Use the following link to access the package for setting up configuration service to
your application. The package setup procedure is covered in the “Installing marketplace applications from a
zip archive” article.

Authentication
Before making requests to configuration service, a third party application must be authenticated and receive the
corresponding cookies. Bpm’online authentication uses a separate AuthService.svc web service (see “The
AuthService.svc authentication service”).

NOTE

Authentication is not needed to access the anonymous services.

To execute a request to AuthService.svc using Postman, do the following (Fig. 1):

Fig. 1. Authentication service request

Bpm’online developer guide 619

https://www.getpostman.com/
http://www.telerik.com/fiddler
https://academy.terrasoft.ru/sites/default/files/documents/downloads/SDK/Packages/sdkCreateConfigurationService_18.06.18_10.47.21.zip

1. Select the POST HTTP method.

2. Specify the authentication service URL. URL is generated according to the following mask:

http(s)://[bpm'online application address]/ServiceModel/AuthService.svc/Login

Example:

https://009189-studio.bpmonline.com/ServiceModel/AuthService.svc/Login

3. Select the “raw” method of request body generation on the [Body] tab.

4. Specify the request body type (JSON (application/json)).

5. Add the request body – a JSON object with the authentication data (login and password):

{"UserName": "User01", "UserPassword":"User01"}

6. Click the [Send] button to send the request to the service.

ATTENTION

The cookies received in the HTTP response (BPMLOADER, .ASPXAUTH, BPMCSRF and UserName) are to be
used in all further requests to bpm'online services that require authentication data. You can view the received
cookies on the [Cookies] tab (Fig. 1, 7).

Using the BPMCSRF cookie and BPMCSRF token (see below) is required when protection from CSRF attacks
is enabled. For more information, see “Protection from CSRF attacks during integration with
bpm'online”.

Protection from CSRF attacks is disabled on bpm’online trial websites. Therefore, there is no need to use both
BPMCSRF cookie and token in the request titles.

If the authentication has been successful, the response body will contain a JSON object whose Code property will be
set to “0” (Fig. 1, 8). In case of errors, JSON object properties will contain corresponding code and message. For
example, if a user specified in step 5 is not added to the application, the authentication service will return an

Bpm’online developer guide 620

incorrect login and password error (Fig. 2).

Fig. 2. Authentication service request containing invalid user data

Configuration service request

Note

The UsrCustomConfigurationService configuration service used in this article (see “Preliminary settings”,
“How to create custom configuration service”) can only process HTTP requests via the GET method.
Such requests do not have any body. Add the corresponding request body (for example, as described in step 5
of the “Authentication” section), if you need to execute other types of requests.

To generate the UsrCustomConfigurationService configuration service request (Fig. 3):

Fig. 3. Configuration service request

Bpm’online developer guide 621

1. Select the GET HTTP method.

2. Specify the configuration service URL. URL is generated according to the following mask:

[Application Address]/0/rest/[Configuration Service Name]/[Custom Service Endpoint]?
[Optional Parameters]

Example:

https://009189-
studio.bpmonline.com/0/rest/UsrCustomConfigurationService/GetContactIdByName?
Name=User01

3. Add the necessary cookies BPMLOADER, .ASPXAUTH, BPMCSRF and UserName) received in the HTTP
authentication service response (Fig. 4).

Fig. 4. Adding cookie to a request

Bpm’online developer guide 622

ATTENTION

Using the BPMCSRF cookie and BPMCSRF token (see below) is required when protection from CSRF attacks
is enabled. Add the “key-value” pair to the request caption. Use “BPMCSRF” as a key and the BPMCSRF
cookie value as a value (Fig. 5).

Fig. 5. Adding the BPMCSRF token to the request

4. Add the BPMSESSIONID cookie to all requests except for the first one after the authentication.

ATTENTION

User session will only be created when executing the first configuration service request. The BPMSESSIONID
cookie will be returned in the HTTP response (see the [Cookies] tab of the HTTP response fig. 3, 4). Therefore,
there is no need to add the BPMSESSIONID cookie to the title of the first request (Fig. 6, 4).

If you do not add the BPMSESSIONID cookie to each subsequent request, each new request will create a new
user session. Significant frequency of requests (several or more requests per minute) will increase the RAM
consumption which will decrease the performance.

5. Click the [Send] button to send the request to the service.

If the contact specified in the Name parameter is not detected in bpm’online, the “GetContactIdByNameResult”
property of the JSON object that was returned in the HTTP response will contain the “” value (fig. 3, 4). If the
contact exists, the service will return its identifier (fig. 6).

Fig. 6. Request result

Reading multilingual data with EntitySchemaQuery

Introduction

Bpm’online developer guide 623

Bpm’online has supported multilingual data since version 7.8.3. That means the list data is displayed based on the
preferred user language (“culture”). Please refer to the “Working with data structure” article for more
information on data localization.

Reading multilingual data with EntitySchemaQuery
EntitySchemaQuery (ESQ) is a base mechanism for reading the bpm’online database data. ESQ supports
multilingual data by default.

The multilingual data sampling is performed according to the following rules:

Users with the primary culture (English) receive the main table data.
Users with additional culture receive the localization table data. If the localization table contains no data
for the user’s culture, the main table data is returned.

Example of a localized column query generation

A query generation sample code for the localized [Name] column of the [City] object schema on the server side (C#):

// User Connection.
var userConnection = (UserConnection)HttpContext.Current.Session["UserConnection"];
// Forming a query.
var esqResult = new EntitySchemaQuery(userConnection.EntitySchemaManager, "City");
// Adding columns to a query.
esqResult.AddColumn("Name");
// Executing a database query and retrieving the entire resulting object collection.
var entities = esqResult.GetEntityCollection(userConnection);
// Retrieving the query text.
var s = esqResult.GetSelectQuery(userConnection).GetSqlText();
// Returning the result.
return s;

NOTE

This code can be added to the custom configuration service method, for example.

If a default culture is selected in the user profile, the following SQL query will be generated:

SELECT
 [City].[Name] [Name]
FROM
 [dbo].[City] [City] WITH(NOLOCK)

If any culture other than the primary culture is selected in the user profile, the generated SQL query will take into
account the localized values for the seleted culture.

SELECT
 ISNULL([SysCityLcz].[Name], [City].[Name])[Name]
FROM
 [dbo].[City] [City] WITH(NOLOCK)
 LEFT OUTER JOIN [dbo].[SysCityLcz] [SysCityLcz] WITH(NOLOCK) ON
([SysCityLcz].[RecordId] = [City].[Id]
 AND [SysCityLcz].[SysCultureId] = @P1)

The @P1 parameter takes the record identifier value (Id) of the selected culture from the SysCulture table.

Disabling the data localization mechanism
To disable the data localization selection mechanism (even if the query is executed on behalf of a user with one of the
additional cultures), you must set the ESQ instance to false for the UseLocalization property.

// User Connection.

Bpm’online developer guide 624

var userConnection = (UserConnection)HttpContext.Current.Session["UserConnection"];
// Forming a query.
var esqResult = new EntitySchemaQuery(userConnection.EntitySchemaManager, "City");
// Adding a column to a query.
esqResult.AddColumn("Name");
// Disabling the data localization mechanism.
esqResult.UseLocalization = false;
// Executing a database query and retrieving the entire resulting object collection.
var entities = esqResult.GetEntityCollection(userConnection);
// Retrieving the query text.
var s = esqResult.GetSelectQuery(userConnection).GetSqlText();
// Returning the reult.
return s;

Regardless of which culture is selected in the user's profile, the following SQL query will be generated:

SELECT
 [City].[Name] [Name]
FROM
 [dbo].[City] [City] WITH(NOLOCK)

Custom culture data selection
ESQ enables you to select culture data different from the current user culture and the default culture. To select the
custom culture data, call the SetLocalizationCultureId(Guid cultureId) method in the ESQ instance before data
retrieval, and pass the id of the culture with the necessary data to it.

// User Connection.
var userConnection = (UserConnection)HttpContext.Current.Session["UserConnection"];

// Retriveing the id of the necessary culture (e.g. italian).
var sysCulture = new SysCulture(userConnection);
if (!sysCulture.FetchPrimaryInfoFromDB("Name", "it-IT"))
 {
 // Error: The record is not found.
 return "The culture is not found";
}
Guid italianCultureId = sysCulture.Id;

// Forming a query.
var esqResult = new EntitySchemaQuery(userConnection.EntitySchemaManager, "City");
// Adding a column to a query.
esqResult.AddColumn("Name");
// Installing the necessary localization.
esqResult.SetLocalizationCultureId(italianCultureId);
// Executing a database query and retrieving the entire resulting object collection.
var entities = esqResult.GetEntityCollection(userConnection);
// Retrieving the query text.
var s = esqResult.GetSelectQuery(userConnection).GetSqlText();
// Returning the reult.
return s;

As the result, the following SQL inquiry is generated:

SELECT
 ISNULL([SysCityLcz].[Name], [City].[Name])[Name]
FROM
 [dbo].[City] [City] WITH(NOLOCK)
 LEFT OUTER JOIN [dbo].[SysCityLcz] [SysCityLcz] WITH(NOLOCK) ON
([SysCityLcz].[RecordId] = [City].[Id]
 AND [SysCityLcz].[SysCultureId] = @P1)

Bpm’online developer guide 625

The @P1 parameter takes the record identifier value (id) stored in the italianCultureId variable.

Views localization

Introduction
Views are often used for data sampling. Views can sample data from localizable columns. Additional configurations
of localizable views is required for localized data sampling.

To localize a view:

1. Create a view object schema. Add a multilingual checkbox to the localizable columns. Please refer to
“Adding a multilingual terminator to an object schema” for more details.

2. Add a new localization view in the database.

Case description
One of the columns in the ContactAddress object schema refers to the AddressType lookup (schema). The Name
column of the AddressType schema is localizable.

Since almost every object schema in bpm'online corresponds to a database table, the table binding structure is (Fig.
1):

ContactAddress – contact address table. Linked to the AddressType table through the AddressTypeId
column.
AddressType – address type table. The Name column contains values that match the default user language
(“culture”). The values of other cultures are located in the SysAddressTypeLcz table.
SysAddressTypeLcz – an auto-generated system table of localizable address type values. Linked to the
AddressType table through the RecordId column, and to the SysCulture table through the SysCultureId
column. The localizable address type values of a culture (specified in the SysCultureId column) are located
in the Name column.
SysCulture – a system table with a list of cultures.

Fig. 1. Structure and relationships of tables for [Contact address], [Address type] schemas and localization tables.

Bpm’online developer guide 626

Create a view that samples the following fields:

ContactAddress.Address – contact address.
AddressType.Name – localizable address type name.

Case implementation:
1. Create a view object schema

Learn more about creating object schemas and adding columns to them in the “Creating the entity schema”
article.

Create an object schema with the following parameters (Fig. 1):

[Name] – “UsrVwContactAdress”. The Usr prefix corresponds to the value of the [Prefix for object name]
system setting. The Vw prefix (short for View) indicates that the schema is a database view.
[Title] – “Contact address view”.
[Package] – the name of the package used for development (see: “Creating and installing a package
for development”).
[Parent object] – “Base object”.
[Represents Structure of Database View] – required (Fig. 2).

Fig. 2. The view in the database checkbox

Bpm’online developer guide 627

When the values are populated, we recommend saving the schema metadata or pre-publishing the object.

Add two text columns to the created schema.

The first column will contain unlocalizaed address values in the default culture. Set the following parameter values:

[Name] – “UsrAdress”. The Usr prefix corresponds to the value of the [Prefix for object name] system
setting.
[Title] – “Address”.
[Data type] – “Text (50 characters)”. The string may be set to a different maximum length. The amount of
memory used in the database depends on the number of characters.

The second column will contain localized address type values. Set the following parameter values:

[Name] – “UsrAddressType”. The Usr prefix corresponds to the value of the [Prefix for object name]
system setting.
[Title] – “Address type”.
[Data type] – “Text (50 characters)”.
[Localizable text] – required (Fig. 3). Learn more about multilingual checkboxes in the “Adding a
multilingual terminator to an object schema” article.

Fig. 3. A multilingual checkbox in a column

Bpm’online developer guide 628

NOTE

The [Data type] and [Localizable text] properties are displayed in the extended column properties display
mode. (See: “ Workspace of the Object Designer”).

2. Creating a database view

Execute the following SQL script to create the UsrVwContactAddress view in the database.

-- The name of the view must match the name of the schema table.
CREATE VIEW dbo.UsrVwContactAddress
AS
SELECT
 ContactAddress.Id,
 -- View columns should correspond with schema columns.
 ContactAddress.Address AS UsrAddress,
 AddressType.Name AS UsrAddressType
FROM ContactAddress
INNER JOIN AddressType ON ContactAddress.AddressTypeId = AddressType.Id;

Execute the following SQL script to create the UsrVwContactAddress view in the database.

-- The name of the view must match the name of the schema localization table.
CREATE VIEW dbo.SysUsrVwContactAddressLcz
AS
SELECT
 SysAddressTypeLcz.Id,
 ContactAddress.id AS RecordId,
 SysAddressTypeLcz.SysCultureId,
 -- View columns should correspond with schema columns.
 SysAddressTypeLcz.Name AS UsrAddressType

Bpm’online developer guide 629

FROM ContactAddress
INNER JOIN AddressType ON ContactAddress.AddressTypeId = AddressType.Id
INNER JOIN SysAddressTypeLcz ON AddressType.Id = SysAddressTypeLcz.RecordId;

The columns of the localized UsrVwContactAddress view must match the columns of the localization tables. Learn
more about localization tables in the “Localization tables” article.

When sampling the data with EntitySchemaQuery from the UsrAddressType column of the UsrVwContactAddress
view, the correct values for different languages will be displayed.

Testing case results
You can use one of the examples in the “Reading multilingual data with EntitySchemaQuery” article to
check the results. You can use the examples in the “How to create custom configuration service” article to
check the results of queries.

Implement a method in the created service class that returns a list of addresses and their types from the created
non-localized UsrVwContactAddress view using the EntitySchemaQuery query.

[OperationContract]
[WebInvoke(Method = "GET", UriTemplate = "Ex01")]
public string Ex01()
{
 // User connection.
 var userConnection =
(UserConnection)HttpContext.Current.Session["UserConnection"];
 // Forming a query.
 var esqResult = new EntitySchemaQuery(userConnection.EntitySchemaManager,
"UsrVwContactAddress");
 // Adding columns to a query.
 esqResult.AddColumn("UsrAddress");
 esqResult.AddColumn("UsrAddressType");
 // Executing a database query and retrieving the entire resulting objects
collection.
 var entities = esqResult.GetEntityCollection(userConnection);
 // Displaying results.
 var s = "";
 foreach (var item in entities)
 {
 s += item.GetTypedColumnValue<string>("UsrAddress") + Environment.NewLine;
 s += item.GetTypedColumnValue<string>("UsrAddressType") +
Environment.NewLine;
 }
 return s;
}

The result of this method is shown in Fig. 4.

Fig. 4. The default localization test results

To test the performance of a localized view in the created service class, you must implement the second method:

[OperationContract]
[WebInvoke(Method = "GET", UriTemplate = "Ex01")]
public string Ex01()
{
 var userConnection =

Bpm’online developer guide 630

(UserConnection)HttpContext.Current.Session["UserConnection"];
 // Retrieving the Id of the necessary culture, e.g. Spanish.
 var sysCulture = new SysCulture(userConnection);
 if (!sysCulture.FetchPrimaryInfoFromDB("Name", "es"))
 {
 return "Culture not found";
 }
 Guid CultureId = sysCulture.Id;
 var esqResult = new EntitySchemaQuery(userConnection.EntitySchemaManager,
"UsrVwContactAddress");
 esqResult.AddColumn("UsrAddress");
 esqResult.AddColumn("UsrAddressType");
 // Selecting the required localization.
 esqResult.SetLocalizationCultureId(CultureId);
 var entities = esqResult.GetEntityCollection(userConnection);
 var s = "";
 foreach (var item in entities)
 {
 s += item.GetTypedColumnValue<string>("UsrAddress") + Environment.NewLine;
 s += item.GetTypedColumnValue<string>("UsrAddressType") +
Environment.NewLine;
 }
 return s;
}

The result of this method is shown in Fig. 4.

Fig. 5. The selected localization test results

Working with the localized data via Entity

Introduction
Starting with version 7.9.1, an ability of getting the multilingual data was added to the Entity.FetchFromDB()
method. The data fetching algorithm is similar to the EntitySchemaQuery algorithm (see “ Reading multilingual
data with EntitySchemaQuery” article):

1. The object will receive the data from the main table if current user culture (language) is the primary culture
for the application.

2. The object will receive the data from the localization table if current user culture (language) is different
from the primary culture. If the localization table contains no data for the user’s culture, the main table data
is returned.

The examples of using the Entity.FetchFromDB() and Entity.Save() method overloads and the analysis of their
execution for the user with the main (English) and additional (German) cultures (languages) are given below. These
methods can be used in the user service methods (see the " How to create custom configuration service”
article).

Bpm’online developer guide 631

Reading the data
The example of source code for getting the data from the Name localized column of the AccountType schema object
on the server side (C#);

// A user connection.
var userConnection = (UserConnection)HttpContext.Current.Session["UserConnection"];
// Getting the [Account Type] schema.
EntitySchema schema =
userConnection.EntitySchemaManager.FindInstanceByName("AccountType");
// Creating an instance of the Entity (object).
Entity entity = schema.CreateEntity(userConnection);
// A collection of column names for the fetch.
List<string> columnNamesToFetch = new List<string> {
 "Name",
 "Description"
};
//Get the data for an object with the "Customer" value in the [Name] column.
entity.FetchFromDB("Name", "Customer", columnNamesToFetch);
// Forming and sending a response.
var name = String.Format("Name: {0}", entity.GetTypedColumnValue<string>("Name"));
return name;

If a user who has a default language selected in the profile executes the method containing this code, the following
query will be sent to the database:

exec sp_executesql N'
SELECT
 [AccountType].[Name] [Name],
 [AccountType].[Description] [Description]
FROM
 [dbo].[AccountType] [AccountType] WITH(NOLOCK)
WHERE
 [AccountType].[Name] = @P1',N'@P1 nvarchar(6)',@P1=N'Customer'

In the above query, the "Customer” value is specified in the @P1 parameter, it determines the corresponding record
of the database table.

NOTE

You can view the request using the SQL Server Profiler (Fig. 1).

Fig. 1. Profiling a query into a database via SQL Server Profiler

If a user with an additional language (such as German) selected in the profile executes the method, the following

Bpm’online developer guide 632

https://msdn.microsoft.com/en-us/library/ms181091.aspx

query will be sent to the database:

exec sp_executesql N'
SELECT
 ISNULL([SysAccountTypeLcz].[Name], [AccountType].[Name]) [Name],
 ISNULL([SysAccountTypeLcz].[Description], [AccountType].[Description])
[Description]
FROM
 [dbo].[AccountType] [AccountType] WITH(NOLOCK)
 LEFT OUTER JOIN [dbo].[SysAccountTypeLcz] [SysAccountTypeLcz] WITH(NOLOCK) ON
([SysAccountTypeLcz].[RecordId] = [AccountType].[Id]
 AND [SysAccountTypeLcz].[SysCultureId] = @P2)
WHERE
 [AccountType].[Name] = @P1',N'@P1 nvarchar(6),@P2
uniqueidentifier',@P1=N'Клиент',@P2='A5420246-0A8E-E111-84A3-00155D054C03'

In the above query, the "Customer” value is specified in the @P1 parameter, it determines the corresponding record
of the main database table. The indicator of additional culture from the SysCulture table will be in the @P2
parameter. It will define the corresponding record from the SysAcountTypeLcz localization table.

Thus, for the user with English culture the name variable will have the “Customer” value and for the user with
German culture it will be the “Kunde” value.

Saving the localized data
The Entity.SetColumnValue() method is used for adding and modifying the localized data. This method can accept
arguments of string and LocalizableString types.

Saving the localized data using string argument

The following saving algorithm is used in passing the string argument to the Entity.SetColumnValue() method:

when the user with an additional culture creates a new record, the data is added to both the main table and
the localization table (for the corresponding culture);
when the user with an additional culture modifies the existing Entity instance, the result is saved only in
the localization table (for the corresponding culture);
when the user with the main culture creates or modifies the Entity object, the data will be added or
modified in the main table of the object.

The code example of saving the data using string argument:

var userConnection = (UserConnection)HttpContext.Current.Session["UserConnection"];
EntitySchema schema =
userConnection.EntitySchemaManager.FindInstanceByName("AccountType");
Entity entity = schema.CreateEntity(userConnection);
// Set the default values for the columns.
entity.SetDefColumnValues();
// Setting the value for the [Name] column.
entity.SetColumnValue("Name", "New customer");
// Saving.
entity.Save();
var name = String.Format("Name: {0}", entity.GetTypedColumnValue<string>("Name"));
return name;

When the user with the default (English) culture executes this code, the following query will be executed in the
database:

exec sp_executesql N'
INSERT INTO [dbo].[AccountType]([Id], [Name], [CreatedOn], [CreatedById],
[ModifiedOn], [ModifiedById], [ProcessListeners], [Description])
 VALUES(@P1, @P2, @P3, @P4, @P5, @P6, @P7, @P8)',N'@P1 uniqueidentifier,@P2
nvarchar(12),@P3 datetime2(7),@P4 uniqueidentifier,@P5 datetime2(7),@P6
uniqueidentifier,@P7 int,@P8 nvarchar(4000)',@P1='3A820BC8-006D-42B7-A472-

Bpm’online developer guide 633

E331FBD73E20',@P2=N'New Customer',@P3='2017-02-10 09:40:23.0909251',@P4='410006E1-
CA4E-4502-A9EC-E54D922D2C00',@P5='2017-02-10 09:40:23.0929256',@P6='410006E1-CA4E-
4502-A9EC-E54D922D2C00',@P7=0,@P8=N''

In the above query, the "New customer” value is specified in the @P2 parameter, it is saved in the main database
table.

If the user has an additional culture (German) set in their profile, the following code must be executed to save the
data with the string argument:

var userConnection = (UserConnection)HttpContext.Current.Session["UserConnection"];
EntitySchema schema =
userConnection.EntitySchemaManager.FindInstanceByName("AccountType");
Entity entity = schema.CreateEntity(userConnection);
entity.SetDefColumnValues();
entity.SetColumnValue("Name", "Neue kunden");
entity.Save();
var name = String.Format("Name: {0}", entity.GetTypedColumnValue<string>("Name"));
return name;

The query to the AccountType main table will be the same as to the main localization, but the “Neue Kunden” value
will be specified in the @P2 parameter.

exec sp_executesql N'
INSERT INTO [dbo].[AccountType]([Id], [Name], [CreatedOn], [CreatedById],
[ModifiedOn], [ModifiedById], [ProcessListeners], [Description])
 VALUES(@P1, @P2, @P3, @P4, @P5, @P6, @P7, @P8)',N'@P1 uniqueidentifier,@P2
nvarchar(12),@P3 datetime2(7),@P4 uniqueidentifier,@P5 datetime2(7),@P6
uniqueidentifier,@P7 int,@P8 nvarchar(4000)',@P1='94052A88-499D-4072-A28A-
6771815446FD',@P2=N'Neue Kunden',@P3='2017-02-10 10:07:00.3454424',@P4='410006E1-
CA4E-4502-A9EC-E54D922D2C00',@P5='2017-02-10 10:07:00.3454424',@P6='410006E1-CA4E-
4502-A9EC-E54D922D2C00',@P7=0,@P8=N''

In addition, the query will be executed in the localization table:

exec sp_executesql N'
INSERT INTO [dbo].[SysAccountTypeLcz]([Id], [ModifiedOn], [RecordId], [SysCultureId],
[Name])
 VALUES(@P1, @P2, @P3, @P4, @P5)',N'@P1 uniqueidentifier,@P2 datetime2(7),@P3
uniqueidentifier,@P4 uniqueidentifier,@P5 nvarchar(12)',@P1='911A721A-0E5A-4CC3-B6D9-
9E5FE85FEC64',@P2='2017-02-10 10:07:00.3664442',@P3='94052A88-499D-4072-A28A-
6771815446FD',@P4='A5420246-0A8E-E111-84A3-00155D054C03',@P5=N'Neue Kunden'

The “Neue Kunden” value will be specified in the @P5 parameter in the above request.

The value that does not correspond to the default culture will be added to the AccountType table.

To avoid this save the localized data using the localized strings.

Saving the localized data using localized string argument

The code example of saving the data using the localized string:

var userConnection = (UserConnection)HttpContext.Current.Session["UserConnection"];
EntitySchema schema =
userConnection.EntitySchemaManager.FindInstanceByName("AccountType");
Entity entity = schema.CreateEntity(userConnection);
entity.SetDefColumnValues();

// Creating a localized string with localized values for different cultures.
var localizableString = new LocalizableString();
localizableString.SetCultureValue(new CultureInfo("en-US"), "New customer en-US");
localizableString.SetCultureValue(new CultureInfo("de-DE"), "Neue Kunden de-DE");

Bpm’online developer guide 634

// Seting the value of the column using the localized string.
entity.SetColumnValue("Name", localizableString);
entity.Save();

// The result will be displayed in the current user culture.
var name = String.Format("Name: {0}", entity.GetTypedColumnValue<string>("Name"));
return name;

Regardless of the language in the user's profile, the following queries will be sent to the database upon the code
execution:

1. The query with the “New customer en-US” value in the @P2 argument will be sent to the main page:

exec sp_executesql N'
INSERT INTO [dbo].[AccountType]([Id], [Name], [CreatedOn], [CreatedById],
[ModifiedOn], [ModifiedById], [ProcessListeners], [Description])
 VALUES(@P1, @P2, @P3, @P4, @P5, @P6, @P7, @P8)',N'@P1 uniqueidentifier,@P2
nvarchar(18),@P3 datetime2(7),@P4 uniqueidentifier,@P5 datetime2(7),@P6
uniqueidentifier,@P7 int,@P8 nvarchar(4000)',@P1='5AC81E4A-FCB2-4019-AE5B-
0C485A5F65BD',@P2=N'New Customer en-US',@P3='2017-02-10
10:47:21.7471581',@P4='410006E1-CA4E-4502-A9EC-E54D922D2C00',@P5='2017-02-10
10:47:21.7511578',@P6='410006E1-CA4E-4502-A9EC-E54D922D2C00',@P7=0,@P8=N''

2. The query with the “Neue kunden de-DE” value in the @P5 argument will be sent to the localization page:

exec sp_executesql N'
INSERT INTO [dbo].[SysAccountTypeLcz]([Id], [ModifiedOn], [RecordId], [SysCultureId],
[Name])
 VALUES(@P1, @P2, @P3, @P4, @P5)',N'@P1 uniqueidentifier,@P2 datetime2(7),@P3
uniqueidentifier,@P4 uniqueidentifier,@P5 nvarchar(18)',@P1='6EC9C205-7F8B-455E-BC68-
3D9AA6D7B7C0',@P2='2017-02-10 10:47:21.9272674',@P3='5AC81E4A-FCB2-4019-AE5B-
0C485A5F65BD',@P4='A5420246-0A8E-E111-84A3-00155D054C03',@P5=N'Neue Kunden de-DE'

Attention!

If the code is be executed by a user who has an additional culture set in the profile and the value for the default
culture is not specified in the localization string, the record for the user’s culture will be added to the primary
AccountType table.

Adding a multilingual terminator to an object schema

Introduction
There is often a need to localize one or more columns of the object schema. As in, certain record data must display in
multiple languages according to the culture selected in the user profile.

To create an object schema with localizable columns:

1. Create a new or a replacing object schema.

2. Add the localizable columns, if necessary. Select [Localizable text] in the column properties.

ATTENTION

You can only localize text columns.

Bpm’online developer guide 635

Case description
Create the [Localizable object] object schema with the localizable [Name] column.

Case implementation algorithm
1. Creating an object schema

Learn more about creating object schemas in the “Creating the entity schema” article. According to the case, you
need to create an object schema with the following parameters (Fig. 1):

[Title] – ”Localizable object”
[Name] – “UsrEntityToLocalize";
[Parent object] – “Base object (Base)”

Fig. 1. The [Localizable object] schema properties

2. Adding the necessary columns for localization

Add the column to the created schema with the following properties:

[Title] – “Name”;
[Name] – “UsrName”. The Usr prefix must match the [Prefix for object name] system setting;
[Data type] – “Text (50 characters)”

Learn more about adding an object schema column in the “Creating the entity schema” article.

Select [Localizable object] in the added column properties (Fig. 2). The checkbox is only available in the advanced
mode of the object designer (see “Workspace of the Object Designer”).

Fig. 2. The [Name] column properties

Bpm’online developer guide 636

Publish the schema to apply the changes.

A SysUsrEntityToLocalizeLcz localization table will be created for the UsrEntityToLocalize object schema after
publishing. All localized data for all localizable columns will be kept there.

Examples of adding data to localization tables using the Entity instance of class and reading such data are described
in the “Working with the localized data via Entity” article. An example of reading localizable data
using EntitySchemaQuery is described in the “Reading multilingual data with EntitySchemaQuery”.

Using the DBExecutor for working with the database

Introduction
Using a number of streams in working with the database via UserConnection may cause to issues in starting
synchronization or committing transactions.

ATTENTION

The issue occurs during the work with the database even without direct using of the DBExecutor. For example,
it can be used indirectly, through the EntitySchemaQuery.

ATTENTION

As unmanaged resources are used to work with the database, you need to wrap the DBExecutor in the using
operator. Another way is to call the Dispose() method explicitly to release resources. More information about
the using operator can be found in the "C# Guide” documentation.

Bpm’online developer guide 637

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement

An example of misuse
A source code fragment with incorrect usage of the the DBExecutor is given below. You cannot call the DBExecutor
instance methods in the parallel threads.

// Create a parallel thread.
var task = new Task(() => {
 // Using a DBExecutor instance in a parallel thread.
 using (DBExecutor dbExecutor = UserConnection.EnsureDBConnection()) {
 dbExecutor.StartTransaction();
 //...
 dbExecutor.CommitTransaction();
 }
});
// Running an asynchronous task in a parallel thread.
// The execution of the program in the main thread continues on.
task.Start();
//...
var select = (Select)new Select(UserConnection)
 .Column("Id")
 .From("Contact")
 .Where("Name")
 .IsEqual(Column.Parameter("Supervisor"));
// Using an instance of DBExecutor in the main thread will cause an error,
// because The instance DBExecutor is already used in a parallel thread.
using (DBExecutor dbExecutor = UserConnection.EnsureDBConnection()) {
 using (IDataReader dataReader = select.ExecuteReader(dbExecutor)) {
 while (dataReader.Read()) {
 //...
 }
 }
}

An example of correct use
A source code fragment with correct usage of the the DBExecutor is given below. The call of the DBExecutor instance
methods is preformed consistently in one thread.

// The first use of the instance DBExecutor in the main thread.
using (DBExecutor dbExecutor = UserConnection.EnsureDBConnection()) {
 dbExecutor.StartTransaction();
 //...
 dbExecutor.CommitTransaction();
}
//...
var select = (Select)new Select(UserConnection)
 .Column("Id")
 .From("Contact")
 .Where("Name")
 .IsEqual(Column.Parameter("Supervisor"));
// Reusing the DBExecutor instance in the main thread.
using (DBExecutor dbExecutor = UserConnection.EnsureDBConnection()) {
 using (IDataReader dataReader = select.ExecuteReader(dbExecutor)) {
 while (dataReader.Read()) {
 //...
 }
 }
}

Sales products customization

Bpm’online developer guide 638

Contents
How to change the calculation for the "Closed" column in the [Forecasts] section.
Configuration of the editable columns on the product selection page

How to change the calculation for the "Closed" column in the
[Forecasts] section.

Introduction
Use bpm'online to plan your company’s sales turnover and analyze the targets. In the [Forecasts] section, you can
generate forecasts using different units of measure registered in the system, and calculate the actual values. This
enables to specify the time period for which you want to analyze the sales performance and monitor the overall
performance of your department using the summary tables provided in the [Forecasts] section.

More information about the section can be found in the “[Forecasts] section” article.

Case description
Change the logic of calculation of the “Closed” column in the [Forecasts] section: the calculation should be based on
invoices instead of sales.

NOTE

The resulting source codes of the module and stored procedure are available by the link below.

Case implementation algorithm
1. Copy the source code of the forecast building module

To do this, search for the ForecastBuilder schema name in the [Configuration] section (Fig.1.1). Double click the
found schema (Fig. 1.2) to open the module schema in the module designer (“Module designer”).

Fig. 1. Search field in the [Configuration] section

NOTE

The schema is located in the pre-installed package. You will get the massage that changes for this item could
not be saved. The pre-installed packages are described in detail in the "Package structure and contents”
article.

Bpm’online developer guide 639

https://academy.bpmonline.com/documents/sales-enterprise/7-11/forecasts-section
https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/ChangingForecastModel.zip

Copy all content from the [Source code] area (Fig. 2) to a text file. .

Fig. 2. Copying the source code of the schema

2. Create a replacing forecast building module.

To do this, select a custom package in the [Configuration] section and execute the [Add] -> [Replacing Client
Module] action on the [Schemas] tab (Fig. 3). The procedure for creating a replacing custom module is covered in
the “Creating a custom client module schema”.

Fig. 3. Creating a replacing module

For the created module schema, set the “ForecastBuilder” as a [Parent object] (Fig.4). After that, all schema
properties from the parent module will be applied automatically.

Fig. 4. Properties of the module schema

Bpm’online developer guide 640

Add the source code of the parent schema (that was copied at the previous step) on the [Source Code] tab and save
the schema.

3. Change the method of the forecast page opening

In the source code of the ForecastBuilder module schema, change the values of the valuePairs array in the
openForecastPage() method of the Terrasoft.configuration.BaseForecastsViewModel to the values corresponding
the schema of the [Invoice] object. The source code for the changes (previous values are commented out):

...
openForecastPage: function(moduleId, operation) {
 ...
 var valuePairs = [
 {
 name: "EntitySchemaUId",
 value: "bfb313dd-bb55-4e1b-8e42-3d346e0da7c5" //value: "ae46fb87-c02c-
4ae8-ad31-a923cdd994cf"
 },
 {
 name: "EntitySchemaName",
 value: "Invoice" //value: "Opportunity"
 }
];
 ...
},
...

You can get the value of the EntitySchemaUId Id by executing following SQL query to the bpm'online database (Fig.
5):

select lower(UId), Name from SysSchema
Where name = 'Invoice'
and ExtendParent = 0

Fig. 5. Request result

Bpm’online developer guide 641

Save the schema to apply changes.

5. Modify the tsp_RecalculateForecastFact stored procedure

The tsp_RecalculateForecastFact stored procedure recalculates the values of the “Closed” column for selected time
period. Executing and applying changes in the stored procedures is described in the “How to: Modify a Stored
Procedure (SQL Server Management Studio)” MSDN article.

ATTENTION

Pay high attention when creating and executing the SQL query. Executing an incorrect SQL query can damage
existing data and disrupt the system.

To use invoices for calculation, make following modification to the procedure (previous values are commented out).

1. Change the value stored in the @CompletedId variable.

--SET @CompletedId = '{60D5310C-5BE6-DF11-971B-001D60E938C6}'
SET @CompletedId = '{698D39FD-52E6-DF11-971B-001D60E938C6}'

This variable stores the Id of the status of a paid invoice. You can get the value of the variable by executing following
SQL query to the bpm'online database (Fig. 6):

select Id, Name from InvoicePaymentStatus
where Name = 'Paid'

Fig. 6. Request result

2. Change the query which result is stored in the @MaxDueDate variable.

--SET @MaxDueDate = (SELECT Convert(Date, MAX(DueDate), 104) FROM Opportunity o WHERE
o.StageId = @CompletedId)
SET @MaxDueDate = (SELECT Convert(Date, MAX(StartDate), 104) FROM Invoice o WHERE
o.PaymentStatusId = @CompletedId)

Bpm’online developer guide 642

https://msdn.microsoft.com/ru-ru/library/ms345356(v=sql.105).aspx
https://msdn.microsoft.com/ru-ru/library/ms345356(v=sql.105).aspx

The query searches for the newest paid invoice.

3. Change the subquery expression stored in the @SQLText variable. In this subquery the logic of calculating the
“Closed” and “Pipeline” columns is implemented.

--Initial value
/*SET @SQLText = N'
 SELECT
 (SELECT SUM(ISNULL(fiv.[Value], 0))
 FROM [ForecastItemValue] fiv
 WHERE fiv.[ForecastItemId] = @P5
 AND fiv.[PeriodId] = @P6
 AND fiv.[ForecastIndicatorId] = @P7
) PlanAmount,
 (SELECT SUM(ISNULL(o.[Amount], 0))
 FROM [Opportunity] o
 WHERE o.[StageId] = @P1
 AND o.[DueDate] >= @P2
 AND o.[DueDate] < @P3
 AND o.' + @ColumnName + N' = @P4
) FactAmount,
 (SELECT SUM(ISNULL(o.[Amount], 0) * ISNULL(o.[Probability], 0) / 100)
 FROM [Opportunity] o
 INNER JOIN [OpportunityInStage] ois ON ois.[OpportunityId] = o.[Id]
 INNER JOIN [OpportunityStage] os ON os.[Id] = ois.[StageId]
 WHERE os.[End] = 1
 AND ois.[DueDate] >= @P2
 AND ois.[DueDate] < @P3
 AND ois.[Historical] = 0
 AND o.' + @ColumnName + N' = @P4
) PotentialAmount'*/
--New value
SET @SQLText = N'
 SELECT
 (SELECT SUM(ISNULL(fiv.[Value], 0))
 FROM [ForecastItemValue] fiv
 WHERE fiv.[ForecastItemId] = @P5
 AND fiv.[PeriodId] = @P6
 AND fiv.[ForecastIndicatorId] = @P7
) PlanAmount,
 (SELECT SUM(ISNULL(o.[Amount], 0))
 FROM [Invoice] o
 WHERE o.[PaymentStatusId] = @P1
 AND o.[StartDate] >= @P2
 AND o.[StartDate] < @P3
 AND o.' + @ColumnName + N' = @P4
) FactAmount,
 (SELECT SUM(ISNULL(o.[Amount], 0))
 FROM [Invoice] o
 INNER JOIN [InvoicePaymentStatus] os ON os.[Id] = o.[PaymentStatusId]
 WHERE os.[FinalStatus] = 0
 AND o.[StartDate] >= @P2
 AND o.[StartDate] < @P3
 AND o.' + @ColumnName + N' = @P4
) PotentialAmount'

Run the SQL script (F5 key) to apply the changes.

As a result, the calculation of “Closed” and “Potential” columns will be based on invoices (Fig. 8) istead of sales (Fig.
7).

Fig. 7. Calculating the “Closed” columns by sales

Bpm’online developer guide 643

Fig. 8. Calculating the “Closed” columns by invoices

The resulting source codes of the module and stored procedure can be downloaded from the link.

Configuration of the editable columns on the product selection page

Introduction
In the bpm'online version 7.11.2 or higher the editable columns are available on the product selection page. By
default the [Quantity], [Unit of measure] and [Price] columns are available for edit. You can also make other
columns editable.

Case description
Make editable the [Discount, %] column on the product selection page in the [Orders] section. Add and make
editable the [Custom price] column.

NOTE

Bpm’online developer guide 644

https://academy.bpmonline.com/sites/default/files/documents/downloads/SDK/ChangingForecastModel.zip

The case can be also done for the product selection page in the [Invoices] section.

Case implementation algorithm
1. Add a custom column to the [Product in order] object

For this, create the [Product in order] replacing object and add a column to it. Creating replacing object and adding
a custom column is described in the “Creating the entity schema”.

Set following properties for the added column (Fig. 1):

[Title] – “Custom Price”
[Name] – "UsrCustomPrice"
[Data type] – “Currency.”

Fig. 1. Properties of the custom column

Publish the object schema to apply changes.

NOTE

To implement case in the [Invoices] section, perform above steps for the [Product in invoice] object.

2. Create a replacing custom module for the product selection page schema

The procedure of creating a replacing custom module is covered in the “Creating client schema”. Set following
properties for the for the created module (Fig. 2):

[Title] – [Product selection page schema]
[Name] – "ProductSelectionSchema”
[Parent object] – [Product selection page schema].

Fig. 2. Properties of the replacing client module

Bpm’online developer guide 645

Add the following source code on the [Source Code] tab of the schema designer:

define("ProductSelectionSchema", [],
 function() {
 return {
 methods: {
 getEditableColumns: function() {
 // Getting an array of editable columns.
 var columns = this.callParent(arguments);
 // Adding the [Discount,%] column to the array of editable
columns.
 columns.push("DiscountPercent");
 // Adding a custom column.
 columns.push("UsrCustomPrice");
 return columns;
 },
 setColumnHandlers: function(item) {
 this.callParent(arguments);
 // Bind the event handler of the user column change event.
 item.on("change:UsrCustomPrice", this.onCustomPriceChanged,
this);
 },
 // A handler method that will be called when the field value is
changed.
 onCustomPriceChanged: function(item, value) {
 window.console.log("Changed: ", item, value);
 }
 }
 };
 });

Save the schema to apply changes.

3. Configure columns display on the product selection page

Bpm’online developer guide 646

Configure the columns to display them on the product selection page, (see ”Setting up columns”). In title view
configuration of the list, add the [Discount, %] and [Custom price] columns.

As a result, two editable columns will be displayed on the product selection page (Fig. 3).

Fig. 3. Case result

After modification of the value in the [Custom price] column, the corresponding message will be displayed in the
browser console (Fig. 4).

Fig. 4. The result in the browser console

Service products customization

Contents
Adding a new rule for calculating case deadline
Adding a macro handler in email templates
Creating Web-to-Case landing pages
How to hide feed area in the agent desktop
Adding floating icons for internal case feed posts

Adding a new rule for calculating case deadline

Introduction
Bpm’online enables implementing custom logic of receiving parameters for calculating case deadline. When
calculating or recalculating a case deadline, a developer implemented strategy is used instead of one of the base
calculation strategies.

You can select a specific calculation rule in the [Case deadline calculation rules] lookup. Follow these steps to add a
new calculation rule:

1. Create an object schema and add columns necessary for storage of response and resolution deadlines, links to the
calendar, service agreement and service.

2. Based on the created object schema, add a lookup and populate it with values needed to calculate the deadline
parameters.

3. Add the source code schema and declare the class inherited from the BaseTermStrategy abstract class.
Implement custom mechanism of receiving response and resolution deadline parameters in the class.

4. Add a new rule.

Bpm’online developer guide 647

https://academy.terrasoft.ru/documents/sales-enterprise/7-11/nastroyka-kolonok-reestra

Case description
Add a custom rule for calculating case deadline parameters for the [Lost data recovery] service as per the [78 — Elite
Systems] agreement. Set the following values for the new rule:

response time – 2 working hours
resolution time – 1 working day
used calendar – [Default calendar]

Source code of the case:
You can download the package with case implementation using the following link.

Case implementation algorithm
1. Creating an object schema containing the necessary columns for calculation

Perform the [Add] – [Object] action on the [Schemas] tab of the [Configuration] section.

Fig. 1. Adding the schema

Set the following properties for the created object schema (Fig. 2):

[Name] – “UsrServiceTestTerms”
[Title] – “ServiceTestTerms”
[Parent object] – the [Base object] schema

Fig. 2. Properties of the added object schema

In the created schema, create a number of columns, whose primary properties are listed in table 1.

Bpm’online developer guide 648

https://academy.terrasoft.ru/sites/default/files/documents/downloads/SDK/Packages/sdkAddTermIntervalRule_18.06.11_04.03.10.zip

Table 1. Properties of the added columns

Name Title Type Description

UsrReactionTimeUnit Response time unit The [Time unit]
lookup

Specifies the time unit (calendar
days, hours, etc.) that will be used
for calculating the [Response time]
parameter.

UsrReactionTimeValue Response time value Integer A column for storage the response
time value.

UsrSolutionTimeUnit Response time unit The [Time unit]
lookup

Specifies the time unit (calendar
days, hours, etc.) that will be used
for calculating the [Response time]
parameter.

UsrSolutionTimeValue Resolution time Integer A column for storage the response
time value.

UsrCalendarId Calendar that is used The [Calendar]
lookup

The calendar used for calculating
the case deadline.

UsrServicePactId Service agreement The [Service
agreement] lookup

Link to the [Service agreement]
object. Added for enabling
filtration.

UsrServiceItemId Service The [Service] lookup Link to the [Service] object. Added
for enabling filtration.

Publish the schema after adding the columns.

2. Adding a lookup and populating it with values needed to calculate the deadline
parameters

Provide specific values to calculate the case response and resolution deadline. To do this, add a lookup with the
following values based on the added schema (fig.3):

[Name] – “Custom response and resolution deadlines”
[Object] – ServiceTestTerms

Fig. 3. Properties of the added lookup

Add a record with the following data to the added lookup (as per the case conditions) (fig.4):

Fig. 4. A record in the created lookup that meets the case conditions

Bpm’online developer guide 649

3. Implementing a class with the mechanism of receiving deadline parameters

Add the source code schema (fig.1, 2) Add the class inherited from the BaseTermStrategy abstract class (declared in
the Calendar package) to the schema source code. Implement a parameterized constructor with the following
parameters in the class:

UserConnection userConnection – user current connection
Dictionary<string, object> args – arguments that are the base of performing calculation

Implement the GetTermInterval() abstract method declared in the base class. This method accepts the mask of
populated values as the incoming parameter, which is the base of taking a decision about populating the specific
deadline parameters of the TermInterval returned class implementing the ITermInterval<TMask> interface.

The complete schema source code:

namespace Terrasoft.Configuration
{
 using System;
 using System.Collections.Generic;
 using Terrasoft.Common;
 using Terrasoft.Configuration.Calendars;
 using Terrasoft.Core;
 using Terrasoft.Core.Entities;
 using CalendarsTimeUnit = Calendars.TimeUnit;
 using SystemSettings = Terrasoft.Core.Configuration.SysSettings;
 public class ServiceTestTermsStrategy: BaseTermStrategy<CaseTermInterval,
CaseTermStates>
 {
 // Container class for storage of data received from the entrance point.
 protected class StrategyData
 {
 public Guid ServiceItemId {
 get;
 set;
 }
 public Guid ServicePactId {
 get;
 set;
 }
 }
 // The field for storage of data received from the entrance point.
 protected StrategyData _strategyData;
 // Parameterized constructor necessary for the correct
 // initialization by selector class.
 public ServiceTestTermsStrategy(UserConnection userConnection,
Dictionary<string, object> args)
 : base(userConnection) {
 _strategyData = args.ToObject<StrategyData>();
 }

Bpm’online developer guide 650

 // Method that receives data and returns them in the CaseTermInterval class
instance.
 public override CaseTermInterval GetTermInterval(CaseTermStates mask) {
 var result = new CaseTermInterval();
 // Creating the EntitySchemaQuery query.
 var esq = new EntitySchemaQuery(UserConnection.EntitySchemaManager,
"UsrServiceTestTerms");
 // Adding columns to the query.
 string reactionTimeUnitColumnName =
esq.AddColumn("UsrReactionTimeUnit.Code").Name;
 string reactionTimeValueColumnName =
esq.AddColumn("UsrReactionTimeValue").Name;
 string solutionTimeUnitColumnName =
esq.AddColumn("UsrSolutionTimeUnit.Code").Name;
 string solutionTimeValueColumnName =
esq.AddColumn("UsrSolutionTimeValue").Name;
 string calendarColumnName = esq.AddColumn("UsrCalendarId.Id").Name;
 // Adding filters to the query.
 esq.CreateFilterWithParameters(FilterComparisonType.Equal,
"UsrServiceItemId", _strategyData.ServiceItemId);
 esq.CreateFilterWithParameters(FilterComparisonType.Equal,
"UsrServicePactId", _strategyData.ServicePactId);
 // Execution and processing of query results.
 EntityCollection entityCollection =
esq.GetEntityCollection(UserConnection);
 if (entityCollection.IsNotEmpty()) {
 // Adding response time to the nurtured value.
 if (!mask.HasFlag(CaseTermStates.ContainsResponse)) {
 result.ResponseTerm = new TimeTerm {
 Type =
entityCollection[0].GetTypedColumnValue<CalendarsTimeUnit>
(reactionTimeUnitColumnName),
 Value = entityCollection[0].GetTypedColumnValue<int>
(reactionTimeValueColumnName),
 CalendarId = entityCollection[0].GetTypedColumnValue<Guid>
(calendarColumnName)
 };
 }
 // Adding resolution time to the nurtured value.
 if (!mask.HasFlag(CaseTermStates.ContainsResolve)) {
 result.ResolveTerm = new TimeTerm {
 Type =
entityCollection[0].GetTypedColumnValue<CalendarsTimeUnit>
(solutionTimeUnitColumnName),
 Value = entityCollection[0].GetTypedColumnValue<int>
(solutionTimeValueColumnName),
 CalendarId = entityCollection[0].GetTypedColumnValue<Guid>
(calendarColumnName)
 };
 }
 }
 return result;
 }
 }
}

Publish the schema after adding the source code.

4. Adding the new rule

Add a value to the [Case deadline calculation schemas] lookup. In the [Handler] column, specify the full qualified
name of the created class (specifying the namespaces).

Bpm’online developer guide 651

In the [Alternative schema] column you may specify the rule for calculating the deadline in case calculation by
current rule is not possible. Take into considerations that if any of deadline parameters is not calculated by strategy
class, a class instance of an alternative strategy will be created. In case the alternative strategy cannot calculate the
deadline either, another alternative strategy will be created, thus forming a rule queue.

Select the [Default] checkbox for the added record.

See an example of an added record to the [Case deadline calculation schemas] lookup in fig.5.

Fig. 5. A record of a custom deadline calculation rule

As a result, new response and resolution deadline calculation rules will be applied for cases per the [78 — Elite
Systems] agreement for the [Lost data recovery] service.

Fig. 6. Case result

Adding a macro handler in email templates

Bpm’online developer guide 652

Introduction
Email templates are pre-formatted and/or pre-written email messages. For example, customer service specialists
often use email templates to automate routine communications with the customers. Bpm’online stores email
templates in the [Email templates] lookup (e.g. the “Case resolution notification” email template is used to notify
customers that their case has been resolved). Learn more about email templates in the Automatic emailing setup
article.

Pre-configured macros are used in email message templates to fill them with certain object column values (e.g. to
personalize emails with titles or phone numbers of contacts).

Bpm'online enables you to implement a custom logic of populating values, which returns a macro handler. In this
case, the system executes the algorithm implemented by the developer instead of the base logic during the
processing of macros.

The @Invoke tag points to a specialized class handler. Specify the class name of the IMacrosInvokable interface that
includes the GetMacrosValue() method, separated by dots. This method must return a string that will substitute the
macro string.

To implement a custom macro handler:

1. Create a class that implements the IMacrosInvokable interface.
2. Register a macro in the EmailTemplateMacros table, specifying its ParentId (the base template with the

@Invoke tag) and ColumnPath (the class name).
3. Add a macro to the email template.

Case description
Add an email template macro handler that will return the “Test” string.

Case implementation algorithm
1. Creating a class that implements the IMacrosInvokable interface

To create a new class that implements the IMacrosInvokable interface, add the [Source Code] schema to the
package used for development. To do this, go to the [Configuration] section of the system designer, select a
custom package and on the [Schemas] tab, execute the menu command [Add] -> [User Task] (Fig.1). As a result, the
source code designer window will open for further schema configuration.

Fig. 1. Adding a new [Source code] schema

Populate the following required values for the created object schema:

[Title] – “Text string generator”.

Bpm’online developer guide 653

https://academy.bpmonline.com/documents/service-enterprise/7-12/automatic-emailing-setup

[Name] – “UsrVwContactAdress”.

Add the following source code on the [Source Code] tab of the schema designer:

namespace Terrasoft.Configuration
{
 using System;
 using Terrasoft.Core;
 // The class of the email template macro handler.
 public class UsrTestStringGenerator : IMacrosInvokable
 {
 // User connection.
 public UserConnection UserConnection {
 get;
 set;
 }
 // The method that returns the substitution value.
 public string GetMacrosValue(object arguments) {
 return "Test";
 }
 }
}

Publish the created schema.

2. Registering a macro in the EmailTemplateMacros table

To register a macro in the EmailTemplateMacros table, execute the following SQL query:

INSERT INTO EmailTemplateMacros(Name, Parentid, ColumnPath)
VALUES (
 'UsrTestStringGenerator',
 (SELECT TOP 1 Id
 FROM EmailTemplateMacros
 WHERE Name = '@Invoke'),
 'Terrasoft.Configuration.UsrTestStringGenerator'
)

3. Adding a macro handler in the email template

After registering the macro, you can start using it in email templates. To do this, you must change one or more
records in the [Email templates] lookup (Fig. 2).

Fig. 2. The [Email templates] lookup

Bpm’online developer guide 654

For example, modify the [Case resolution notification] record to edit the email used to notify customers that their
case has been resolved. If you add the [#@Invoke.UsrTestStringGenerator#] macro to the template (Fig. 3), the
"Test” value will substitute the macro when the email is sent to the client.

Fig. 3. A macro in the email template

Creating Web-to-Case landing pages

Introduction
Web-to-Case functionality implements the ability to create cases in the bpm'online by filling out a web form fields
embedded in a landing page on a third-party website.

Web-to-Case landing record can be configured in the system interface in the [Landing pages and web forms] section.
To add the JavaScript code (generated by bpm’online for each landing record) to a third-party site, you need the
basic Web development skills.

Bpm’online developer guide 655

More information about landings can be found in the [Landing pages and web forms] section articles of the
corresponding products (such as bpm'online marketing). More information about the Web-to-Case functionality can
be found in the "Web-to-Case” article.

To create a Web-to-Case landing page:

1. Create new landing record in the bpm'online.

2. Create new landing page that will contain the code that binds landing form (on the website) and the landing
record (in bpm’online).

3. Add the landing page to the website.

Steps to create Web-to-Case landing
1. Create new landing record in the bpm'online

To create a new landing record, execute the [Add] action in the [Landing pages and web forms] section. Fill in the
following fields on the opened page (Fig. 1):

[Name] – landing page name in bpm'online.
[Website domains] – your landing page URL.
[Status] – landing status.
[Redirection URL] – the URL that is opened after the landing page form is completed.

Fig. 1 Landing edit page

Attention!

When creating a case, you can receive only four fields ("Subject, "Email", "Name" and "Phone") from the
landing page. Therefore, you must set the default values for the new landing record(Fig. 2).

Fig. 2 Values by default

Bpm’online developer guide 656

https://academy.bpmonline.com/documents/marketing/7-11/landing-pages-and-web-forms-section

Save the page to apply the changes.

2. Create a landing page

To create landing page, you need to create a standard HTML page containing a Web form in any text editor using
HTML markup.

To register the data sent via the web-form, add four fields to the form (using <input> element) that define the case:

Case subject
Contact email
Contact name
Contact phone

Specify the name and id attributes for each field.

To send a form data to bpm'online when creating a new [Case] object, you need to add a JavaScript script to the
HTML page. Copy the script source code from the [STEP 2. Copy the code and configure and map the fields] field of
the landing edit page (Fig. 1).

NOTE

The script must be copied from the already saved landing.

The script contains the config configuration object that has following properties:

fields – contains the object with "Subject, "Email", "Name" and "Phone” values that must match the id
attribute selectors of the corresponding web form fields.
landingId – contains the landing Id in the database.
serviceUrl – contains URL of the service to which the form data will be sent.
redirectUrl – contains redirection URL specified in the [Redirection URL] field of the landing.
onSuccess – contains a function that handles the successful creation of a case. Optional property.
onError – contains a function that handles the error of the case creation. Optional property.

The config configuration object is passed as an argument of the createObject() function that must be executed when
the form is submitted.

To call the createObject() function when sending a form, add the onSubmit = "createObject(); return false" attribute
to the <form> tag of the HTML page of the Landing page (see STEP 3, Fig. 1).

An example of the complete landing page source code for the case registration:

<!DOCTYPE html>
<html>

Bpm’online developer guide 657

<head>
 <meta charset="UTF-8">
 <!--STEP 2-->
 <!--This part needs to be copied from the STEP 2 field of the lending edit page--
>
 <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.11.2/jquery.min.js">
</script>
 <script src="https://webtracking-v01.bpmonline.com/JS/track-cookies.js"></script>
 <script src="https://webtracking-v01.bpmonline.com/JS/create-object.js"></script>
 <script>
 /**
 * Replace the "css-selector" placeholders in the code below with the element
selectors on your landing page.
 * You can use #id or any other CSS selector that will define the input field
explicitly.
 * Example: "Email": "#MyEmailField".
 * If you don't have a field from the list below placed on your landing,
leave the placeholder or remove the line.
 */
 var config = {
 fields: {
 "Subject": "#subject-field", // Case subject
 "Email": "#email-field", // Visitor's email
 "Name": "#name-field", // Visitor's name code
 "Phone": "#phone-field", // Visitor's phone number
 },
 landingId: "8ab71187-0428-4372-b81c-fd05b141a2e7",
 serviceUrl:
"http://localhost/bpmonlineservice710/0/ServiceModel/GeneratedObjectWebFormService.sv
c/SaveWebFormObjectData",
 redirectUrl: "http://bpmonline.com",
 onSuccess: function(response) {
 window.alert(response.resultMessage);
 },
 onError: function(response) {
 window.alert(response.resultMessage);
 }

 };
 /**
 * The function below creates a object from the submitted data.
 * Bind this function call to the "onSubmit" event of the form or any other
elements events.
 * Example: <form class="mainForm" name="landingForm"
onSubmit="createObject(); return false">
 */
 function createObject() {
 landing.createObjectFromLanding(config)
 }
 </script>
 <!--STEP 2-->
</head>
<body>
<h1>Landing web-page</h1>
<div>
 <h2>Case form</h2>
 <form class="mainForm" name="landingForm" onSubmit="createObject(); return
false">
 Subject:

 <input type="text" name="subject" id="subject-field">

 Email:

 <input type="text" name="Email" id="email-field">

Bpm’online developer guide 658

 Name:

 <input type="text" name="Name" id="name-field">

 Phone:

 <input type="text" name="Phone" id="phone-field">

 <input type="submit" value="Submit">

 </form>
</div>
</body>
</html>

3. Add the page to the website.

A case from the landing page will be added to the bpm'online only if the page is hosted on the site whose name is
listed in the [Website domains] field of the landing page record in bpm’online. If you open the page in the browser
locally, then an empty message will be displayed when the case is created.

Fig. 3 Empty message

NOTE

The output of an empty message is configured in the onError() method of the configuration object.

If you place the page on the local server of the computer that serves as the reserved domain name localhost (as
specified in the landing setting , Fig. 1), then the script that adds the address from the web page of the landing will
work correctly (Fig. 4)

Fig. 4 The correct adding of data

Bpm’online developer guide 659

https://en.wikipedia.org/wiki/Localhost

As a result, a case with specified parameters will be automatically created.

Fig. 5 Automatically created case

How to hide feed area in the agent desktop

Bpm’online developer guide 660

The feed area of the [Agent desktop] section used to notify helpdesk or contact center agents about noteworthy
events of the company (Fig. 1).

Fig. 1. Agent desktop feed area

To hide feed area:

1. Create the [Agent desktop page] replacing schema in the custom package. The procedure for creating a replacing
client schema is covered in the “Creating a custom client module schema” article.

2. Add the following source code to the schema:

define("OperatorSingleWindowPage", [],
 function() {
 return {
 methods: {
 // Replacing the base method to exclude the ENSFeedModule feed module
from the loaded modules.
 loadContent: function() {
 // the ESNFeedModule module does not need to be loaded because
The centerContainer container is removed
 //this.loadModule("ESNFeedModule", "centerContainer");
 this.loadModule("SectionDashboardsModule", "rightContainer");
 this.loadModule("OperatorQueuesModule", "leftContainer");
 }
 },
 diff: /**SCHEMA_DIFF*/[
 {
 "operation": "remove",
 "name": "centerContainer"
 }
]/**SCHEMA_DIFF*/
 };
 }
);

3. Save the changes.

4. Refresh the browser page.

As a result the feed area in the agent desktop will be hidden (Fig. 2).

Bpm’online developer guide 661

Fig. 2. [Agent desktop] section without feed area

Adding floating icons for internal case feed posts

Introduction
In bpm’online 7.12.0 you can quickly add a new case based on existing case communication email thread. Select a

text in an email from the case message history and click the button. The values of the source message fields
whose [Make copy] checkbox is selected in the section wizard will be copied to the new case. Bpm’online will
automatically reply to the email with a standard case registration notification. Adding cases based on an email text
works both for emails and portal posts.

This function was implemented via the SelectionHandlerMultiLineLabel control element located in the Message
package.

To process the [Processing] tab posts added to the internal feed:

1. Create the SocialMessageHistoryItemPage replacing schema.

2. Implement the selected text processing logic via the selectedTextChanged and selectedTextHandlerButtonClick
events of the SelectionHandlerMultiLineLabel control element.

3. Add a configuration object with the SelectionHandlerMultiLineLabel element settings to the diff array.

Case description
Add the floating icon function when selecting a text from the internal case feed posts on the [Processing] tab of the
[Cases] section. A new case with automatically populated fields should be added upon clicking the floating icon.

Source code
You can download the package with case implementation using the following link.

ATTENTION

You can set up the package only for the Service line products or for product lines containing the Message and

Bpm’online developer guide 662

https://academy.terrasoft.ru/sites/default/files/documents/downloads/SDK/Packages/sdkBookExample_18.04.25_10.55.21.zip

SocialMessage packages.

Case implementation algorithm
1. Create the SocialMessageHistoryItemPage replacing schema.

Create a replacing client module and specify the SocialMessageHistoryItemPage as parent object (Fig. 1). Creating a
replacing page is covered in the“Creating a custom client module schema” article.

Fig. 1. Properties of the replacing module

2. Implement the selected text processing logic

Add the following methods to the created schema method collection (the source code is provided below):

getMessageFromHistory() – an overridden base method. Receives the selected post subject.
onSelectedTextChanged() – sets the selected text value to the HighlightedHistoryMessage attribute.
Triggered upon text selection.
onSelectedTextButtonClick() – adds a case whose subject is received from the previously installed
HighlightedHistoryMessage attribute. The logic of adding a case is defined in the BaseMessageHistory
parent schema. Triggered upon clicking the floating icon.

3. Set up the SelectionHandlerMultiLineLabel element.

Add the configuration object with the SelectionHandlerMultiLineLabel element settings to the diff array of the
created schema. The replacing schema source code is as follows:

define("SocialMessageHistoryItemPage", ["SocialMessageConstants",
"css!SocialMessageHistoryItemStyle"],
 function(socialMessageConstants) {
 return {
 // Name of the edit page object schema.
 entitySchemaName: "BaseMessageHistory",
 details: /**SCHEMA_DETAILS*/{}/**SCHEMA_DETAILS*/,
 // Edit page view model methods.
 methods: {
 // Overridden base method. Receives subject for the selected post.
 getMessageFromHistory: function() {
 var message = this.get("HighlightedHistoryMessage");
 if (this.isHistoryMessageEmpty(message)) {
 message = this.get("[Activity:Id:RecordId].Body");
 }
 return message;
 },
 // Text selection event handler.
 onSelectedTextChanged: function(text) {
 this.set("HighlightedHistoryMessage", text);

Bpm’online developer guide 663

 },
 // Floating icon clicking handler.
 onSelectedTextButtonClick: function() {
 // Preparing case data from histroy.
 this.prepareCaseDataFromHistory();
 }
 },
 diff: /**SCHEMA_DIFF*/[
 {
 // Change the existing "MessageText" component.
 "operation": "merge",
 // Component name.
 "name": "MessageText",
 // Object properties.
 "values": {
 // View generator properties.
 "generator": function() {
 return {
 // HTML-tag id value.
 "id": "MessageText",
 // Marker value.
 "markerValue": "MessageText",
 // Component class name.
 "className":
"Terrasoft.SelectionHandlerMultilineLabel",
 // CSS-style setup.
 "classes": {
 "multilineLabelClass": ["messageText"]
 },
 // Caption.
 "caption": {
 "bindTo": "Message"
 },
 "showLinks": true,
 // Binding of the selected text modification event to
the handler method.
 "selectedTextChanged": {"bindTo":
"onSelectedTextChanged"},
 // Binding of the selected text floating icon
clicking event to the handler method.
 "selectedTextHandlerButtonClick": {"bindTo":
"onSelectedTextButtonClick"},
 // Floating icon display checkbox.
 "showFloatButton": true
 };
 }
 }
 }
]/**SCHEMA_DIFF*/
 };
 }
);

A floating icon will be displayed on the [Processing] tab of the case page when you select a text from the internal case
feed post upon your saving the schema and updating the page (Fig.2). A new case with automatically populated
fields will be added upon clicking the floating icon (Fig.3).

Fig. 2. Floating icon upon selecting a text

Bpm’online developer guide 664

Fig. 3. New case

Lending product customization

Contents
How to create custom verification action page
Using the EntityMapper schema

How to create custom verification action page

Introduction
Verification action is a confirmation that the data in the application form corresponds to the requirements of the
application. The verification action is performed to check the data provided by the clients when they fill out their
application forms.

When creating a custom verification action page, for example, in the Approve application business process, you can

Bpm’online developer guide 665

select the [Preconfigured verification page].

Fig. 1 Selecting the verification page

The page is displayed after clicking the [Complete] button of the [Approve loan issuance] activity that is created
when the application is moved to the [Validation] stage (fig. 2).

Fig. 2 Activity on the [Validation] stage

Preconfigured verification page contains (Fig. 3):

1. Buttons for selecting the result of the verification action.
2. The [Comment] field – comments to the verification action.
3. The [Conversation script] detail – contains a hints for the verifiers who call customers in the process of

verification. Read only.
4. The [Attachments] detail – contains files and links attached to the validation stage. Read only.
5. The [Checklist] detail – contains control questions and answers to them.

Bpm’online developer guide 666

Attention!

If a detail has no attached data, it will not be displayed to save page space.

Fig. 3 Verification page

You can create custom verification pages, inheriting them from the preconfigured page. To create a custom page:

1. Create a custom schema of the verification action page.
2. Use the schema created in the business process.

Case description
Create a verification action page where the [Comment] field is hidden.

Case implementation algorithm
1. Create a schema of the verification action page

To do this, go to the [Configuration] section and select a custom package. Then execute the [Add] > [Schema of the
Edit Page View Model] command. The process of creating custom schema of the view model is covered in the
"Creating a custom client module schema” article.

You need to assign the following properties for the created schema (Fig. 4):

[Title] – Verification page without comments.
[Name] – UsrCommentlessAppValidationPage.
[Package] – Custom (or another custom package).
[Parent object] – Preconfigured verification page of the FinAppLending package.

Fig. 4 Schema properties of the view model page

Bpm’online developer guide 667

Add the following source code to the [Source code] tab:

define("UsrCommentlessAppValidationPage", [], function() {
 return {
 entitySchemaName: "AppValidation",
 diff: [{
 "operation": "remove",
 "name": "CommentContainer"
 }]
 };
});

The [Comment] field is removed from the parent element in the diff array.

Save the schema to apply the changes.

2. Use the schema created in the business process.

To use the created schema, specify it in the [Execute on page] field of the [Validation item] item of the business
process. This schema can be used in both new and existing business processes, such as Approve application (Fig. 5).

Fig. 5 Specifying the custom verification page

Bpm’online developer guide 668

Save the business process to apply the changes.

Attention!

Restart the application in IIS for the changes to take effect.

After the changes are applied, the previous verification page (Fig. 3) will be replaced with a custom page that does
not contain the [Comment] field (Fig. 6).

Fig. 6 Verification page without the [Comment] field.

Using the EntityMapper schema

Bpm’online developer guide 669

Introduction
Terrasoft.Configuration.EntityMapper is the utility configuration class, implemented in the EntittyMapper
schema of the [FinAppLending] package in bpm’online lending. EntittyMapper enables you to match the data of one
entity with another according to the rules defined in the configuration file. This approach prevents the creation of
monotonous code.

Bpm’online lending features two objects with identical columns – [Contact] and [AppForm]. There are several
details related to the [Contact] object and having similar details pertaining to [AppForm]. When the application is
filled, there should be a possibility to get a list of all columns and values by the [Id] column of the [Contact] object,
as well as a list of necessary details with their columns and values, and match this data with the application form
data. After that, you can automatically fill out the fields of the application form with mapped data. This enables you
to reduce manual data input.

Case description
Create a custom UsrEntityMapperConfigsContainer class to check the data matching mechanism through
Terrasoft.Configuration.EntityMapper. Implement the data matching logic for the [Contact] and [AppForm]
objects in this class. Implement a custom configuration service for data matching on the client side of the
application. Add a button that will launch the custom configuration service on the edit page of the application form.
The result has to be displayed in the browser’s console.

Case implementation algorithm
1. Create a custom UsrEntityMapperConfigsContainer class for data matching.

Learn more about the process of creating the [Source code] schema in the “Creating the [Source code] schema”
article.

Property values for the created schema:

[Title] — "UsrEntityMapperConfigsContainer".
[Name] – "UsrEntityMapperConfigsContainer".
[Package] — "Custom" (or a different custom package).

Add the following source code on the [Source Code] tab of the schema designer:

namespace Terrasoft.Configuration
{
 using System;
 using System.Collections.Generic;
// This class contains mapping settings.
public class UsrEntityMapperConfigsContainer
{
 // Settings for contact and application form mapping.
 public MapConfig ContactToAppFormConfig { get; protected set; }

 public UsrEntityMapperConfigsContainer() {
 this.InitContactToAppFormConfig();
 }
 // Configures the mapping of contact and application form objects.
 protected virtual void InitContactToAppFormConfig() {
 var columns = new Dictionary<string, string>();
 // In this case, the column names of the contact and the application form
coincided.
 columns.Add("Surname", "Surname");
 columns.Add("GivenName", "GivenName");

Bpm’online developer guide 670

 columns.Add("MiddleName", "MiddleName");
 columns.Add("INN", "INN");
 columns.Add("SpouseSurname", "SpouseSurname");
 columns.Add("SpouseGivenName", "SpouseGivenName");
 columns.Add("SpouseMiddleName", "SpouseMiddleName");
 columns.Add("Spouse", "Spouse");
 var config = new MapConfig {
 SourceEntityName = "Contact",
 Columns = columns,
 RelationEntities = new List<RelationEntityMapConfig>() {
 new RelationEntityMapConfig() {
 SourceEntityName = "Contact",
 ParentColumnName = "Spouse",
 Columns = new Dictionary<string, string>() {
 { "Surname", "SpouseSurname" },
 { "BirthDate", "SpouseBirthDate" }
 }
 }
 },
 DetailsConfig = new List<DetailMapConfig>() {
 new DetailMapConfig() {
 SourceEntityName = "ContactAddress",
 DetailName = "RegistrationAddressFieldsDetail",
 Columns = new Dictionary<string, string>() {
 { "AddressType", "AddressType" },
 { "Country", "Country" },
 { "Region", "Region" }
 },
 Filters = new List<EntityFilterMap>() {
 new EntityFilterMap(){
 ColumnName = "AddressType",
 Value = BaseFinanceConst.RegistrationAddressTypeId
 }
 }
 }
 },
 CleanDetails = new List<string>() {
 "AppFormIncomeDetail"
 }
 };
 this.ContactToAppFormConfig = config;
 }
 }
}

Publish the schema to apply changes.

2. Create a custom configuration service for data matching

The process of creating a custom configuration service is described in the “How to create custom configuration
service” article.

Create the [Source Code] schema in a custom package. Property values for the created schema:

[Title]— "UsrEntityMappingService".
[Name] — "UsrEntityMappingService".
[Package] — "Custom" (or a different custom package).

Add the following source code on the [Source Code] tab of the schema designer:

namespace Terrasoft.Configuration
{
using System;

Bpm’online developer guide 671

using System.Linq;
using System.Collections.Generic;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.ServiceModel.Activation;
using System.ServiceModel.Web;
using Terrasoft.Core;
using Terrasoft.Core.Factories;
using Terrasoft.Core.Entities;
using Terrasoft.Common;
using System.Web;
using Terrasoft.Web.Common;
using Terrasoft.Nui.ServiceModel.DataContract;
using Terrasoft.Common.Json;
using Terrasoft.Core.Configuration;

 /// Service class for mapping entities and their details.
 [ServiceContract]
 [AspNetCompatibilityRequirements(RequirementsMode =
AspNetCompatibilityRequirementsMode.Required)]
 public class UsrEntityMappingService: BaseService
 {
 private EntityMapper _entityMapper;
 // Returns an EntityMapper instance.
 protected virtual EntityMapper EntityMapper {
 get {
 return _entityMapper ?? (_entityMapper =
ClassFactory.Get<EntityMapper>(
 new ConstructorArgument("userConnection", this.UserConnection)));
 }
 }
 // Returns mapping settings.
 protected virtual MapConfig GetConfig() {
 UsrEntityMapperConfigsContainer mapperConfigsContainer = new
UsrEntityMapperConfigsContainer();
 return mapperConfigsContainer.ContactToAppFormConfig;
 }
 // Performs the mapping and returns the result. The main method of service.
 [OperationContract]
 [return: MessageParameter(Name = "result")]
 [WebInvoke(Method = "POST", BodyStyle = WebMessageBodyStyle.Wrapped,
 RequestFormat = WebMessageFormat.Json, ResponseFormat =
WebMessageFormat.Json)]
 public EntityMappingResult GetMappedEntity(string id)
 {
 EntityMappingResult result = new EntityMappingResult();
 try {
 Guid recordId;
 MapConfig config = this.GetConfig();
 EntityResult entityResult = new EntityResult(config);
 result.columns = entityResult.Columns;
 result.details = entityResult.Details;
 if (!Guid.TryParse(id, out recordId)) {
 return result;
 }
 entityResult = EntityMapper.GetMappedEntity(recordId, config);
 result.columns = entityResult.Columns;
 result.details = entityResult.Details;
 result.Success = true;
 } catch (Exception e){
 result.Success = false;
 result.Exception = e;

Bpm’online developer guide 672

 }
 return result;
 }
 }

}

Publish the schema to apply changes.

3. Adding a data mapping button to the application form edit page

To add a data mapping button, replace the existing [Application Form Edit Page] schema. The procedure for
creating a replacing client schema is covered in the “Creating a custom client module schema”.

Add a localizable string to a replacing schema (Fig. 1) with the following properties:

[Title] — “Call service”.
[Name] — “EntityMappingButtonCaption”.

Fig. 1. Adding a localizable string

Add the following source code on the [Source Code] tab of the schema designer:

define("AppFormPage", [], function() {
 return {
 entitySchemaName: "AppForm",
 methods: {
 // User service request function.
 requestContactData2: function() {
 var data = {
 id: this.get("Contact").value
 };
 // A configuration object for passing parameters to the service.
 var config = {
 serviceName: "UsrEntityMappingService",
 methodName: "GetMappedEntity",
 data: data
 };
 // Calling a service.
 this.callService(config, this.parseMappedEntityResponse2, this);
 },
 //Callback-function for outputting the service response to the
console.
 parseMappedEntityResponse2: function(response) {
 window.console.log("Ответ от UsrEntityMappingService", response);
 }
 },

Bpm’online developer guide 673

 diff: /**SCHEMA_DIFF*/[
 {
 "operation": "insert",
 "parentName": "ProfileContainer",
 "propertyName": "items",
 "name": "EntityMappingButton",
 "values": {
 itemType: Terrasoft.ViewItemType.BUTTON,
 "style": Terrasoft.controls.ButtonEnums.style.GREEN,
 // Bind the button's title to the localized string of the schema.
 caption: { bindTo: "Resources.Strings.EntityMappingButtonCaption"
},
 // Bind the button click method-handler.
 click: { bindTo: "requestContactData2" },
 "layout": {
 "column": 0,
 "row": 2,
 "colSpan": 24
 }
 }
 }
]/**SCHEMA_DIFF*/
 };
});

Add the configuration object to the diff array. The object will be used to add the data matching button to the
application form edit page. The requestContactData2() method is called when the button is pressed, and the
UsrEntityMappingService configuration service is called in the method with all necessary parameters. The
parseMappedEntityResponse2() callback-function will display the service response in the browser console.

ATTENTION

Instead of browser console output, you can implement the mechanism of auto completing fields of the
application form edit page with the matched values. However, this functionality is already implemented in the
requestContactData() and parseMappedEntityResponse() methods of the AppFormPage parent schema.

Save the schema to apply changes.

As a result, the button will appear on the application form edit page. When you press the button, the object with
mapped data will be displayed in the browser console.

Fig. 2. Case result

Bpm’online developer guide 674

ATTENTION

If the profile edit page is open in the new record creation mode, you must first select or create a contact
connected to the created application form. If a contact is not selected, an exception will occur, because This.get
("Contact") returns null.

Marketing product customization

Contents
Adding a custom campaign element

Adding a custom campaign element

Introduction
Use the Campaign designer to set up marketing campaigns. Using this designer, you can create a campaign diagram
that consists of interconnected elements. In addition to default campaign elements you can create custom ones.

The general procedure for adding a custom campaign element is as follows:

1. Create a new element for the Campaign designer.

2. Create the element’s edit page.

3. Expand the Campaign designer menu with a new element.

4. Create the element’s server part.

5. Create executable element for the new campaign element.

Bpm’online developer guide 675

6. Add custom logic for processing campaign events.

Case description
Create a new campaign element for sending text messages (SMS) for users.

Case implementation algorithm
1. Creating a new element for the Campaign designer

To display the element in the Campaign designer UI, add a new module schema for the campaign element. The
procedure for creating a module schema is covered in the “Creating a custom client module schema” article.
Set the following properties for the created schema:

[Title] – "Test SMS Element Schema".
[Name] – "TestSmsElementSchema".

ATTENTION

The schema names in the case below do not contain the Usr prefix. You can change the default prefix in the
[Prefix for object name] (SchemaNamePrefix) system setting.

Add a localized string (Fig. 1) to the schema:

[Name] – "Caption".
[Value] – "Test SMS".

Fig. 1. Adding localized string to the schema

Add images that will represent the campaign element in the Campaign designer. Use the SmallImage, LargeImage
and TitleImage (Fig. 2) properties to add the images.

Fig. 2. Adding a campaign element image

Bpm’online developer guide 676

In this example we used a scalable vector graphics (SVG) image available here.

Add following source code on the [Source Code] section of the schema":

define("TestSmsElementSchema", ["TestSmsElementSchemaResources",
"CampaignBaseCommunicationSchema"],
 function(resources) {
 Ext.define("Terrasoft.manager.TestSmsElementSchema", {
 // Parent schema.
 extend: "Terrasoft.CampaignBaseCommunicationSchema",
 alternateClassName: "Terrasoft.TestSmsElementSchema",
 // Manager Id. Must be unique.
 managerItemUId: "a1226f93-f3e3-4baa-89a6-11f2a9ab2d71",
 // Plugged mixins.
 mixins: {
 campaignElementMixin: "Terrasoft.CampaignElementMixin"
 },
 // Element name.
 name: "TestSms",
 // Resource binding.
 caption: resources.localizableStrings.Caption,
 titleImage: resources.localizableImages.TitleImage,
 largeImage: resources.localizableImages.LargeImage,
 smallImage: resources.localizableImages.SmallImage,
 // Schema name of the edit page.
 editPageSchemaName: "TestSmsElementPropertiesPage",
 // Element type.
 elementType: "TestSms",
 // Full name of the class that corresponds to the current schema.
 typeName: "Terrasoft.Configuration.TestSmsElement,
Terrasoft.Configuration",
 // Overriding the properties of visual styles.
 color: "rgba(249, 160, 27, 1)",
 width: 69,
 height: 55,
 // Setting up element-specific properties.
 smsText: null,
 phoneNumber: null,
 // Determining the types of the elemen's outbound connections.
 getConnectionUserHandles: function() {
 return ["CampaignSequenceFlow", "CampaignConditionalSequenceFlow"];

Bpm’online developer guide 677

https://academy.terrasoft.ru/sites/default/files/documents/downloads/SDK/AddingCustomCampaingElement/message.svg

 },
 // Expnding the properties for serialization.
 getSerializableProperties: function() {
 var baseSerializableProperties = this.callParent(arguments);
 return Ext.Array.push(baseSerializableProperties, ["smsText",
"phoneNumber"]);
 },
 // Setting up the icons that are displayed on the campaign diagram.
 getSmallImage: function() {
 return this.mixins.campaignElementMixin.getImage(this.smallImage);
 },
 getLargeImage: function() {
 return this.mixins.campaignElementMixin.getImage(this.largeImage);
 },
 getTitleImage: function() {
 return this.mixins.campaignElementMixin.getImage(this.titleImage);
 }
 });
 return Terrasoft.TestSmsElementSchema;
 });

Specifics:

The managerItemUId property value must be unique for the new element and not repeat the value of the
other elements.
The typeName property contains the name of the C# class that corresponds to the campaign element
name. This class will be saving and reading the element’s properties from the schema metadata.

Save the schema to apply changes.

Adding a group of elements

If a new group of elements, such as [Scripts] must be created for the campaign element, the schema source code
must be supplemented with the following code:

// Name of the new group.
group: "Scripts",

constructor: function() {
 if (!Terrasoft.CampaignElementGroups.Items.contains("Scripts")) {
 Terrasoft.CampaignElementGroups.Items.add("Scripts", {
 name: "Scripts",
 caption: resources.localizableStrings.ScriptsElementGroupCaption
 });
 }
 this.callParent(arguments);
}

Also, add a localized string with the following properties:

[Name] – "ScriptsElementGroupCaption".
[Name] – "Scripts".

Save the schema to apply changes.

2. Creating the element’s edit page

Create the campaign element’s edit page in the custom package to enable the users to view and edit the element’s
properties. To do this, create a schema that expands BaseCampaignSchemaElementPage (CampaignDesigner
package). The procedure for creating a replacing client schema is covered in the “Creating a custom client
module schema” article.

Set the following properties for the created schema:

[Title] – "TestSmsElementPropertiesPage".

Bpm’online developer guide 678

[Name] – "TestSmsElementPropertiesPage".
[Parent object] – "BaseCampaignSchemaElementPage".

Add localized strings to the created schema (Fig. 1) with properties given in the table 1.

Table 1. Localized string properties

Name Value
PhoneNumberCaption Sender phone number

SmsTextCaption Message

TestSmsText Which text message should be sent? (Which SMS text
to send?)

Add following source code on the [Source Code] section of the schema":

define("TestSmsElementPropertiesPage", [],
 function() {
 return {
 attributes: {
 // Attributes that correspond to specific properties of element
schema.
 "PhoneNumber": {
 "dataValueType": this.Terrasoft.DataValueType.TEXT,
 "type": this.Terrasoft.ViewModelColumnType.VIRTUAL_COLUMN
 },
 "SmsText": {
 "dataValueType": this.Terrasoft.DataValueType.TEXT,
 "type": this.Terrasoft.ViewModelColumnType.VIRTUAL_COLUMN
 }
 },
 methods: {
 init: function() {
 this.callParent(arguments);
 this.initAcademyUrl(this.onAcademyUrlInitialized, this);
 },
 // Element code for generating a contextual help link.
 getContextHelpCode: function() {
 return "CampaignTestSmsElement";
 },
 // Initialization of attributes with the current schema property
values.
 initParameters: function(element) {
 this.callParent(arguments);
 this.set("SmsText", element.smsText);
 this.set("PhoneNumber", element.phoneNumber);
 },
 // Saving schema properties.
 saveValues: function() {
 this.callParent(arguments);
 var element = this.get("ProcessElement");
 element.smsText = this.getSmsText();
 element.phoneNumber = this.getPhoneNumber();

 },
 // Reading current attribute values.
 getPhoneNumber: function() {
 var number = this.get("PhoneNumber");
 return number ? number : "";
 },
 getSmsText: function() {
 var smsText = this.get("SmsText");

Bpm’online developer guide 679

 return smsText ? smsText : "";
 }
 },
 diff: [
 // UI container.
 {
 "operation": "insert",
 "name": "ContentContainer",
 "propertyName": "items",
 "parentName": "EditorsContainer",
 "className": "Terrasoft.GridLayoutEdit",
 "values": {
 "itemType": Terrasoft.ViewItemType.GRID_LAYOUT,
 "items": []
 }
 },
 // Element primary signature.
 {
 "operation": "insert",
 "name": "TestSmsLabel",
 "parentName": "ContentContainer",
 "propertyName": "items",
 "values": {
 "layout": {
 "column": 0,
 "row": 0,
 "colSpan": 24
 },
 "itemType": this.Terrasoft.ViewItemType.LABEL,
 "caption": {
 "bindTo": "Resources.Strings.TestSmsText"
 },
 "classes": {
 "labelClass": ["t-title-label-proc"]
 }
 }
 },
 // Caption for the text field where sender name is entered.
 {
 "operation": "insert",
 "name": "PhoneNumberLabel",
 "parentName": "ContentContainer",
 "propertyName": "items",
 "values": {
 "layout": {
 "column": 0,
 "row": 1,
 "colSpan": 24
 },
 "itemType": this.Terrasoft.ViewItemType.LABEL,
 "caption": {
 "bindTo": "Resources.Strings.PhoneNumberCaption"
 },
 "classes": {
 "labelClass": ["label-small"]
 }
 }
 },
 // Text field for entering phone number.
 {
 "operation": "insert",
 "name": "PhoneNumber",

Bpm’online developer guide 680

 "parentName": "ContentContainer",
 "propertyName": "items",
 "values": {
 "labelConfig": {
 "visible": false
 },
 "layout": {
 "column": 0,
 "row": 2,
 "colSpan": 24
 },
 "itemType": this.Terrasoft.ViewItemType.TEXT,
 "classes": {
 "labelClass": ["feature-item-label"]
 },
 "controlConfig": { "tag": "PhoneNumber" }
 }
 },
 // Caption for text field for entering message text.
 {
 "operation": "insert",
 "name": "SmsTextLabel",
 "parentName": "ContentContainer",
 "propertyName": "items",
 "values": {
 "layout": {
 "column": 0,
 "row": 3,
 "colSpan": 24
 },
 "classes": {
 "labelClass": ["label-small"]
 },
 "itemType": this.Terrasoft.ViewItemType.LABEL,
 "caption": {
 "bindTo": "Resources.Strings.SmsTextCaption"
 }
 }
 },
 // Text field for entering message text.
 {
 "operation": "insert",
 "name": "SmsText",
 "parentName": "ContentContainer",
 "propertyName": "items",
 "values": {
 "labelConfig": {
 "visible": false
 },
 "layout": {
 "column": 0,
 "row": 4,
 "colSpan": 24
 },
 "itemType": this.Terrasoft.ViewItemType.TEXT,
 "classes": {
 "labelClass": ["feature-item-label"]
 },
 "controlConfig": { "tag": "SmsText" }
 }
 }
]

Bpm’online developer guide 681

 };
 }
);

Save the schema to apply changes.

3. Expanding the Campaign designer menu with a new element

To display the new element in the Campaign designer menu, expand the campaign element base schema manager.
Add a schema that expands CampaignElementSchemaManagerEx (the CampaignDesigner package) to the custom
package. The procedure for creating a replacing client schema is covered in the “Creating a custom client
module schema” article.

Set the following properties for the created schema:

[Title] – "TestSmsCampaignElementSchemaManagerEx".
[Name] – "CampaignElementSchemaManagerEx".
[Parent object] – "CampaignElementSchemaManagerEx".

Add following source code on the [Source Code] section of the schema":

require(["CampaignElementSchemaManager", "TestSmsElementSchema"],
 function() {
 // Adding a new schema to the list of available element schemas in the
Campaign designer.
 var coreElementClassNames =
Terrasoft.CampaignElementSchemaManager.coreElementClassNames;
 coreElementClassNames.push({
 itemType: "Terrasoft.TestSmsElementSchema"
 });
 });

Save the schema to apply changes.

4. Creating server part of the custom campaign element

To implement saving the campaign element properties, create a class that interacts with the application server part.
The class must inherit CampaignSchemaElement and override the ApplyMetaDataValue() and WriteMetaData()
methods.

Create a source code schema with the following properties:

[Title] – "TestSmsElement".
[Name] – "TestSmsElement".

For more information on creating source code schemas, please see the Creating the [Source code] schema
article.

Add the following source code on the [Source Code] section of the schema":

namespace Terrasoft.Configuration
{
 using System;
 using Terrasoft.Common;
 using Terrasoft.Core;
 using Terrasoft.Core.Campaign;
 using Terrasoft.Core.Process;

 [DesignModeProperty(Name = "PhoneNumber",
 UsageType = DesignModeUsageType.NotVisible, MetaPropertyName =
PhoneNumberPropertyName)]
 [DesignModeProperty(Name = "SmsText",
 UsageType = DesignModeUsageType.NotVisible, MetaPropertyName =
SmsTextPropertyName)]
 public class TestSmsElement : CampaignSchemaElement

Bpm’online developer guide 682

 {
 private const string PhoneNumberPropertyName = "PhoneNumber";
 private const string SmsTextPropertyName = "SmsText";
 // Default constructor.
 public TestSmsElement() {
 ElementType = CampaignSchemaElementType.AsyncTask;
 }
 // Constructor with parameter.
 public TestSmsElement(TestSmsElement source)
 : base(source) {
 ElementType = CampaignSchemaElementType.AsyncTask;
 PhoneNumber = source.PhoneNumber;
 SmsText = source.SmsText;
 }

 // Instance action Id.
 protected override Guid Action {
 get {
 return CampaignConsts.CampaignLogTypeMailing;
 }
 }

 // Phone number.
 [MetaTypeProperty("{A67950E7-FFD7-483D-9E67-3C9A30A733C0}")]
 public string PhoneNumber {
 get;
 set;
 }
 // Text message.
 [MetaTypeProperty("{05F86DF2-B9FB-4487-B7BE-F3955703527C}")]
 public string SmsText {
 get;
 set;
 }
 // Applies metadata values.
 protected override void ApplyMetaDataValue(DataReader reader) {
 base.ApplyMetaDataValue(reader);
 switch (reader.CurrentName) {
 case PhoneNumberPropertyName:
 PhoneNumber = reader.GetValue<string>();
 break;
 case SmsTextPropertyName:
 SmsText = reader.GetValue<string>();
 break;
 }
 }

 // Records metadata values.
 public override void WriteMetaData(DataWriter writer) {
 base.WriteMetaData(writer);
 writer.WriteValue(PhoneNumberPropertyName, PhoneNumber, string.Empty);
 writer.WriteValue(SmsTextPropertyName, SmsText, string.Empty);
 }
 // Copies element.
 public override object Clone() {
 return new TestSmsElement(this);
 }

 // Creates a specific ProcessFlowElement instance.
 public override ProcessFlowElement CreateProcessFlowElement(UserConnection
userConnection) {
 var executableElement = new TestSmsCampaignProcessElement {

Bpm’online developer guide 683

 UserConnection = userConnection,
 SmsText = SmsText,
 PhoneNumber = PhoneNumber
 };
 InitializeCampaignProcessFlowElement(executableElement);
 return executableElement;
 }
 }
}

Publish the source code schema.

5. Creating executable element for the new campaign element

For the custom campaign element to execute the needed logic, add an executable element. It is a class that inherits
the CampaignProcessFlowElement class, where the SafeExecute() method is implemented.

To create an executable element, add a source code schema element with the following properties in the custom
package:

[Title] – "TestSmsCampaignProcessElement".
[Name] – "TestSmsCampaignProcessElement".

Add following source code on the [Source Code] section of the schema":

namespace Terrasoft.Configuration
{
 using System;
 using System.Collections.Generic;
 using Terrasoft.Core.Campaign;
 using Terrasoft.Core.DB;
 using Terrasoft.Core.Process;

 public class TestSmsCampaignProcessElement : CampaignProcessFlowElement
 {
 public const string ContactTableName = "Contact";

 public TestSmsCampaignProcessElement(ICampaignAudience campaignAudience) {
 CampaignAudience = campaignAudience;
 }

 public TestSmsCampaignProcessElement() {
 }

 // Audiences for whom to send texts on the current step.
 private ICampaignAudience _campaignAudience;
 private ICampaignAudience CampaignAudience {
 get {
 return _campaignAudience ??
 (_campaignAudience = new CampaignAudience(UserConnection,
CampaignId));
 }
 set {
 _campaignAudience = value;
 }
 }

 // SMS-specific properties. Passed from an instance of the TestSmsElement
class.
 public string PhoneNumber {
 get;
 set;
 }

Bpm’online developer guide 684

 public string SmsText {
 get;
 set;
 }

 // Implementation of the element execution method
 protected override int SafeExecute(ProcessExecutingContext context) {
 // TODO: Implement sending SMS messages.
 //
 // Current step for audiences is set as completed.
 return CampaignAudience.SetItemCompleted(SchemaElementUId);
 }
 }
}

Publish the source code schema.

6. Adding custom logic for processing campaign events

Use the event handler mechanism to implement custom logic on saving, copying, deleting, running and stopping
campaigns. Create a public sealed handler class that inherits CampaignEventHandlerBase. Implement interfaces
that describe specific event handler signatures. This class must not be generic. It must have a constructor available
by default.

The following interfaces are supported in the current version:

IOnCampaignBeforeSave – contains method that will be called before saving the campaign.
IOnCampaignAfterSave – contains method that will be called after saving the campaign.
IOnCampaignDelete – contains method that will be called before deleting the campaign.
IOnCampaignStart – contains method that will be called before running the campaign.
IOnCampaignStop – contains method that will be called before stopping the campaign.
IOnCampaignValidate – contains method that will be called on validating the campaign.
IOnCampaignCopy – contains method that will be called after copying the campaign.

If an exception occurs during the event processing, the call chain is stopped, and campaign status is reverted to the
previous one in DB.

NOTE

When implementing the IOnCampaignValidate interface, save errors in the campaign schema using the
AddValidationInfo(string) method.

Additional case conditions

In order for the new custom campaign element to work, SMS gateway connection is required. The connection,
account status and other parameters must be checked during campaign validation. The messages must be sent when
campaign starts.

To implement these conditions, add a source code schema element with the following properties in the custom
package:

[Title] – "TestSmsEventHandler".
[Name] – "TestSmsEventHandler".

Add following source code on the [Source Code] section of the schema":

namespace Terrasoft.Configuration
{
 using System;
 using Terrasoft.Core.Campaign.EventHandler;

 public sealed class TestSmsEventHandler : CampaignEventHandlerBase,
IOnCampaignValidate, IOnCampaignStart

Bpm’online developer guide 685

 {
 // Implementing handler for the campaign start event.
 public void OnStart() {
 // TODO: Text SMS message sending logic...
 //
 }
 // Implementing event handler for campaign validation.
 public void OnValidate() {
 try {
 // TODO: SMS gateway connection validation logic...
 //
 } catch (Exception ex) {
 // If errors are found, add information to the campaign schema.
 CampaignSchema.AddValidationInfo(ex.Message);
 }
 }
 }
}

After making the changes, publish the schema. Compile the application and clear the cache.

As a result, a new [TestSMS] element will be added in the campaign element menu (Fig. 3, 1) that the users can add
to the campaign diagram (Fig. 3, 2). When an added element is selected, its edit page will be displayed (Fig. 3, 3).

ATTENTION

When saving the campaign, the “Parameter ‘type’ cannot be null” may occur. The error indicates that the
configuration library was not updated after the compilation and therefor does not contain the new types.

Recompile the project and clear all possible storages with cached data. You may also need to clear the
application pool and restart the website in IIS on the application server.

Prediction

Contents
 How to implement custom prediction model

How to implement custom prediction model

Bpm’online developer guide 686

Introduction
Prediction service of the lookup field uses methods of statistic analysis for learning on the base of historical data and
prediction of values for new records.

For more information about thess functions please refer to the “Machine learning service ” article.

Case description
Implement automatic prediction for the [AccountCategory] column by the values of the [Country],
[EmployeesNumber] and [Industry] field while saving the account record. The following conditions should be met:

Model learning should be created on the base of account records for last 90 days.
Moodel Retraining should be performed every 30 days.
Permissible value of prediction accuracy for the model – 0,6.

ATTENTION

To complete this case you need to check the correctness of the value of the [Bpmonline cloud services API key]
(CloudServicesAPIKey code) system setting and the URL of the predictive service in the [Service endpoint Url]
field of the [ML problem types] lookup.

Case implementation algorithm
1. Model learning

To learn the model:

1. Add a record to the [ML Model] lookup. Values of the record fields are given in the Table 1.

Table 1. Values of the record fields of the MLModel lookup

Field Value
Name Predict account category

ML problem type Lookup prediction

Target schema for
prediction

Account

Quality metric low limit 0,6

Model retrain frequency
(days)

30

Training set metadata {
 "inputs": [
 {
 "name": "CountryId",
 "type": "Lookup",
 "isRequired": true
 },
 {
 "name": "EmployeesNumberId",
 "type": "Lookup",
 "isRequired": true
 },
 {

Bpm’online developer guide 687

 "name": "IndustryId",
 "type": "Lookup",
 "isRequired": true
 }
],
 "output": {
 "name": "AccountCategoryId",
 "type": "Lookup",
 "displayName": "AccountCategory"
 }
}

Training set query new Select(userConnection)
 .Column("a", "Id").As("Id")
 .Column("a", "CountryId")
 .Column("a", "EmployeesNumberId")
 .Column("a", "IndustryId")
 .Column("a", "AccountCategoryId")
 .Column("c", "Name").As("AccountCategory")
.From("Account").As("a")
.InnerJoin("AccountCategory").As("c").On("c",
"Id").IsEqual("a", "AccountCategoryId")
.Where("a",
"CreatedOn").IsGreater(Column.Parameter(DateTime.Now.AddDays(-
90)))

Predictions enabled
(checkbox)

Enable

2. Perform the [Execute model training job] action on the [ML Model] lookup field.

Wait until the values of the [Model processing status] field will be changed in following sequence: DataTransfer,
QueuedToTrain, Training, Done. The process may take several hours to finish (it depends on the amount of passed
data and general workload of the predictive service.

2. Performing the prediction

To start the predictions:

1. Create a business process in the user package. Select the saving of the [Contact] object as a start signal for the
process. Check if the required fields are field (Fig. 1).

Fig. 1. Start signal properties.

Bpm’online developer guide 688

2. Add the MLModelId lookup parameter that refers to the [ML Model] entity. Select the record with the [Predict
account category] model as a value.

3. Add the RecordId lookup parameter that refers to the [Account] entity. Select the a reference on theRecordId
parameter of the [Signal] element as a value.

4. Add a [Script task] element on the business process diagram and add the following code there:

var userConnection = Get<UserConnection>("UserConnection");
// Getting the Id of the Account record.
Guid entityId = Get<Guid>("RecordId");
// Geeting the id of the model.
var modelId = Get<Guid>("MLModelId");
var connectionArg = new ConstructorArgument("userConnection", userConnection);
// Object for calling prediction.
var predictor = ClassFactory.Get<LookupMLPredictor>(connectionArg);
// Model load.
if (predictor.TryLoadModelDataForPrediction(modelId)) {
 // Predictable entity schema name.
 var schemaName = "Account";
 // Mapping Entity Fields to Model Fields.
 var inputColumnPathMap = new Dictionary<string, string> {
 { "Country", "CountryId" },
 { "Industry", "IndustryId" },
 { "EmployeesCount.ZZZ.ZZZ", "EmployeesCountId" }

Bpm’online developer guide 689

 };
 // Call of the forecasting service. The Data is saved in MLPrediction and in case
of high probability of forecasting the data is saved in the required field of the
Account.
 predictor.PredictAndSaveResults(schemaName, entityId, inputColumnPathMap,
"AccountCategory");
}
return true;

After saving and compiling the process, the prediction will be performed for new accounts. The prediction will be
displayed on the account edit page.

ATTENTION

This implementation of the prediction slows down the saving an account record because call of the prediction
service is executed in 2 seconds. This can reduce the performance of the mass operations with data saving, like
import from Excel.

Bpm’online developer guide 690

Integration with bpm'online and public API

Bpm’online has a wide range of integrations with custom third-party applications.

First, accessing bpm’online by a third-party application requires authentication. For more information on accessing
bpm’online, see “Authenticating external requests to bpm'online services”. For more information on
bpm’online primary authentication service, see “The AuthService.svc authentication service”.

Starting with version 7.10, authentication is protected from CSRF attacks. For more information, see “Protection
from CSRF attacks during integration with bpm'online”.

Brief description and comparison of bpm’online basic integration methods is available in the “Choosing the
method of integration with bpm'online” article.

Wide range of integration capabilities is available through API provided by the DataService web service. Fore more
information on create, read, update and delete operations (the CRUD operations), as well as the API, see the
“DataService web service” article.

If the third-party system uses the OData protocol, it cal also be used for integration with bpm’online. For more
information, see the “OData” article.

Using the iframe HTML element for integration is covered in the “Integration of third-party sites via iframe”
article.

For more information on the “Web-to-Object” integrations, see the “Web-To-Object. Using landings and web-
forms”.

Use methods of the ProcessEngineService.svc web service to trigger bpm'online processes via third-party
applications. Description of methods and public web service API are available in the following article: "The
ProcessEngineService.svc web service".

Contents
Choosing the method of integration with bpm'online
Authenticating external requests to bpm'online services
The AuthService.svc authentication service
Protection from CSRF attacks during integration with bpm'online
DataService web service
OData
Integration of third-party sites via iframe
Web-To-Object. Using landings and web-forms
The ProcessEngineService.svc web service

Choosing the method of integration with bpm'online

Introduction

Bpm’online developer guide 691

Bpm’online enables range of methods for integration with third-party software products. Choosing the method of
integration depends on the needs of the client, the type and architecture of third-party software products and the
developer's skills. A comparison of the main characteristics of the supported methods of integration with bpm'online
is given in Table 1.

Table 1. Comparison of main methods of integration with bpm’online

DataService OData Configuration
service

Web-to-
Object

iframe

Supported formats of the data exchange

XML, JSON, JSV,
CSV

XML, JSON XML, JSON JSON No

Tasks are being solved

CRUD operations
with bpm'online
objects, data
filtering and use of
built-in bpm'online
macros

CRUD-operations with objects,
adding and removing links,
obtaining metadata,
collections, object fields,
sorting, etc.

All user tasks that
can be solved within
the open bpm'online
API

Only adding objects Only
interaction
with user
interface of
the
integrated
third-party
web
application
(web page).

Complexity

High Medium Medium Medium Low

Ways of authentication

Forms Basic, Forms Anonymous, Forms
— depends on
service
implementation.

Forms Forms (with
bpm'online)

Availability of auxiliary custom libraries

Bpm’online .dll
libraries can be used
only for .NET
applications

Enabled

http://www.odata.org/libraries

No need No need No need

Developer

bpm'online Microsoft bpm'online bpm'online bpm'online

A brief description and the main advantages and disadvantages of each of the methods are given below.

Integration with DataService
The DataService web service is the main link between the bpm'online client and server parts. It helps to transfer the
data that were entered by user via user interface to server side of the application for further processing and saving to
the database. More information about the DataService web service can be found in the “DataService web
service” article.

Key benefits and integration options

Data exchange with XML, JSON, JSV, CSV.
Available operations of creating, reading, updating and deleting the bpm’online objects (CRUD
operations). You can use built-in macros and data filtering. Batch processing is available for

Bpm’online developer guide 692

http://www.odata.org/libraries

complex queries.
User authorization is required for access.

Disadvantages

High complexity of query building.
Required in-depth knowledge for development.
Auxiliary libraries for popular application and mobile platforms are disabled.

Example

An example of the source code of a simple application for sending adding data request to the DataService web
service is given below. A request is made to create a new contact, for which the main columns are filled. Detail
description of this example can be found in the “DataService. Adding records

using System;
using System.Text;
using System.IO;
using System.Net;
using System.Collections.Generic;
using Terrasoft.Nui.ServiceModel.DataContract;
using Terrasoft.Core.Entities;
using System.Web.Script.Serialization;

namespace DataServiceInsertExample
{
 class Program
 {
 private const string baseUri = @"http://userapp.bpmonline.com";
 private const string authServiceUri = baseUri +
@"/ServiceModel/AuthService.svc/Login";
 private const string insertQueryUri = baseUri +
@"/0/DataService/json/reply/InsertQuery";
 private static CookieContainer AuthCookie = new CookieContainer();

 private static bool TryLogin(string userName, string userPassword)
 {
 bool result = false;
 // TODO: Implementation of authentication.
 return result;
 }

 static void Main(string[] args)
 {
 if (!TryLogin("User1", "User1"))
 {
 return;
 }
 // Generate a JSON object for requesting the addition of data.
 // Use the InsertQuery data contract.
 var insertQuery = new InsertQuery()
 {
 RootSchemaName = "Contact",
 ColumnValues = new ColumnValues()
 };
 var columnExpressionName = new ColumnExpression
 {
 ExpressionType = EntitySchemaQueryExpressionType.Parameter,
 Parameter = new Parameter
 {
 Value = "John Smith",

Bpm’online developer guide 693

 DataValueType = DataValueType.Text
 }
 };
 var columnExpressionPhone = new ColumnExpression
 {
 ExpressionType = EntitySchemaQueryExpressionType.Parameter,
 Parameter = new Parameter
 {
 Value = "+12 345 678 00 00",
 DataValueType = DataValueType.Text
 }
 };
 var columnExpressionJob = new ColumnExpression
 {
 ExpressionType = EntitySchemaQueryExpressionType.Parameter,
 Parameter = new Parameter
 {
 Value = "11D68189-CED6-DF11-9B2A-001D60E938C6",
 DataValueType = DataValueType.Guid
 }
 };
 insertQuery.ColumnValues.Items = new Dictionary<string, ColumnExpression>
();
 insertQuery.ColumnValues.Items.Add("Name", columnExpressionName);
 insertQuery.ColumnValues.Items.Add("Phone", columnExpressionPhone);
 insertQuery.ColumnValues.Items.Add("Job", columnExpressionJob);
 var json = new JavaScriptSerializer().Serialize(insertQuery);
 byte[] jsonArray = Encoding.UTF8.GetBytes(json);

 // Sending an Http-request.
 var insertRequest = HttpWebRequest.Create(insertQueryUri) as
HttpWebRequest;
 insertRequest.Method = "POST";
 insertRequest.ContentType = "application/json";
 insertRequest.CookieContainer = AuthCookie;
 insertRequest.ContentLength = jsonArray.Length;
 using (var requestStream = insertRequest.GetRequestStream())
 {
 requestStream.Write(jsonArray, 0, jsonArray.Length);
 }
 using (var response = (HttpWebResponse)insertRequest.GetResponse())
 {
 using (StreamReader reader = new
StreamReader(response.GetResponseStream()))
 {
 Console.WriteLine(reader.ReadToEnd());
 }
 }
 }
 }
}

Integration with OData
Open Data (OData) protocol is an open web protocol for data request and update based on the REST architectural
approach using Atom/XML and JSON standards. Any third-party application that supports HTTP messaging and
can process XML or JSON data can have the access to the bpm’online data and objects. Data is available as resources
addressed through a URI. Access to the data and modification are performed by standard HTTP commands (GET,
PUT, MERGE, POST and DELETE). More information about OData protocol can be found in the “Possibilities for
the bpm'online integration over the OData protocol” article.

Bpm’online developer guide 694

http://www.odata.org/libraries

Key benefits and integration options

Data exchange with XML, JSON.
A lot of operations with bpm'online objects, including CRUD operations.
Convenient functions for working with strings, dates and time.
A large number of custom libraries for working with OData for popular application and mobile platforms.
User authorization is required for access.

More information about OData integration can be found in the “Possibilities for the bpm'online integration
over the OData protocol” article.

Disadvantages

Complexity of query building.
Requires advanced skills for development.

Case example

Example of method source code for adding a new contact record using OData is given below. Detail description of
this example can be found in the “Working with bpm'online objects over the OData protocol using Http
request” article.

// POST <bpm'online URL>/0/ServiceModel/EntityDataService.svc/ContactCollection/

public static void CreateBpmEntityByOdataHttpExample()
{
 // Create an xml message that contains information about the object being
created.
 var content = new XElement(dsmd + "properties",
 new XElement(ds + "Name", "John Smith"),
 new XElement(ds + "Dear", "John"));
 var entry = new XElement(atom + "entry",
 new XElement(atom + "content",
 new XAttribute("type", "application/xml"), content));
 Console.WriteLine(entry.ToString());
 // Create a service request that will add a new object to the collection of
contacts.
 var request = (HttpWebRequest)HttpWebRequest.Create(serverUri +
"ContactCollection/");
 request.Credentials = new NetworkCredential("BPMUserName", "BPMUserPassword");
 request.Method = "POST";
 request.Accept = "application/atom+xml";
 request.ContentType = "application/atom+xml;type=entry";
 // Write an xml message to the request thread.
 using (var writer = XmlWriter.Create(request.GetRequestStream()))
 {
 entry.WriteTo(writer);
 }
 // Receiving a response from the service about the result of the operation.
 using (WebResponse response = request.GetResponse())
 {
 if (((HttpWebResponse)response).StatusCode == HttpStatusCode.Created)
 {
 // Processing the result of the operation.
 }
 }
}

Integration with custom configuration web service
Bpm’online enables to create custom web services in the configuration that can implement specific integration tasks.

Bpm’online developer guide 695

Configuration web service is a RESTful service implemented on the basis on WCF technology. More information
about creation of custom configuration web service can be found in the “How to create custom configuration
service” article.

Key benefits and integration options

Data exchange is implemented by developer in any convenient way.
Developer can implement any operation with bpm'online objects, including CRUD operations.
User authorization is not required for access.

Disadvantages

The entire functionality of the service need to be developed.
Required in-depth knowledge for development.

Case example

The complete source code of the configuration service is available below: Service adds the "changed!” word to the
incoming parameter and sends a new value in the HTTP answer. Detail description of this example can be found in
the “How to create custom configuration service” article.

namespace Terrasoft.Configuration.CustomConfigurationService
{
 using System;
 using System.ServiceModel;
 using System.ServiceModel.Web;
 using System.ServiceModel.Activation;

 [ServiceContract]
 [AspNetCompatibilityRequirements(RequirementsMode =
AspNetCompatibilityRequirementsMode.Required)]
 public class CustomConfigurationService
 {
 [OperationContract]
 [WebInvoke(Method = "POST", RequestFormat = WebMessageFormat.Json, BodyStyle
= WebMessageBodyStyle.Wrapped,
 ResponseFormat = WebMessageFormat.Json)]
 public string GetTransformValue(string inputParam)
 {
 // Change the value of the incoming parameter.
 var result = inputParam + " changed!";
 return result;
 }
 }
}

Integration with Web-To-Object mechanism.
Web-to-Object is a mechanism of implementation of simple one-way integrations with bpm'online. It enables you to
create records of the bpm’online sections (leads, cases, orders, etc.) by sending required data to the Web-to-Object
service.

More common cases of using Web-to-Object service:

Bpm’online integration with custom landings and web forms. The service call is executed from a
specifically configured user web page (lending) after the visitor sends the data of the filled form.

Integration with external systems that are involved in creation of bpm’online objects.

More information about the Web-To-Object can be found in the “Web-To-Object. Using landings and web-
forms

Key benefits and integration options

Bpm’online developer guide 696

Data transfer with JSON.
Easy creation of bpm'online objects.
To access you need only URL of the service and Id.
Required only basic knowledge for development.

Disadvantages

Data transfer only in the bpm’online.
Limited number of objects to use. Service needs to be modified to use custom objects.

Case example

To use service, send the POST query by the address:

[Path to bpm'online
application]/0/ServiceModel/GeneratedObjectWebFormService.svc/SaveWebFormObjectData

Query content type – application/json. Insert required cookies and a JSON object that contains data of the web
form, to the query content. Example of the JSON object that contains data for creation of a new contact:

{
 "formData":{
 "formId":"d66ebbf6-f588-4130-9f0b-0ba3414dafb8",
 "formFieldsData":[
 {"name":"Name","value":"John Smith"},
 {"name":"Email","value":"j.smith@bpmoline.com"},
 {"name":"Zip","value":"00000"},
 {"name":"MobilePhone","value":"0123456789"},
 {"name":"Company","value":"bpmonline"},
 {"name":"Industry","value":""},
 {"name":"FullJobTitle","value":"Sales Manager"},
 {"name":"UseEmail","value":""},
 {"name":"City","value":"Boston"},
 {"name":"Country","value":"USA"},
 {"name":"Commentary","value":""},
 {"name":"BpmHref","value":"http://localhost/Landing/"},
 {"name":"BpmSessionId","value":"0ca32d6d-5d60-9444-ec34-5591514b27a3"}
]
 }
}

Integration of third-party sites via iframe
The most simple way to integrate external solutions to bpm'online. The third-party web application can be
implemented to bpm’online with the iframe HTML element. This enables to view third-party web resources (web
pages, video, etc.) from bpm’online. Examples of integration via iframe can be found in the “Integration of third-
party sites via iframe” and “Developing an advanced marketplace application” (Marketplace development
documentation).

Key benefits and integration options

Convenience of viewing the third-party web resources directly from the bpm’online.
Requires only basic skills for development.

Disadvantages

Needs to be modified for data transfer (or use another integration method).
Some sites prohibit uploading of their pages into the iframe element.

Case example

Bpm’online developer guide 697

https://academy.bpmonline.com/documents/technic-sdkmp/7-10/developing-advanced-marketplace-application
https://academy.bpmonline.com/documents/technic-sdkmp/7-10/developing-applications-bpmonline-marketplace
https://academy.bpmonline.com/documents/technic-sdkmp/7-10/developing-applications-bpmonline-marketplace

An example of the source code of the view model schema of bpm’online edit page with the implemented iframe
element is given below. On the page, the iframe element displays a web site which URL is specified in the object
associated with the page. Detail description of this example can be found in the “Developing an advanced
marketplace application” article. Another approach is described in the “Integration of third-party sites via
iframe” article.

define("tsaWebData1Page", [], function() {
 return {
 entitySchemaName: "tsaWebData",
 diff: /**SCHEMA_DIFF*/[
 // ...
 // A container with an embedded HTML iframe element.
 {
 "operation": "insert",
 "name": "IFrameStat",
 "parentName": "TabData",
 "propertyName": "items",
 "values": {
 "id": "testiframe",
 "itemType": Terrasoft.ViewItemType.CONTAINER,
 "selectors": {"wrapEl": "#stat-iframe"},
 "layout": { "colSpan": 24, "rowSpan": 1, "column": 0, "row": 0 },
 "html": "<iframe id='stat-iframe' class='stat-iframe'
width='100%' height='550px'" +
 "style = 'border: 1px solid silver;'></iframe>",
 "afterrerender": {
 "bindTo": "addUrl"
 }
 }
 }
]/**SCHEMA_DIFF*/,
 methods: {
 // The event handler for the full data load.
 onEntityInitialized: function() {
 this.callParent(arguments);
 this.addUrl();
 },
 // The method of adding a URL to an HTML iframe element.
 addUrl: function() {
 var iframe = Ext.get("stat-iframe");
 if (!iframe) {
 window.console.error("The tab with iframe element was not
found");
 return;
 }
 var siteName = this.get("tsaName");
 if (!siteName) {
 window.console.error("The website name was not provided");
 return;
 }
 var url = "https://www.similarweb.com/website/" + siteName;
 this.set("tsaURL", url);
 iframe.dom.src = url;
 }
 }
 };
});

Authenticating external requests to bpm'online services

Bpm’online developer guide 698

https://academy.bpmonline.com/documents/technic-sdkmp/7-10/developing-advanced-marketplace-application
https://academy.bpmonline.com/documents/technic-sdkmp/7-10/developing-advanced-marketplace-application

Introduction
A critical part of most web applications is identifying the users and managing their access to the application’s
resources. Authentication is the process of confirming the user’s identity. To pass the authentication, the user must
prove that the login attempt is made by this particular user. Usually, the identity proof consists of the user’s
credentials: login and password.

All external requests to web services must be authenticated. Bpm’online supports the following authentication
methods:

Anonymous authentication.
Basic authentication.
Authentication via Cookies (the “Form-based authentication”).

Advantages and disadvantages of different methods of authentication are available in table 1.

Table 1. Authentication type comparison

Authentication
type

Advantages Disadvantages Usage

Anonymous Best performance.

Does not require user
account management.

Does not identify
individual users.

Access to bpm’online public
functions, such as the login
page, logo, certain web services.

Basic Widely used.

Works with proxy servers.

Identifies individual users.

Not secure without
SSL/TLS.

Only access to
EntityDataService.svc (OData).

Forms (Cookies) Additional attributes for
user credentials.

Identifies individual users.

Not secure without
SSL/TLS.

Most of bpm’online resources
and web services.

Details on each method are available below.

Anonymous authentication
Anonymous authentication provides user access to the publicly available functions of the web application without
the need to enter login credentials. From the technical perspective, the authentication is not performed, since the
user does not have to provide username and password. Instead, IIS provides Windows previously saved
authentication data for a special user.

Anonymous authentication is performed on the IIS level and is enabled by default. When the anonymous
authentication is used, IIS does not require any other authentication schemes, provided the corresponding NTFS
access permissions were granted for the resource.

Advantages

Provides the best performance.
Does not require user account management.

Disadvantages

Does not identify users individually.

Bpm’online developer guide 699

Usage

In bpm’online, anonymous authentication is used for accessing resources that are provided to all users, without
authentication. Such resources include the login page, website logo, several web services (for example,
AuthService.svc, UserService.svc, etc.).

Basic authentication
Basic authentication is a part of HTTP specification. This is a standard authentication method via HTTP headings.
User credentials (username and password) in Base64 are added to the heading of the request to the service. Basic
authentication is also performed on the IIS level.

ATTENTION

Basic authentication is not a secure authentication method, since the data are transfered openly. Use this
authentication method only when interacting with the system via SSL (HTTPS) protocol.

To ensure security during the data transfer, authenticate external requests to bpm’online via
AuthService.svc.

ATTENTION

To use Basic authentication in an application integrated with bpm’online, disable protection from CSRF
attacks.

Advantages

This authentication method is part of HTTP 1.0 specification and is widely used.
Can perform authentication through proxy servers.
Identifies users individually.

Disadvantages

Not secure without SSL/TLS.

Usage

ATTENTION

Using Basic authentication, you can authenticate users only in the EntityDataService.svc, which can integrate
with bpm’online via the OData protocol. It is recommended to use AuthService.svc and corresponding
Cookies for other external requests.

Form-based authentication (Cookies)
ASP.NET has additional authentication methods that are performed only after IIS authentication (usually,
anonymous).

One of the additional authentication methods implemented in ASP.NET is Form-based authentication (also known
as Cookie-based authentication).

The Form-based authentication provider enables receiving user account data sent via POST request (for example,
using an HTML or AJAX form). The user provides username and password for authentication directly to the web
application. After successful authentication, the application provides the user special cookies that the user must add
to the subsequent requests. If the request to a protected resource does not contain cookies, the application redirects
the user to the login page. For more on the Form-based authentication, please see a separate article.

Bpm’online’s Form-based authentication uses the AuthService.svc web service.

Advantages

Bpm’online developer guide 700

https://msdn.microsoft.com/en-us/library/9fw3ef80.aspx

In addition to login and password, Form-based authentication enables using other attributes of user
accounts, such as email address.
Identifies users individually.

Disadvantages

Can be subject to attacks using cookie lifespan, unless SSL/TLS is used.

Usage

This authentication method is used for accessing most of bpm’online resources and pages.

ATTENTION

Starting with version 7.10, bpm’online has a mechanism for protection from CSRF attacks. To enable the
protection, make additional changes to the integration processes that use DataService or OData (see
"Protection from CSRF attacks during integration with bpm'online").

The AuthService.svc authentication service

To pass the authentication, call the Login() method of the AuthService.svc service. The service request string is as
follows:

http(s)://[bpm'online application address]/ServiceModel/AuthService.svc/Login

Example:

https://mycompany.bpmonline.com/ServiceModel/AuthService.svc/Login

Service request parameters:

Method: POST
ContentType: application/json

The request must pass bpm’online user credentials. The credentials are passed in the form of a JSON object with the
following properties.

UserName: Bpm’online user name
UserPassword: Bpm’online user password

The titles of the reply to the POST request contain authentication cookies that must be saved on the client side or a
client PC and used for future requests to bpm’online web services.

The reply also contains a JSON object of the authentication status. The primary properties of the returned JSON
object are available in table 1.

Table 1. General properties of the authentication status JSON object

Property Description

Code Authentication status code. The authentication is successful if the value is “0”.
Otherwise the authentication has failed.

Message The message that contains the reason for failing the authentication.

Exception The object that contains a detailed description of an exception that caused the
authentication to fail.

An example of calling the AuthService.svc

Bpm’online developer guide 701

https://en.wikipedia.org/wiki/Cross-site_request_forgery

This example contains an implementation of a C# console application that creates a request to the AuthService.svc
for user authentication. User credentials are passed to the TryLogin() method as incoming parameters “userName”
and “userPassword”. The method returns true upon successful authentication and false if the authentication has
failed. A message with the reason for failed authentication will be sent to console.

To implement this example, create a simple console C# application in the Visual Studio: “RequestAuthentification”
Add the System.Web.Extensions.dll system library (Fig. 1) to the dependencies (References) of the Visual Studio
project. This library is needed for conversion of the authentication status JSON object from a string to a C# object
(de-serialization).

Fig. 1. Visual Studio project dependencies

Add the following program code to the Program.cs file of the created application:

using System;
using System.IO;
using System.Net;

namespace RequestAuthentification
{
 // Auxiliary class for de-serialization of the JSON object from the HTTP reply.
 class ResponseStatus
 {
 public int Code { get; set; }
 public string Message { get; set; }
 public object Exception { get; set; }
 public object PasswordChangeUrl { get; set; }
 public object RedirectUrl { get; set; }
 }

 // Primary class of the application.
 class Program
 {
 // HTTP address of the application.
 private const string baseUri = "http://mybpmonlineapp.com";
 // Container for Cookie authentication in bpm'online. Must be used in
subsequent requests.
 // This is the most important resulting object.
 // The rest of the functions in this example are developed for implementation
of its properties.

Bpm’online developer guide 702

 public static CookieContainer AuthCookie = new CookieContainer();
 // A request string to the "Login" method of the "AuthService.svc" service.
 private const string authServiceUri = baseUri +
@"/ServiceModel/AuthService.svc/Login";

 // Performs user authentication request.
 public static bool TryLogin(string userName, string userPassword)
 {
 // Creating an instance of the authentication service request.
 var authRequest = HttpWebRequest.Create(authServiceUri) as
HttpWebRequest;
 // Defining the request's method.
 authRequest.Method = "POST";
 // Defining the request's content type.
 authRequest.ContentType = "application/json";
 // Enabling the use of cookie in the request.
 authRequest.CookieContainer = AuthCookie;

 // Placing user credentials to the request.
 using (var requestStream = authRequest.GetRequestStream())
 {
 using (var writer = new StreamWriter(requestStream))
 {
 writer.Write(@"{
 ""UserName"":""" + userName + @""",
 ""UserPassword"":""" + userPassword + @"""
 }");
 }
 }

 // Auxiliary object where the HTTP reply data will be de-serialized.
 ResponseStatus status = null;
 // Getting a reply from the server. If the authentication is successful,
cookie will be placed to the AuthCookie property.
 // These cookies can be used for subsequent requests.
 using (var response = (HttpWebResponse)authRequest.GetResponse())
 {
 using (var reader = new StreamReader(response.GetResponseStream()))
 {
 // De-serialization of the HTTP reply to an auxiliary object.
 string responseText = reader.ReadToEnd();
 status = new
System.Web.Script.Serialization.JavaScriptSerializer().Deserialize<ResponseStatus>
(responseText);
 }

 }

 // Checking authentication status.
 if (status != null)
 {
 // Authentication is successful.
 if (status.Code == 0)
 {
 return true;
 }
 // Authentication is unsuccessful.
 Console.WriteLine(status.Message);
 }
 return false;
 }

Bpm’online developer guide 703

 // Application login method.
 static void Main(string[] args)
 {
 // Calling authentication method.
 Console.WriteLine("Is authentication successful?: {0}", TryLogin("User
1", "User 1"));
 Console.WriteLine("Press ENTER to close...");
 Console.ReadLine();
 }
 }
}

The authentication will be successful of correct user credentials were entered on calling the TryLogin() method (Fig.
2). If the credentials were invalid, an error message will be displayed (Fig. 2).

Fig. 2. Successful authentication

Fig. 3. Failed authentication

 The AuthService.svc authentication service

Protection from CSRF attacks during integration with bpm'online

Starting with version 7.10, bpm’online has a mechanism for protection from CSRF attacks. To enable the protection,
make additional changes to the integration processes that use DataService or OData.

During the integration with third-party applications, an authentication via the AuthService.svc service must be
passed. After the authentication, the AuthService returns an authentication cookie that must be added to the query,
as well as a cookie with a CSRF token that must be placed at the query title.

Examples of using authentication cookies are available in the “Authenticating external requests to
bpm'online services”, “OData” and “DataService web service” articles.

Previously, to protect against CSRF attacks, a method had to be created that was called as a response to a

Bpm’online developer guide 704

https://en.wikipedia.org/wiki/Cross-site_request_forgery

SendingRequest context instance event (creating a new HttpWebRequest instance). User authentication and cookie
transfer would be executed in this method. After the implementation of protection from CSRF attacks, adding of a
CSRF token must be implemented in this method:

static void OnSendingRequestCookie(object sender, SendingRequestEventArgs e)
{
 // Calling method of the "LoginClass" class, that implements user authentication.
 LoginClass.TryLogin("BPMUserName", "BPMUserPassword");
 var req = e.Request as HttpWebRequest;
 // Adding authentication cookie to the data reaquest.
 req.CookieContainer = LoginClass.AuthCookie;
 e.Request = req;
 // Adding a CSRF token to the request title.
 CookieCollection cookieCollection = AuthCookie.GetCookies(new
Uri(authServiceUri));
 string csrfToken = cookieCollection["BPMCSRF"].Value;
 ((HttpWebRequest)e.Request).Headers.Add("BPMCSRF", csrfToken);
}

NOTE

An example of using the OnSendingRequestCookie() method is available in the “Working with bpm'online
objects over the OData protocol WCF-client” article.

Attention!

Protection from CSRF attacks works only if the Form-authentication is used.

How to disable CSRF attack protection
To disable protection from CSRF attacks, disable the UseCsrfToken setting in the \Web.Config and
.\Terrasoft.WebApp\Web.Config files:

<add key="UseCsrfToken" value="true" />

You can also specify service methods which will be called without checking the availability of the CSRF token. Use
the DisableCsrfTokenValidationForPaths setting in the .\Web.Config.

Example of disabling CSRF protection for two different methods of different services:

<add key="DisableCsrfTokenValidationForPaths"
value="/MsgUtilService.svc/Ping,/AuthService.svc/Login" />

Example of disabling CSRF protection for one service completely:

<add key="DisableCsrfTokenValidationForPaths" value="/ServiceModel/service_name" />

DataService web service

General information
The DataService web service is used for handling the requests from the bpm'online client side.

The full list and description of the DataService data contracts is displayed on table 1.

Table 1. The bpm'online application DataService services

Bpm’online developer guide 705

Service Description
SchemaDesignerRequest Schema designer request class Not recommended to use.

EntitySchema Object schema class. Not recommended to use.

ClientUnitSchema Client schema class. Not recommended to use.

RemoveEntitySchemaRequest Remove object schema request. Not recommended to use.

RemoveClientUnitSchemaRequest Remove client schema request. Not recommended to use.

EntitySchemaRequest Receive object schema instance request. Not recommended to use.

ClientUnitSchemaRequest Receive client object schema instance request. Not recommended to use.

ProcessUserTaskSchemaRequest Receive business process user action schema request. Not recommended to
use.

UpdatePackageSchemaDataRequest Receive package schema data update request. Not recommended to use.

ProcessSchemaRequest Receive process schema instance request. Not recommended to use.

ContractProcessSchema Process schema contract class. Not recommended to use.

RemoveProcessSchemaRequest Remove process schema request. Not recommended to use.

InsertQuery Add section record query class.

UpdateQuery Update section record query class.

DeleteQuery Delete section record query class.

SelectQuery Select section record query class.

BatchQuery Package query class.

UserProfile User profile class. Not recommended to use.

QueryProfile Query profile class. Not recommended to use.

QuerySysSettings Receive system settings list request. Not recommended to use.

PostSysSettingsValue Set system setting value class. Not recommended to use.

PostSysSettingsValues Set system setting values class. Not recommended to use.

Filters Filter class.

QueryModuleDescriptors Receive module descriptors query class. Not recommended to use.

ClientLoggerDataContract Client log data class. Not recommended to use.

PostClientLog Client log post class. Not recommended to use.

UploadFile File upload class. Not recommended to use.

GetTelephonyConfig Receive telephony configuration settings class. Not recommended to use.

InsertSysSettingRequest Add system setting query class. Not recommended to use.

UpdateSysSettingRequest Edit system setting query class. Not recommended to use.

DeleteSysSettingRequest Delete system setting query class. Not recommended to use.

GetTests Receive all Unit tests class. Not recommended to use.

RunTests Run Unit tests class. Not recommended to use.

DataService. Adding records

Bpm’online developer guide 706

General information
The bpm'online DataService web service is a RESTfull service. RESTful is a quite simple information management
interface that doesn't use any additional internal layers, i.e., the data doesn't need to be converted to any third-party
format, such as XML. In a simple RESTful service, each record is uniquely identified by a global identifier such as
URL. Each URL, in turn, has a strictly specified format. However, this service is not always convenient for
transferring large amounts of data.

With the use of the DataService, the data can be automatically configured in various data formats such as XML,
JSON, HTML, CSV, and JSV. The data structure is determined by data contracts. A complete list of data contracts
used by the DataService, can be found in the "DataService web service" article.

InsertQuery data contract
The InsertQuery data contract is used to add records to sections. The data is transferred to the DataService via
HTTP by using the POST request with the following URL:

// URL format of the POST query to add data to DataService.
http(s)://[Bpm'online application address]/[Configuration number]/dataservice/[Data
fromat]/reply/InsertQuery
// URL example for the POST query to add data to DataService.
http(s)://example.bpmonline.com/0/dataservice/json/reply/InsertQuery

The InsertQuery data contract has a hierarchical structure with multiple nesting levels. In the bpm'online
application server part, the InsertQuery data contract is represented by the InsertQuery class of the
Terrasoft.Nui.ServiceModel.DataContract namespace of the Terrasoft.Nui.ServiceModel.dll class library. However,
for simplicity, the hierarchical structure of the InsertQuery data contract is conveniently presented as a JSON
format object:

{
 "RootSchemaName":"[Root object schema name]",
 "OperationType":[Record operation type],
 "ColumnValues":{
 "Items":{
 "Added column name":{
 "ExpressionType":[Expression type],
 "Parameter":{
 "DataValueType":[Data type],
 "Value":"[Column value]"
 }
 }...
 }
 }
}

The basic properties of the InsertQuery class and their possible values are presented in table 1.

Table 1. InsertQuery class properties.

Property Description
RootSchemaName A string containing the name of the root object schema of the added record.

OperationType Operation type is set by the QueryOperationType namespace
Terrasoft.Nui.ServiceModel.DataContract namespace enumeration value. For the
InsertQuery theQueryOperationType.Insert value is set.

QueryOperationType enumeration values:

Bpm’online developer guide 707

https://en.wikipedia.org/wiki/Representational_state_transfer
https://msdn.microsoft.com/en-us/library/ms733127(v=vs.110).aspx

Select 0

Insert 1

Update 2

Delete 3

Batch 4

ColumnValues Contains a collection of column values of the added record. Its ColumnValues type is
defined in the Terrasoft.Nui.ServiceModel.DataContract namespace.

The ColumnValues class has a single Items property that is defined as a collection of the Dictionary<string,
ColumnExpression> keys and values. The key is a string with the added column title, and the value is the object with
the ColumnExpression type defined in theTerrasoft.Nui.ServiceModel.DataContract namespace. The basic
properties of the ColumnExpression class used when adding records, are given in table 2.

Table 2. ColumnExpression class main properties

Property Description
ExpressionType The expression type that defines the value that will be contained in the added

column. Set by the EntitySchemaQueryExpressionType enumeration of the
Terrasoft.Core.Entities namespace defined in the Terrasoft.Core class library. For
the InsertQuery the EntitySchemaQueryExpressionType.Parameter value is set.

EntitySchemaQueryExpressionType enumeration type:

SchemaColumn 0

Function 1

Parameter 2

SubQuery 3

ArithmeticOperation 4

Parameter Defines the value that will be contained in the added column. Its Parameter type is
defined in the Terrasoft.Nui.ServiceModel.DataContract namespace.

The Parameter class has multiple properties, two of which are used to add records (table 3).

Table 3 Parameter class main properties

Property Description
DataValueType The data value type that defines the value that will be contained in the added

column. Set by the DataValueType enumeration value of
theTerrasoft.Nui.ServiceModel.DataContract namespace.

DataValueType enumeration type:

Guid 0

Text 1

Integer 4

Float 5

Money 6

DateTime 7

Date 8

Time 9

Lookup 10

Bpm’online developer guide 708

Enum 11

Boolean 12

Blob 13

Image 14

ImageLookup 16

Color 18

Mapping 26

Value The object that contains the added column value.

Creating a record using a third-party application example
Case description

You need to create a console application that will add the following data to the [Contact] section using the
DataService service:

Full name — John Best
Full job title — Developer
Business phone — +12 345 678 00 00.

Case implementation algorithm

1 Сreate and configure a C# console application project

Using the Microsoft Visual Studio (version 2017 and up) development environment, create a Visual C# console
application project and name it DataServiceInsertExample. The [Target framework] project property must be set to
.NET Framework 4.7.

In the References section of the project you need to add dependencies of the following libraries:

System.Web.Extensions.dll is a class library included in the .NET Farmework
Terrasoft.Core.dll is a main class library of the application server kernel. Can be found by the following
path: [Directory with the installed application]\Terrasoft.WebApp\bin\Terrasoft.Core.dll
Terrasoft.Nui.ServiceModel.dll class library the application services. Can be found by the following path:
[Directory with the application installed]\Terrasoft.WebApp\bin\Terrasoft.Nui.ServiceModel.dll.

Add using directives to the application source code file:

using System;
using System.Text;
using System.IO;
using System.Net;
using System.Collections.Generic;
using Terrasoft.Nui.ServiceModel.DataContract;
using Terrasoft.Core.Entities;
using System.Web.Script.Serialization;

2 Add field declarations and constants to the application source code

To access the DataService features, you must add the following fields and constants to the application source code:

// Main bpm'online URL. Has to be changed to a custom one.
private const string baseUri = @"http://example.bpmonline.com";
// Query string to the Login method of the AuthService.svc service.
private const string authServiceUri = baseUri +
@"/ServiceModel/AuthService.svc/Login";

Bpm’online developer guide 709

// InsertQuery query path string.
private const string insertQueryUri = baseUri +
@"/0/DataService/json/reply/InsertQuery";
// Bpm'online cookie authentication.
private static CookieContainer AuthCookie = new CookieContainer();

Three string constant fields that are used to carry out the authentication requests and requests to add data are
declared here. The authentication data will be stored in the AuthCookie field.

3 Add a method that performs authentication in the bpm'online application

You need to authenticate the newly created application to access the DataService web service.

The algorithm and an implementation example of a method that performs a request to the AuthService.svc service
for user authentication can be found in the Authenticating external requests to bpm'online services article.

4 Add the direct implementation of the add record query

As the previously declared insertQueryUri constant contains the path for sending data in JSON format, then the
data sent must be pre-configured in the form of a string containing a description of the JSON object corresponding
to the InsertQuery data contract. This can be done directly in a lowercase variable but it is much easier and safer to
create an instance of the InsertQuery class, fill its properties, and then serialize it to a string. This can be done by
adding the following source code:

// Query class instance.
var insertQuery = new InsertQuery()
{
 // Root schema name.
 RootSchemaName = "Contact",
 // Added column values collection.
 ColumnValues = new ColumnValues()
};
// Expression class instance of the object schema query.
// Used to configure the [Full name] column.
var columnExpressionName = new ColumnExpression
{
 // Query object schema expression type — parameter.
 ExpressionType = EntitySchemaQueryExpressionType.Parameter,
 // Query expression parameter.
 Parameter = new Parameter
 {
 // Parameter value.
 Value = "John Best",
 // Parameter data type — string.
 DataValueType = DataValueType.Text
 }
};

// Expression class instance of the object schema query.
// Used to configure the [Business phone] column.
var columnExpressionPhone = new ColumnExpression
{
 ExpressionType = EntitySchemaQueryExpressionType.Parameter,
 Parameter = new Parameter
 {
 Value = "+12 345 678 00 00",
 DataValueType = DataValueType.Text
 }
};
// Expression class instance of the object schema query.
// Used to configure the [Job title] column.
var columnExpressionJob = new ColumnExpression
{

Bpm’online developer guide 710

 ExpressionType = EntitySchemaQueryExpressionType.Parameter,
 Parameter = new Parameter
 {
 // The "Developer" record GUID of the [Job title] system lookup.
 // Change to the record GUID in bpm'online.
 Value = "11D68189-CED6-DF11-9B2A-001D60E938C6",
 // Parameter data type — unique ID.
 DataValueType = DataValueType.Guid
 }
};
// Query column collection initialization.
insertQuery.ColumnValues.Items = new Dictionary<string, ColumnExpression>();
// Adding query expressions to the added column collection.
// The [Full name] column.
insertQuery.ColumnValues.Items.Add("Name", columnExpressionName);
// The [Business phone] column.
insertQuery.ColumnValues.Items.Add("Phone", columnExpressionPhone);
// The [Job title] column.
insertQuery.ColumnValues.Items.Add("Job", columnExpressionJob);
// Class instance serialization of the JSON string adding query.
var json = new JavaScriptSerializer().Serialize(insertQuery);

NOTE

In this example, to reduce the article size, a unique identifier of the "Developer" record of the [Position]
lookup is represented as a string literal. It can be defined, for example, using the SelectQuery query with the
job title filter.

In the final step you must perform POST query to the DataService service. To do this, create an instance of the
HttpWebRequest class, fill in its properties, attach a previously created string with the JSON object to a request, and
then execute and process the result of the query to the DataService service. To do this, add the following source
code:

// Converting JSON string object to a byte array.
byte[] jsonArray = Encoding.UTF8.GetBytes(json);
// Creating HTTP query instance.
var insertRequest = HttpWebRequest.Create(insertQueryUri) as HttpWebRequest;
// Defining method query.
insertRequest.Method = "POST";
// Defining query content type.
insertRequest.ContentType = "application/json";
// Adding the previously received authenticated cookie to the receiveing data query.
insertRequest.CookieContainer = AuthCookie;
// Define query content length.
insertRequest.ContentLength = jsonArray.Length;
// Adding a JSON object to the query.
using (var requestStream = insertRequest.GetRequestStream())
{
 requestStream.Write(jsonArray, 0, jsonArray.Length);
}
// Executing the HTTP query and receiving answer from server.
using (var response = (HttpWebResponse)insertRequest.GetResponse())
{
 // Displaying answer in console.
 using (StreamReader reader = new StreamReader(response.GetResponseStream()))
 {
 Console.WriteLine(reader.ReadToEnd());
 }
}

Creating a record in bpm'online example

Bpm’online developer guide 711

https://msdn.microsoft.com/en-us/library/system.net.httpwebrequest(v=vs.110).aspx

Case description

Add to the [Contact] section a button that when clicked invokes a method, using the InsertQuery class that adds a
record with the following data:

Full name — John Best
Full job title — Developer
Business phone — +12 345 678 00 00.

Case realization

Case implementation algorithm

1 Add button to the [Contacts] section

The process of adding buttons to sections is described in the "How to add a button to a section" article.

For this particular case, you need to create a replacement client module of the [Contacts] section (Fig. 1).

Fig. 1 Replacement client module properties.

In the created client schema, add theInsertQueryContactButtonCaption localizable string, and set the "Add contact"
value to it (Fig. 2).

Fig. 2 Localizable string properties

Add a configuration object with the button location settings to the diff array.

diff: /**SCHEMA_DIFF*/[
 // Metadata to be added to the custom button section.
 {
 // The element is added to the page.
 "operation": "insert",
 // Parent interface element name to which the button is added.
 "parentName": "ActionButtonsContainer",
 // The button is added to the interface element collection
 // of the parent element (its metaname is specified in parentName).
 "propertyName": "items",
 // Added button metaname.

Bpm’online developer guide 712

 "name": "InsertQueryContactButton",
 // Additional element properties.
 "values": {
 // Added element type — button.
 itemType: Terrasoft.ViewItemType.BUTTON,
 // Binding button caption to the localizable schema string.
 caption: { bindTo: "Resources.Strings.InsertQueryContactButtonCaption" },
 // Binding method of processing the button click.
 click: { bindTo: "onInsertQueryContactClick" },
 "layout": {
 "column": 1,
 "row": 6,
 "colSpan": 1
 }
 }
 }
]/**SCHEMA_DIFF*/

2 Add the processing method for the button click event

In order for a record with the necessary data to be added when a button created in the section is clicked, add the
following method to the methods section of the replacement client schema:

methods: {
 // Method of processing the button click.
 onInsertQueryContactClick: function() {
 // Creating the Terrasoft.InsertQuery class instance.
 var insert = Ext.create("Terrasoft.InsertQuery", {
 // Root schema name.
 rootSchemaName: "Contact"
 });
 // Setting the Terrasoft.ParameterExpression value-parameters.
 // A value-parameter instance is created and added to the column value
collection.
 // Creating a value-parameter instance for the [Job title] column.
 insert.setParameterValue("Name", "John Best", Terrasoft.DataValueType.TEXT);
 // Creating a value-parameter instance for the [Business phone] column.
 insert.setParameterValue("Phone", "+12 345 678 00 00",
Terrasoft.DataValueType.TEXT);
 // Creating a value-parameter instance for the [Job title] column.
 insert.setParameterValue("Job", "11D68189-CED6-DF11-9B2A-001D60E938C6",
Terrasoft.DataValueType.GUID);
 // Data update query.
 insert.execute(function(response) {
 // Displaying server answer
 window.console.log(response);
 });
 // Updating list data.
 this.reloadGridData();
 }
}

NOTE

Unlike the previous example, authorization is not required because the code is executed directly in the
bpm'online application.

The implementation of the InsertQuery class for the client part of the application kernel is different from the
implementation of the InsertQuery in its back end. So, to create the parameters, the setParameterValue method is
used, and for the query execution — the execute method. Learn about all the available properties and methods of the
InsertQuery class implemented in the kernel client part in the API documentation.

DataService. Reading records

General provisions
The DataService web service of bpm'online is a RESTful (Representational State Transfer, REST) service. RESTful
data management interface does not require converting data to an external format, such as XML. In a simple
RESTful service, each information unit is determined by a global Identifier such as URL. Each URL, in its turn, has a
strictly specified format. This is not an optimal way to transfer large arrays of data.

With the use of the DataService, the data can be automatically configured in various data formats such as XML,
JSON, HTML, CSV, and JSV. The data structure is determined by data contracts. A complete list of data contracts
used by the DataService, can be found in the "DataService web service" article.

SelectQuery data contract
The SelectQuery data contract is used for reading section records. The query data is transferred to DataService via
HTTP, with the help of POST by the following URL:

// URL format of the POST query to read data from DataService.
http(s)://[Bpm'online application address]/[Configuration number]/dataservice/[Data
fromat]/reply/SelectQuery
// URL example of the POST query to read data from DataService.
http(s)://example.bpmonline.com/0/dataservice/json/reply/SelectQuery

The SelectQuery data contract has a complex hierarchical structure with a number of nesting levels. In the
bpm'online server core, it is represented by a SelectQuery class of theTerrasoft.Nui.ServiceModel.DataContract
namespace of the Terrasoft.Nui.ServiceModel.dll library of classes. The hierarchical data structure of the
SelectQuery data contract can be conveniently viewed in JSON format:

{
 "RootSchemaName":"[Object root schema name]",
 "OperationType":[Type of record operation],
 "Columns":{
 "Items":{
 "Name":{
 "OrderDirection":[Sorting order],
 "OrderPosition":[Column position],
 "Caption":"[Title]",
 "Expression":{
 "ExpressionType":[Expression type],
 "ColumnPath":"[Path to column]",
 "Parameter":[Parameter],
 "FunctionType":[Function type],
 "MacrosType":[Macro type],
 "FunctionArgument":[Function argument],
 "DatePartType":[Type of date part],
 "AggregationType":[Aggregation type],
 "AggregationEvalType":[Aggregation scope],
 "SubFilters":[Buit-in filters]
 }
 }
 }
 },
 "AllColumns":[Indicates that all columns are selected],
 "ServerESQCacheParameters":{

Bpm’online developer guide 713

https://academy.terrasoft.ru/jscoresdk/#!/api/Terrasoft.data.queries.InsertQuery
https://en.wikipedia.org/wiki/Representational_state_transfer
https://msdn.microsoft.com/en-us/library/ms733127(v=vs.110).aspx

 "CacheLevel":[Caching level],
 "CacheGroup":[Caching group],
 "CacheItemName":[Record key in repository]
 },
 "IsPageable":[Indicates page-by-page],
 "IsDistinct":[Indicates uniqueness],
 "RowCount":[Number of selected records],
 "ConditionalValues":[Conditions for building a pageable query],
 "IsHierarchical":[Indicates hierarchical data selection],
 "HierarchicalMaxDepth":[Maximum nesting level of the hierarchical query],
 "HierarchicalColumnName":[Column name used to create hierarchical query],
 "HierarchicalColumnValue":[Initial value of hierarchical column],
 "Filters":[Filters]
 }
}

Primary properties of the SelectQuery class and their possible values are available in table 1.

Table 1. SelectQuery class properties

Property Type Notes
RootSchemaName string String that contains root schema name of the added record

object.

OperationType QueryOperationType Type of write operation. Specified as a QueryOperationType
enumeration value of the
Terrasoft.Nui.ServiceModel.DataContract name space. The
QueryOperationType.Select value is set for SelectQuery.

Values of the QueryOperationType enumeration:

Select 0

Insert 1

Update 2

Delete 3

Batch 4

Columns SelectQueryColumns Contains a collection of the record columns being read. It has
the SelectQueryColumns type defined in the
Terrasoft.Nui.ServiceModel.DataContract name space. It
must be configured if the AllColumns checkbox is set to false
and a set of specific root schema columns, which does not
include the [Id] column, is required.

AllColumns bool Indicates if all columns are selected. If the value is set to true,
all columns of the root schema will be selected by the query.

ServerESQCache
Parameters

ServerESQCache
Parameters

Parameters of EntitySchemaQuery caching on server. The
ServerESQCacheParameters type is defined in the
Terrasoft.Nui.ServiceModel.DataContract name space.

IsPageable bool Indicates whether the data is selected page-by-page.

IsDistinct bool Indicates whether duplicates must be eliminated in the
resulting data set.

RowCount int Number of selected strings. By default, the value is -1, i.e. all
strings are selected.

ConditionalValues ColumnValues Conditions of creating a page-by-page query. The
ColumnValues type is defined in the
Terrasoft.Nui.ServiceModel.DataContract name space.

IsHierarchical bool Indicates whether the data is selected hierarchically.

Bpm’online developer guide 714

HierarchicalMaxDepth int Maximum nesting level of a hierarchical query.

hierarchicalColumnName string Name of the column used for creating a hierarchical query.

hierarchicalColumnValue string Initial value of hierarchical column from which the hierarchy
will be built.

Filters Filters Collection of query filters. The Filters type is defined in the
Terrasoft.Nui.ServiceModel.DataContract name space.

ColumnValues ColumnValues Contains collection of column values for the added record.
The ColumnValues type is defined in the
Terrasoft.Nui.ServiceModel.DataContract name space.

The SelectQueryColumns class has a single Items property, defined as a collection of keys and values
Dictionary<string, SelectQueryColumn>. The key is the string with the name of the added column. The value is an
instance of the SelectQueryColumn class, defined in the Terrasoft.Nui.ServiceModel.DataContract name space. The
properties of the SelectQueryColumn are available in the table 2.

Table 2. SelectQueryColumn class properties

Property Type Notes
OrderDirection OrderDirection Sorting order. Specified with a value from the OrderDirection

enumeration of the Terrasoft.Common name space defined in the
Terrasoft.Common class library.

OrderPosition int Sets position number in the collection of the query columns, by
which the sorting is done.

Caption string Column title.

Expression ColumnExpression Property that defines expression of the type of selected column.

The ColumnExpression class defines expression that sets the type of the schema column. The class is defined in the
Terrasoft.Nui.ServiceModel.DataContract name space of the Terrasoft.Nui.ServiceModel library. The properties of
an instance of this class are filled in depending on the ExpressionType property, which sets the expression type. The
full list of the ColumnExpression class properties is available in table 3.

Table 3. Primary properties of the ColumnExpression class

Property Type Notes
ExpressionType EntitySchemaQuery

ExpressionType
Type of expression that determines the value that the added
column will contain. Specified with a value from the
EntitySchemaQueryExpressionType enumeration of the
Terrasoft.Core.Entities name space defined in the Terrasoft.Core
class library. The
EntitySchemaQueryExpressionType.Parameter value is set for
InsertQuery.

Values of the EntitySchemaQueryExpressionType enumeration:

SchemaColumn 0 Schema column

Function 1 Function

Parameter 2 Parameter

SubQuery 3 Subquery

ArithmeticOperation 4 Arithmetic operation

ColumnPath string Path to the column in relation to the root schema. Rules for
building paths are available in the "The use of
EntitySchemaQuery for creation of queries in database"
article.

Parameter Parameter Determines the value that the added column will contain. The

Bpm’online developer guide 715

Parameter type is defined in the
Terrasoft.Nui.ServiceModel.DataContract name space.

FunctionType FunctionType Function type. Specified with a value from the FunctionType
enumeration, which is defined in the
Terrasoft.Nui.ServiceModel.DataContract name space.

Values of the FunctionType enumeration:

None 0 Not defined

Macros 1 Macro

Aggregation 2 Aggregate function

DatePart 3 Part of date value

Length 4 Length

MacrosType EntitySchemaQuery
MacrosType

Macro type. Specified with a value of the
EntitySchemaQueryMacrosType enumeration, which is defined
in the Terrasoft.Core.Entities name space.

FunctionArgument BaseExpression Function argument. Accepts a value if the function is defined
with a parameter. The BaseExpression class is defined in the
Terrasoft.Nui.ServiceModel.DataContract name space, is an
ancestor for the ColumnExpresion class and has the same set of
properties.

DatePartType DatePart Part of date value Specified with a value from the DatePart
enumeration, which is defined in the
Terrasoft.Nui.ServiceModel.DataContract name space.

Values of the DatePart enumeration:

None 0 Not defined

Day 1 Day

Week 2 Week

Month 3 Month

Year 4 Year

Weekday 5 Week day

Hour 6 Hour

HourMinute 7 Minute

AggregationType AggregationType Aggregate function type. Specified with a value from the
AggregationType enumeration defined in the
Terrasoft.Common name space defined in the
Terrasoft.Common class library.

AggregationEvalType AggregationEvalType Aggregate function scope. Specified with a value from the
AggregationEvalType enumeration defined in the
Terrasoft.Common name space defined in the
Terrasoft.Common class library.

SubFilters Filters Collection of subquery filters. The Filters type is defined in the
Terrasoft.Nui.ServiceModel.DataContract name space.

The Parameter class is defined in the Terrasoft.Nui.ServiceModel.DataContract name space. Its properties are
available in table 4.

Table 4. Parameter class properties

Bpm’online developer guide 716

Property Type Notes
DataValueType DataValueType Type of data for the value that the added column will contain.

Specified as a DataValueType enumeration value of the
Terrasoft.Nui.ServiceModel.DataContract name space.

Values of the DataValueType enumeration:

Guid 0

Text 1

Integer 4

Float 5

Money 6

DateTime 7

Date 8

Time 9

Lookup 10

Enum 11

Boolean 12

Blob 13

Image 14

ImageLookup 16

Color 18

Mapping 26

Value object The object that contains the value of the added column.

ArrayValue string[] Array of the added column values. Used when serializing arrays
and BLOBs.

ShouldSkipConvertion bool Indicates the need to skip the process of providing the type for the
Value property.

The ServerESQCacheParameters class is defined in the Terrasoft.Nui.ServiceModel.DataContract name space. Its
properties are available in table 5.

Table 5. ServerESQCacheParameters class properties

Property Type Notes
CacheLevel int Data allocation level in the EntitySchemaQuery cache.

CacheGroup string Caching group.

CacheItemName string Repository record key.

The Filters class is defined in the Terrasoft.Nui.ServiceModel.DataContract name space. For details on the
properties of this class and its use, please see the "DataService. Data filtering" article.

Example of reading records in a third-party application
Case description

Create a console application that uses DataService to read records from the [Contact] section with the following

Bpm’online developer guide 717

columns:

Id
Full name
Number of activities – aggregate column that displays the number of activities of this contact.

Case implementation algorithm

1. Create and set up a C# application project

Using the Microsoft Visual Studio development environment (version 2017 and up), create a Visual C# console
application project and specify project name, for example, DataServiceSelectExample. Set ".NET Framework 4.7" for
the project property [Target framework].

In the References section of the project, add dependencies from the following libraries:

System.Web.Extensions.dll – class library included in .NET Farmework;
Terrasoft.Core.dll – library of base bpm'online server core classes. It can be found using the following
path: [Bpm'online setup catalog]\Terrasoft.WebApp\bin\Terrasoft.Core.dll;
Terrasoft.Nui.ServiceModel.dll — application service class library. It can be found using the following
path: [Bpm'online setup catalog]\Terrasoft.WebApp\bin\Terrasoft.Nui.ServiceModel.dll;
Terrasoft.Common.dll – library of base bpm'online server core classes. It can be found using the following
path: [Bpm'online setup catalog]\Terrasoft.WebApp\bin\Terrasoft.Common.dll.

Add the "using" directives to the application source code file:

using System;
using System.Text;
using System.IO;
using System.Net;
using System.Collections.Generic;
using Terrasoft.Nui.ServiceModel.DataContract;
using Terrasoft.Core.Entities;
using System.Web.Script.Serialization;
using Terrasoft.Common;

2. Add fields and constants and field declarations to the source code

To access DataService features, add the following fields and constants to the application source code:

// Bpm'online primary application URL. Must be replaced with a custom one.
private const string baseUri = @"http://example.bpmonline.com";
// Query string to the Login method of the AuthService.svc service.
private const string authServiceUri = baseUri +
@"/ServiceModel/AuthService.svc/Login";
// SelectQuery path string.
private const string selectQueryUri = baseUri +
@"/0/DataService/json/SyncReply/SelectQuery";
// Bpm'online authentication cookie.
private static CookieContainer AuthCookie = new CookieContainer();

Here, three string fields are declared. These fields will be used to form authentication query and read data queries
execution paths. Authentication data will be saved in the AuthCookie field.

3. Add method that performs bpm'online application authentication

Authentication is required to enable access of the created application to the DataService.

Both the algorithm and example of implementation method, which contains query to AuthService.svc for user
authentication, are available in the "Authenticating external requests to bpm'online services" article.

4. Add implementation of the record add query

Because the selectQueryUri constant declared earlier contains a path for sending data in the JSON format, sent data

Bpm’online developer guide 718

must be configured beforehand as a string that contains a JSON object that corresponds to the SelectQuery data
contract. This can be done directly in a string variable, although a much more secure and convenient way of doing
this would be to create an instance of the SelectQuery class, fill out its properties and then serialize it to a string.
This can be done with the help of the following source code:

// Instance of the query class.
var selectQuery = new SelectQuery()
{
 // Root schema name.
 RootSchemaName = "Contact",
 // Collection of query columns.
 Columns = new SelectQueryColumns()
};
// Expression that specifies the type of [[Full name] column.
var columnExpressionName = new ColumnExpression()
{
 // Expression type — schema column.
 ExpressionType = EntitySchemaQueryExpressionType.SchemaColumn,
 // Path to column.
 ColumnPath = "Name"
};
// Configuring the [Name] column.
var selectQueryColumnName = new SelectQueryColumn()
{
 //Title.
 Caption = "Full name",
 // Sorting order — ascending.
 OrderDirection = OrderDirection.Ascending,
 // Sorting order position.
 OrderPosition = 0,
 // Expression that specifies column type.
 Expression = columnExpressionName
};
// Expression that specifies [Number of activities] column type.
var columnExpressionActivitiesCount = new ColumnExpression()
{
 // Expression type — subquery.
 ExpressionType = EntitySchemaQueryExpressionType.SubQuery,
 // Path to column in relation to root schema.
 ColumnPath = "[Activity:Contact].Id",
 // Function type — aggregation.
 FunctionType = FunctionType.Aggregation,
 // Aggregation type — quantity.
 AggregationType = AggregationType.Count
};
// Configuring the [Number of activities] column.
var selectQueryColumnActivitiesCount = new SelectQueryColumn()
{
 //Title.
 Caption = "Number of activities",
 // Sorting direction — ascending.
 OrderDirection = OrderDirection.Ascending,
 // Sorting order position.
 OrderPosition = 1,
 // Expression, which specifies column type.
 Expression = columnExpressionActivitiesCount
};

// Adding columns to query.
selectQuery.Columns.Items = new Dictionary<string, SelectQueryColumn>()
{
 {

Bpm’online developer guide 719

 "Name",
 selectQueryColumnName
 },
 {
 "ActivitiesCount",
 selectQueryColumnActivitiesCount
 }
};
// Serialization of an instance of query class to add to JSON string.
var json = new JavaScriptSerializer().Serialize(selectQuery);

The next step is to execute POST DataService query. To do this, create an instance of the HttpWebRequest class, fill
its properties and connect the string with JSON object, created earlier, after which – execute the DataService query
and process its result. To do this, add the following source code:

// Converting a JSON object string to a byte array.
byte[] jsonArray = Encoding.UTF8.GetBytes(json);
// Creating an instance of HTTP request.
var selectRequest = HttpWebRequest.Create(selectQueryUri) as HttpWebRequest;
// Defining request method.
selectRequest.Method = "POST";
// Defining request content type.
selectRequest.ContentType = "application/json";
// Adding earlier received authentication cookies to a data fetch query.
selectRequest.CookieContainer = AuthCookie;
// Set length for request content.
selectRequest.ContentLength = jsonArray.Length;
// Placing JSON object to request content.
using (var requestStream = selectRequest.GetRequestStream())
{
 requestStream.Write(jsonArray, 0, jsonArray.Length);
}
// Executing HTTP request and getting reply from server.
using (var response = (HttpWebResponse)selectRequest.GetResponse())
{
 // Displaying reply in console.
 using (StreamReader reader = new StreamReader(response.GetResponseStream()))
 {
 Console.WriteLine(reader.ReadToEnd());
 }
}

Example of reading records in bpm'online application
Case description

In the [Contacts] section, add a button which will open the method that will use DataService to read records in the
[Contacts] section with the following columns:

Id
Full name
Number of activities – aggregate column, which displays the number of activities of this contact.

Case implementation algorithm

1. Add a button in the [Contacts] section

The process of adding a button in a section, is covered in the "How to add a button to a section".

Create a replacing client module of the [Contacts] section (Fig. 1).

Fig. 1. Properties of the replacing client module

Bpm’online developer guide 720

https://msdn.microsoft.com/en-us/library/system.net.httpwebrequest(v=vs.110).aspx

In the created client schema, add SelectQueryContactButtonCaption localizable string and set its value to "Select
contacts" (Fig. 2).

Fig. 2. Localizable string properties

Add a configuration object with the settings determining the button position to the diff array.

//Setup of section button display.
diff: /**SCHEMA_DIFF*/[
 // Metadata for adding a custom button in a section.
 {
 // Indicates that an elementis added on a page.
 "operation": "insert",
 // Meta name of the parent control element where the button is added.
 "parentName": "ActionButtonsContainer",
 // Indicates that the button is added to the control element collection
 // of parent element (meta-name specified in parentName).
 "propertyName": "items",
 // Meta-name of the added button.
 "name": "SelectQueryContactButton",
 // Additional properties of the element.
 "values": {
 // Type of added element - button.
 itemType: Terrasoft.ViewItemType.BUTTON,
 // Binding button title to a schema localizable string.
 caption: { bindTo: "Resources.Strings.SelectQueryContactButtonCaption" },
 // Binding of the button pressing handler method.
 click: { bindTo: "onSelectQueryContactClick" },
 "layout": {
 "column": 1,
 "row": 6,
 "colSpan": 1
 }
 }
 }

]/**SCHEMA_DIFF*/

Bpm’online developer guide 721

2. Add handler method for the button pressing event

To enable reading the records when the button is clicked, add the following method to the methods section of the
replacing client schema:

methods: {
 // Handler method for button click.
 onSelectQueryContactClick: function() {
 // Creating an instance of the Terrasoft.InsertQuery class.
 var select = Ext.create("Terrasoft.EntitySchemaQuery", {
 // Root schema name.
 rootSchemaName: "Contact"
 });
 // Adding the [Full name] column to query.
 select.addColumn("Name");
 // Adding [Number of activities] aggregate column to a query.
 select.addAggregationSchemaColumn(
 // Path to column in relation to the root schema.
 "[Activity:Contact].Id",
 // Aggregation type — quantity.
 Terrasoft.AggregationType.COUNT,
 // Column title.
 "ActivitiesCount",
 // Aggregation function scope - for all elements.
 Terrasoft.AggregationEvalType.ALL);
 // Update query to server
 // Getting whole collection of records and displaying it in the browser
console.
 select.getEntityCollection(function(result) {
 if (!result.success) {
 // Processing/logging of error.
 this.showInformationDialog("Data query error");
 return;
 }
 // Displayed message.
 var message = "";
 // Analyzing resulting collection and generating displayed message.
 result.collection.each(function(item) {
 message += "Full name: " + item.get("Name") +
 ". Number of activities: " + item.get("ActivitiesCount") + "\n";
 });
 // Displaying message in console.
 window.console.log(message);
 }, this);
 }
}

NOTE

Unlike the previous example, authentication is not needed in this case, because the program code is executed
by bpm'online directly.

In the client of the application core, there is not a class like the server core SelectQuery class. To select data from a
section, use the Terrasoft.EntitySchemaQuery class. For more information on this class methods and properties,
please see the "The use of EntitySchemaQuery implementation on client" article .

DataService. Data filtering

Bpm’online developer guide 722

General information
During the execution of DataService operations, it is often necessary to filter data. For example, when reading
section records, you need to fetch only those records that meet certain criteria. Bpm'online provides the Filters class
to form these criteria .

The Filters class
The Filters class is defined in the Terrasoft.Nui.ServiceModel.DataContract namespace of the
Terrasoft.Nui.ServiceModel.dll class library. For simplicity, the hierarchical structure of the Filters data filter is
conveniently presented as a JSON format object:

"Filters":{
 "RootSchemaName":["Root schema name"],
 "FilterType":[Filter type],
 "ComparisonType":[Comparison type],
 "LogicalOperation":[Logical operation],
 "IsNull":[Completeness checkbox],
 "IsEnabled":[Activation checkbox],
 "IsNot":[Negation operator checkbox],
 "SubFilters":[Subquery filters],
 "Items":[Filter group collection],
 "LeftExpression":[Expression to be checked],
 "RightExpression":[Filtration expression],
 "RightExpressions":[Filtration expressions array],
 "RightLessExpression":[Initial filtration range expression],
 "RightGreaterExpression":[Final filtration range expression],
 "TrimDateTimeParameterToDate":[Cutting time for date/time parameters checkbox],
 "Key":["Filter key in the filter collection"],
 "IsAggregative":[Aggregating filter checkbox],
 "LeftExpressionCaption":["Expression title to be checked"],
 "ReferenceSchemaName":["Reference schema name"]
}

The basic properties of the Filters class and their possible values are presented in table 1.

Table 1. Filters class properties.

Property Type Description
RootSchemaName string A string containing the name of the root object schema of the

added record.

FilterType FilterType Filter type. Set by the FilterType enumeration value of the
Terrasoft.Nui.ServiceModel.DataContract namespace.

FilterType enumeration values:

None 0 Filter type not defined.

CompareFilter 1 Comparison filter. Used to
compare expression results.

IsNullFilter 2 The filter that defines whether
an expression is empty.

Between 3 The filter that defines whether
an expression is one of the
expressions.

Bpm’online developer guide 723

InFilter 4 The filter that defines whether
an expression equals one of the
expressions.

Exists 5 Existence filter.

FilterGroup 6 Filter group. Filter groups can
be nested in one another, i.e.,
the collection itself can be an
element of another collection.

ComparisonType FilterComparisonType Comparison operation type. Set by the
FilterComparisonType enumeration value of the
Terrasoft.Core.Entities namespace.

LogicalOperation LogicalOperationStrict Logical operation. This type does not allow the None value
specified in the LogicalOperationStrict enumeration of the
Terrasoft.Common namespace.

IsNull bool Expression completion checkbox.

IsEnabled bool Checkbox that defines whether the filter is active and will be
taken into account when building a request.

IsNot bool Specifies whether to use the negation logical operator.

SubFilters Filters Subrequest filters. Cannot contain filters with other
subrequests.

Items Dictionary<string,
Filter>

Collection containing a filter group.

LeftExpression BaseExpression The expression in the left part of the comparison, i.e. the
expression to be tested. The BaseExpression class is defined
in the Terrasoft.Nui.ServiceModel.DataContract namespace.

RightExpression BaseExpression The filter expression that will be compared to the expression
contained in the LeftExpression property.

RightExpressions BaseExpression[] The expression array that will be compared to the expression
contained in the LeftExpression property.

RightLessExpression BaseExpression Initial filtration range expression.

RightGreaterExpression BaseExpression Final filtration range expression.

TrimDateTime
ParameterToDate

bool Checkbox indicating whether to cut time from the date-time
parameters.

Key string Filter key in the collection of Items filters.

IsAggregative bool Aggregating filter checkbox.

LeftExpressionCaption string Left comparison part title.

ReferenceSchemaName string The object schema name referenced by the left part of the
filter if the column type is lookup.

The BaseExpression class is the base expression class. It is defined in the Terrasoft.Nui.ServiceModel.DataContract
namespace of the Terrasoft.Nui.ServiceModel library. The properties of this class instance are populated depending
on the ExpressionType property that specifies the expression type. A complete list of the BaseExpression class
properties is given in table. 2.

Table 2. BaseExpression class main properties

Property Type Description
ExpressionType EntitySchemaQuery

ExpressionType
The expression type that defines the value that will be contained
in the added column. Set by the

Bpm’online developer guide 724

EntitySchemaQueryExpressionType enumeration of the
Terrasoft.Core.Entities namespace defined in the Terrasoft.Core
class library. For the InsertQuery the
EntitySchemaQueryExpressionType.Parameter value is set.

The EntitySchemaQueryExpressionType enumeration values:

SchemaColumn 0 Schema column.

Function 1 Function

Parameter 2 Parameter

SubQuery 3 Subquery

ArithmeticOperation 4 Arithmetic operation

ColumnPath string The path to a column relative to the root schema. The rules for
building the paths can be found in the "The use of
EntitySchemaQuery for creation of queries in database"
article.

Parameter Parameter Defines the value that will be contained in the added column. Its
Parameter type is defined in the
Terrasoft.Nui.ServiceModel.DataContract namespace.

FunctionType FunctionType Function type. Set by the value from the FuctionType
enumeration defined in the
Terrasoft.Nui.ServiceModel.DataContract namespace.

FunctionType enumeration values:

None 0 Not defined

Macros 1 Macro

Aggregation 2 Aggregating function

DatePart 3 Date part

Length 4 Length

MacrosType EntitySchemaQuery
MacrosType

Macro type. Set by the value from the
EntitySchemaQueryMacrosType enumeration defined in the
Terrasoft.Core.Entities namespace.

FunctionArgument BaseExpression Function argument. Takes the value if the function is defined
with a parameter. The BaseExpression class is defined in the
Terrasoft.Nui.ServiceModel.DataContract namespace and is the
ancestor of the ColumnExpresion class and has the same set of
properties.

DatePartType DatePart Date part. Set by the value from the DatePart enumeration
defined in the Terrasoft.Nui.ServiceModel.DataContract
namespace.

DatePart enumeration values:

None 0 Not defined

Day 1 Day

Week 2 Week

Month 3 Month

Year 4 Year

Weekday 5 Day of the week

Bpm’online developer guide 725

Hour 6 Hour

HourMinute 7 Minute

AggregationType AggregationType Aggregating function type. Sets the value of AggregationType
enumeration defined in the namespace Terrasoft.Common
defined in the class library Terrasoft.Common

AggregationEvalType AggregationEvalType Aggregating function Set by the value from the
AggregationEvalType enumeration defined in the
Terrasoft.Core.DB namespace defined in the Terrasoft.Core
class library.

SubFilters Filters Subquery filter collection. Its Filter type is defined in the
Terrasoft.Nui.ServiceModel.DataContract namespace.

Learn more about filters in the "EntitySchemaQuery filters handling" article. Next, there is an example of
using filters in requests to the DataService service from a third-party application.

Using filters in a third-party application example
Case description

You need to create a console application that will read the following data from the [Contact] section using the
DataService service:

Id
Full name
Number of activities is an aggregating column that shows the number of activities of this contact.

It is necessary to filter the data so that only those contacts whose number of activities is in the range of 1 to 3, and
the [Full name] column value starting with "H" are read.

Case implementation algorithm

1. Сreate and configure a C# console application project that reads records

To perform this step, you must perform the example of reading records in a third-party application, described in the
"DataService. Reading records" article.

The result of the query class implementation instance to read the records with the columns in an abbreviated form:

// Query class instance.
var selectQuery = new SelectQuery ()
{
 // Root schema name.
 RootSchemaName = "Contact",
 // Adding columns to query.
 Columns = new SelectQueryColumns ()
 {
 // Column collection.
 Items = new Dictionary <string, SelectQueryColumn> ()
 {
 // Column [Full name].
 {
 // Key.
 "Name",
 // Value.
 new SelectQueryColumn ()
 {
 // An expression that specifies the column type.
 Expression = new ColumnExpression ()
 {
 // Expression type - schema column.

Bpm’online developer guide 726

 ExpressionType =
EntitySchemaQueryExpressionType.SchemaColumn,
 // Path to the column.
 ColumnPath = "Name"
 }
 }
 }
 // Column [Number of activities].
 {
 "ActivitiesCount",
 new SelectQueryColumn ()
 {
 Expression = new ColumnExpression ()
 {
 // Expression - subquery.
 ExpressionType = EntitySchemaQueryExpressionType.SubQuery,
 // Path to the column relative to the root schema.
 ColumnPath = "[Activity: Contact] .Id",
 // Function type - aggregating.
 FunctionType = FunctionType.Aggregation,
 // Aggregation type - number.
 AggregationType = AggregationType.Count
 }
 }
 }
 }
 }
};

2. Add filter implementation

In order to filter data, you must create an instance of the Filters collection class instance, fill in the necessary
properties, and then pass the link to this instance to the Filters property of the query class instance that you created
in the previous step.

Filter collection class implementation example:

// Query filters.
var selectFilters = new Filters ()
{
 // Filter Type - group.
 FilterType = Terrasoft.Nui.ServiceModel.DataContract.FilterType.FilterGroup,
 // Filter collection.
 Items = new Dictionary <string, Filter>
 {
// Filter Implementation.
 }
};
// Adding filter to query.
selectQuery.Filters = selectFilters;
// Query class instance serialization to read data from the JSON string.
var json = new JavaScriptSerializer () Serialize (selectQuery).;

The Items property must contain the key-value type collection. The key is a string containing the filter name, and the
value is an instance of the Filter class that contains a direct implementation of the filter.

To implement a filter that selects only those contacts that have a number of activities within a range of 1 to 3, you
must add the following instance to the collection of filters:

// Filtration by activity.
{
 // Key.
 "FilterActivities",

Bpm’online developer guide 727

 // Value.
 new Filter
 {
 // Filter type - range filter.
 FilterType = Terrasoft.Nui.ServiceModel.DataContract.FilterType.Between,
 // Comparison type - range.
 ComparisonType = FilterComparisonType.Between,
 // An expression to be tested.
 LeftExpression = new BaseExpression ()
 {
 // Expression type - subquery.
 ExpressionType = EntitySchemaQueryExpressionType.SubQuery,
 // Path to the column relative to the root schema.
 ColumnPath = "[Activity: Contact] .Id",
 // Function type - aggregating.
 FunctionType = FunctionType.Aggregation,
 // Aggregation type - number.
 AggregationType = AggregationType.Count
 }
 // Filter range final expression.
 RightGreaterExpression = new BaseExpression ()
 {
 // Expression type - parameter.
 ExpressionType = EntitySchemaQueryExpressionType.Parameter,
 // Expression parameter.
 Parameter = new Parameter ()
 {
 // Parameter data type - integer.
 DataValueType = DataValueType.Integer,
 // Parameter value.
 Value = 3
 }
 }
 // Filter range initial expression.
 RightLessExpression = new BaseExpression ()
 {
 ExpressionType = EntitySchemaQueryExpressionType.Parameter,
 Parameter = new Parameter ()
 {
 DataValueType = DataValueType.Integer,
 Value = 1
 }
 }
 }
}

Add the following instance to the filter collection to filter contact records where the [Full name] column value begins
with "H":

// Filtering by name.
{
 // Key.
 "FilterName",
 // Value.
 new Filter
 {
 // Filter type - comparison filter.
 FilterType =
Terrasoft.Nui.ServiceModel.DataContract.FilterType.CompareFilter,
 // Comparison type - starts with an expression.
 ComparisonType = FilterComparisonType.StartWith,
 // Expression to be tested.

Bpm’online developer guide 728

 LeftExpression = new BaseExpression ()
 {
 // Expression type - schema column.
 ExpressionType = EntitySchemaQueryExpressionType.SchemaColumn,
 // Path to the column.
 ColumnPath = "Name"
 }
 // Filtration expression.
 RightExpression = new BaseExpression ()
 {
 // Expression type - parameter.
 ExpressionType = EntitySchemaQueryExpressionType.Parameter,
 // Expression parameter.
 Parameter = new Parameter ()
 {
 // Parameter data type - text.
 DataValueType = DataValueType.Text,
 // Parameter value.
 Value = "CH"
 }
 }
 }
}

DataService. Using macros

General provisions
During execution of DataService operations data often needs to be filtered for a certain period of time. Macros
simplify such tasks and help to avoid creating unnecessary custom methods. The macros are implemented in a form
of special classes that are designed for calculating typical values in query expressions, such as calculating the start
and end date of the current quarter. Macros can be used only if the query expression type is a function. For more
information about macro expression types, please see the DataService. Data filtering article.

Types of macros

When creating queries to DataService, both parameterized (ie requiring an argument) and non-parameterized
macros can be used. Macro types that must be used in the macro expressions are defined in the
EntitySchemaQueryMacrosType enumeration in the Terrasoft.Core.Entities name space. Enumeration values of
macro types and their descriptions are available in table 1.

Table 1. Values of the EntitySchemaQueryMacrosType enumeration and their descriptions

Macro Value Description
CurrentHalfYear 16 Current half-year (January-June or July-December).

CurrentHour 21 Current hour.

CurrentMonth 10 Current month.

CurrentQuarter 13 Current quarter.

CurrentUser 1 Current user.

CurrentUserContact 2 Contact record of the current user.

CurrentWeek 7 Current week.

Bpm’online developer guide 729

CurrentYear 19 Current year.

DayOfMonth 28 Day of month. Requires parameterization.

DayOfWeek 29 Week day. Requires parameterization.

Hour 30 Hour. Requires parameterization.

HourMinute 31 Time. Requires parameterization.

Month 32 Month. Requires parameterization.

NextHalfYear 17 Next half-year (January-June or July-December).

NextHour 22 Next hour.

NextMonth 11 Next month.

NextNDays 24 Next N days. Requires parameterization.

NextNHours 26 Next N hours. Requires parameterization.

NextQuarter 14 Next quarter.

NextWeek 8 Next week.

NextYear 23 Next year.

None 0 Type of macro not defined.

PreviousHalfYear 15 Previous half-year (January-June or July-December).

PreviousHour 20 Previous hour.

PreviousMonth 9 Previous month.

PreviousNDays 25 Previous N days. Requires parameterization.

PreviousNHours 27 Previous N hours. Requires parameterization.

PreviousQuarter 12 Previous quarter.

PreviousWeek 6 Previous week.

PreviousYear 18 Previous year.

Today 4 Today.

Tomorrow 5 Tomorrow.

Year 33 Year. Requires parameterization.

Yesterday 3 Yesterday.

Example of using macros
Case description

Create a console application that uses DataService to read records from the [Contacts] section with the following
columns:

Id
Full name
Birth date

The data must be filtered, so that only contacts who were born in 1992 are shown.

Case implementation algorithm

1. Create and set up a C# application project that reads records

To execute this step, execute the record reading case covered in the "DataService. Reading records" article.

The result of implementing an instance of query class for reading records:

Bpm’online developer guide 730

// Instance of query class.
var selectQuery = new SelectQuery()
{
 // Root schema name.
 RootSchemaName = "Contact",
 // Adding columns to query.
 Columns = new SelectQueryColumns()
 {
 // Collection of columns.
 Items = new Dictionary<string, SelectQueryColumn>()
 {
 //Column [Full name].
 {
 // Key.
 "Name",
 // Value.
 new SelectQueryColumn()
 {
 // Expression that specifies the column type.
 Expression = new ColumnExpression()
 {
 // Type of expression - schema column.
 ExpressionType =
EntitySchemaQueryExpressionType.SchemaColumn,
 // Pat to column.
 ColumnPath = "Name"
 }
 }
 },
 // Column [Number of activities].
 {
 "ActivitiesCount",
 new SelectQueryColumn()
 {
 Expression = new ColumnExpression()
 {
 // Expression type — subquery.
 ExpressionType = EntitySchemaQueryExpressionType.SubQuery,
 // Path to column relative to the oot schema.
 ColumnPath = "[Activity:Contact].Id",
 // Function tyoe — aggregation.
 FunctionType = FunctionType.Aggregation,
 // Aggregation type — quantity.
 AggregationType = AggregationType.Count
 }
 }
 }
 }
 }
};

2. Add a filter implementation with macros

To filter the data, create an instance of the Filters collection class, fill out the properties with corresponding values,
and then pass the instance link to the Filters property of the query class created on the previous step.

An example of filter collection class implementation:

// Query filters.
var selectFilters = new Filters()
{
 // Filter type — group.

Bpm’online developer guide 731

 FilterType = Terrasoft.Nui.ServiceModel.DataContract.FilterType.FilterGroup,
 // Filter collection.
 Items = new Dictionary<string, Filter>
 {

 // Filter by year of birth.
 {
 // Key.
 "FilterYear",
 // Value.
 new Filter
 {
 // Filter type — comparison.
 FilterType =
Terrasoft.Nui.ServiceModel.DataContract.FilterType.CompareFilter,
 // Comparison type — equal.
 ComparisonType = FilterComparisonType.Equal,
 // Expression to check.
 LeftExpression = new BaseExpression()
 {
 // Expression type — schema column.
 ExpressionType = EntitySchemaQueryExpressionType.SchemaColumn,
 // Path to schema.
 ColumnPath = "BirthDate"
 },
 // Expression with which the checked value is compared.
 RightExpression = new BaseExpression
 {
 // Expression type — function.
 ExpressionType = EntitySchemaQueryExpressionType.Function,
 // Function type — macro.
 FunctionType = FunctionType.Macros,
 // Macro type — year.
 MacrosType = EntitySchemaQueryMacrosType.Year,
 // Function argument.
 FunctionArgument = new BaseExpression
 {
 // Type of expression that determines the argument —
parameter.
 ExpressionType = EntitySchemaQueryExpressionType.Parameter,
 // Parameter initialization.
 Parameter = new Parameter
 {
 // Parameter type — integer.
 DataValueType = DataValueType.Integer,
 // Parameter value.
 Value = "1992"
 }
 }
 }
 }
 }
 }
};
// Adding filters to query.
selectQuery.Filters = selectFilters;
// Serialization of select query class instance in a JSON string.
var json = new JavaScriptSerializer().Serialize(selectQuery);

The collection contains a single filter with the "FilterYear" key. Because only those records that have their year of
birth equal to 1992 must be selected from the collection, the type of filter is set as a comparison filter. The type of
comparison is set as an equality of values. As a verified expression, set the [Date of birth] column. Specify the macro

Bpm’online developer guide 732

function as the expression to compare with.

In this case using a macro is optimal because the birth date is stored in the database in "YYYY-MM-DD" format. The
macro automatically determines the year value, so the developer does not need to write additional program code.

Because the EntitySchemaQueryMacrosType.Year macro is parametric, the FunctionArgument property must be
initialized and assigned a link to an instance of the BaseExpression class. In it, the integer parameter with value
"1992" is defined.

DataService. Updating records

General provisions
The DataService web service of bpm'online is a RESTful (Representational State Transfer, REST) service. The
RESTful data management interface does not require converting data to an external format, such as XML. In a
simple RESTful service, each information unit is determined by a global Identifier such as URL. Each URL, in its
turn, has a strictly specified format. This is not an optimal way to transfer large arrays of data.

With the use of the DataService, the data can be automatically configured in various data formats such as XML,
JSON, HTML, CSV, and JSV. The data structure is determined by data contracts. A complete list of data contracts
used by the DataService, can be found in the "DataService web service" article.

UpdateQuery data contract
The UpdateQuery data contract is used for updating section records. The query data is transferred to DataService via
HTTP, with the help of POST by the following URL:

// URL format of the POST query to DataService to update data.
http(s)://[Bpm'online application address]/[Configuration number]/dataservice/[Data
fromat]/reply/UpdateQuery
// URL example of the POST query to DataService to update data.
http(s)://example.bpmonline.com/0/dataservice/json/reply/UpdateQuery

The UpdateQuery data contract has a hierarchical structure with a number of nesting levels. In the bpm'online
server core, it is represented by a UpdateQuery class of theTerrasoft.Nui.ServiceModel.DataContract namespace of
the Terrasoft.Nui.ServiceModel.dll library of classes. For the hierarchical data structure of the UpdateQuery data
contract can be conveniently viewed in JSON format:

{
 "RootSchemaName":"[Root schema]",
 "OperationType":[Type of operation with record],
 "IsForceUpdate":[Force update],
 "ColumnValues":{
 "Items":{
 "Name of the added column":{
 "ExpressionType":[Expression type],
 "Parameter":{
 "DataValueType":[Data type],
 "Value":"[Column value]"
 }
 }...
 }
 },
 "Filters":[Request filters]
}

Bpm’online developer guide 733

https://en.wikipedia.org/wiki/Representational_state_transfer
https://msdn.microsoft.com/en-us/library/ms733127(v=vs.110).aspx

Primary properties of the UpdateQuery class and their possible values are available in table 1.

Table 1. UpdateQuery class properties

Property Type Notes
RootSchemaName string String that contains root schema name of added record

object.

OperationType QueryOperationType Type of write operation. Specified as a QueryOperationType
enumeration value of the
Terrasoft.Nui.ServiceModel.DataContract name space. The
QueryOperationType.Insert value is set for InsertQuery.

Values of the QueryOperationType enumeration:

Select 0

Insert 1

Update 2

Delete 3

Batch 4

IsForceUpdate bool Indicates force update. If the value is true, the entity will be
saved on the server even if column values have been
modified. Default value: false.

ColumnValues ColumnValues Contains collection of column values for the added record.
The ColumnValues type is defined in the
Terrasoft.Nui.ServiceModel.DataContract name space.

Filters Filters Collection of query filters. The Filters type is defined in the
Terrasoft.Nui.ServiceModel.DataContract name space.

The ColumnValues class has a single Items property, defined as a collection of keys and values Dictionary<string,
ColumnExpression>. The key is the string with the name of the added column. The value is an object of the
ColumnExpression type, defined in the Terrasoft.Nui.ServiceModel.DataContract name space. General properties
of the ColumnExpression class used when adding records are available in table 2.

Table 2. Primary properties of the ColumnExpression class

Property Description
ExpressionType Type of expression that determines the value that the added column will

contain. Specified with a value from the EntitySchemaQueryExpressionType
enumeration of the Terrasoft.Core.Entities name space defined in the
Terrasoft.Core class library. The EntitySchemaQueryExpressionType.Parameter
value is set for InsertQuery.

Values of the EntitySchemaQueryExpressionType enumeration:

SchemaColumn 0

Function 1

Parameter 2

SubQuery 3

ArithmeticOperation 4

Parameter Determines the value that the added column will contain. The Parameter type is
defined in the Terrasoft.Nui.ServiceModel.DataContract name space.

The Parameter class has a number of properties, only two of which are used for adding records (table 3).

Table 3. Primary properties of the Parameter class

Bpm’online developer guide 734

Property Description
DataValueType Type of data for the value that the added column will contain. Specified as a

DataValueType enumeration value of the
Terrasoft.Nui.ServiceModel.DataContract name space.

Values of the DataValueType enumeration:

Guid 0

Text 1

Integer 4

Float 5

Money 6

DateTime 7

Date 8

Time 9

Lookup 10

Enum 11

Boolean 12

Blob 13

Image 14

ImageLookup 16

Color 18

Mapping 26

Value The object that contains the value of the added column. Has the Object type.

 The Filters class is defined in the Terrasoft.Nui.ServiceModel.DataContract name space. For details on the
properties of this class and its use, please see the "DataService. Data filtering" article.

NOTE

An instance of the UpdateQuery class must contain a link to a correctly initialized instance of the Filters class
in the Filters property. Otherwise, new column values from the ColumnValues property will be set for ALL
section records.

Example of updating records in a third-party application

Case description

Create a console application that used DataService to update the "John Smith" record added in the example of the
"DataService. Adding records" article. Add "j.smith@bpmonline.com" as the value in the [Email] column of this
record.

Case implementation algorithm

1. Create and set up a C# application project

Using the Microsoft Visual Studio development environment (version 2017 and up), create a Visual C# console
application project and specify project name, for example, DataServiceUpdateExample. Set ".NET Framework 4.7"
for the project property [Target framework].

In the References section of the project, add dependencies from the following libraries:

Bpm’online developer guide 735

mailto:i.ivanov@bpmonline.com

System.Web.Extensions.dll – class library included in .NET Farmework;
Terrasoft.Core.dll – library of base bpm'online server core classes. It can be found using the following
path: [Bpm'online setup catalog]\Terrasoft.WebApp\bin\Terrasoft.Core.dll;
Terrasoft.Nui.ServiceModel.dll — application service class library. It can be found using the following
path: [Bpm'online setup catalog]\Terrasoft.WebApp\bin\Terrasoft.Nui.ServiceModel.dll;
Terrasoft.Common.dll – library of base bpm'online server core classes. It can be found using the following
path: [Bpm'online setup catalog]\Terrasoft.WebApp\bin\Terrasoft.Common.dll.

Add the "using" directives to the application source code file:

using System;
using System.Text;
using System.IO;
using System.Net;
using System.Collections.Generic;
using Terrasoft.Nui.ServiceModel.DataContract;
using Terrasoft.Core.Entities;
using System.Web.Script.Serialization;
using Terrasoft.Common;

2. Add fields and constants and field declarations to the source code

To access DataService features, add the following fields and constants to the application source code:

// Primary URL of bpm'online application. Must be repoaced with a custom one.
private const string baseUri = @"http://example.bpmonline.com";
// Request string to the Login methid of the AuthService.svc service.
private const string authServiceUri = baseUri +
@"/ServiceModel/AuthService.svc/Login";
// Path string for the UpdateQuery.
private const string updateQueryUri = baseUri +
@"/0/DataService/json/reply/UpdateQuery";
// Bpm'online authentication cookie.
private static CookieContainer AuthCookie = new CookieContainer();

Here, three string fields are declared. These fields will be used to form authentication query and read data queries
execution paths. Authentication data will be saved in the AuthCookie field.

3. Add method that performs bpm'online application authentication

Authentication is required to enable access to the DataService for the created application.

Both the algorithm and example of implementation method, which contains query to AuthService.svc for user
authentication, are available in the "Authenticating external requests to bpm'online services" article.

4. Add implementation of the record add query

Because the updateQueryUri constant declared earlier contains a path for sending data in the JSON format, sent
data must be configured beforehand as a string that contains a JSON object that corresponds to the UpdateQuery
data contract. This can be done directly in a string variable, although a much more secure and convenient way of
doing this would be to create an instance of the UpdateQuery class, fill out its properties and then serialize it to a
string. This can be done with the help of the following source code:

// Instance of the request class.
 var updateQuery = new UpdateQuery()
 {
 // Root schema name.
 RootSchemaName = "Contact",
 // New column values.
 ColumnValues = new ColumnValues()
 {
 // Key-value collection.
 Items = new Dictionary<string, ColumnExpression>()

Bpm’online developer guide 736

 {
 // [Email] column.
 {
 // key.
 "Email",
 // Value — instance of object schema request class.
 // Configuration of [Email] column.
 new ColumnExpression()
 {
 // Type of expression of obkect schema query — parameter.
 ExpressionType = EntitySchemaQueryExpressionType.Parameter,
 // Query expression parameter.
 Parameter = new Parameter()
 {
 // Parameter value.
 Value = "j.smith@bpmonline.com",
 // Parameter data type — string.
 DataValueType = DataValueType.Text
 }
 }
 }
 }
 },
 // Query filters.
 Filters = new Filters()
 {
 // Filter type — group.
 FilterType = Terrasoft.Nui.ServiceModel.DataContract.FilterType.FilterGroup,
 // Filter collection.
 Items = new Dictionary<string, Filter>()
 {
 // Filter by name.
 {
 // Key.
 "FilterByName",
 // Value.
 new Filter
 {
 // Filter type — comparison filter.
 FilterType =
Terrasoft.Nui.ServiceModel.DataContract.FilterType.CompareFilter,
 // Comparison type — starts with expression.
 ComparisonType = FilterComparisonType.Equal,
 // Expression to check.
 LeftExpression = new BaseExpression()
 {
 // Expression type - schema column.
 ExpressionType =
EntitySchemaQueryExpressionType.SchemaColumn,
 // Path to column.
 ColumnPath = "Name"
 },
 // Filtering expression.
 RightExpression = new BaseExpression()
 {
 // Expression type - parameter.
 ExpressionType = EntitySchemaQueryExpressionType.Parameter,
 // Expression parameter.
 Parameter = new Parameter()
 {
 // Parameter data type - text.
 DataValueType = DataValueType.Text,

Bpm’online developer guide 737

 // Parameter value.
 Value = "John Smith"
 }
 }
 }
 }
 }
 }
 };
 // Serialization of update query class instance in a JSON string.
 var json = new JavaScriptSerializer().Serialize(updateQuery);

Here, an instance of the UpdateQuery class is created. In the ColumnValues property, the
"j.smith@bpmonline.com" value is set for the [Email] column. To apply this value to a specific record or group of
records, specify a link to a correctly initialized Filters class in the Filters property. In this case, a single filter is added
to the filters collection to select only records that have the "John Smith" value in the [Full name] column.

The next step is to execute DataService POST-query. To do this, create an instance of the HttpWebRequest class, fill
its properties and connect the string with the JSON object created earlier then execute the DataService query and
process its result. To do this, add the following source code:

// Converting a JSON object string to a byte array.
byte[] jsonArray = Encoding.UTF8.GetBytes(json);
// Creating an insrance of HTTP request.
var updateRequest = HttpWebRequest.Create(updateQueryUri) as HttpWebRequest;
// Defining a request method.
updateRequest.Method = "POST";
// Determining type of request content.
updateRequest.ContentType = "application/json";
// Adding authentication cookie received earlier to a request.
updateRequest.CookieContainer = AuthCookie;
// Set length for request content.
updateRequest.ContentLength = jsonArray.Length;
// Plase a JSON-object to request content.
using (var requestStream = updateRequest.GetRequestStream())
{
 requestStream.Write(jsonArray, 0, jsonArray.Length);
}
// Executing HTTP request and getting a response from server.
using (var response = (HttpWebResponse)updateRequest.GetResponse())
{
 // Displaying response in console.
 using (StreamReader reader = new StreamReader(response.GetResponseStream()))
 {
 Console.WriteLine(reader.ReadToEnd());
 }
}

DataServiсe. Deleting records

General information
The bpm'online DataService web service is a RESTfull service. RESTful is a quite simple information management
interface that doesn't use any additional internal layers, i.e., the data doesn't need to be converted to any third-party
format, such as XML. In a simple RESTful service, each record is uniquely identified by a global identifier such as a
URL. Each URL has a strictly specified format. However, this service is not always convenient for transferring large

Bpm’online developer guide 738

https://msdn.microsoft.com/en-us/library/system.net.httpwebrequest(v=vs.110).aspx
https://en.wikipedia.org/wiki/Representational_state_transfer

amounts of data.

With the use of the DataService, the data can be automatically configured in various data formats such as XML,
JSON, HTML, CSV, and JSV. The data structure is determined by data contracts. A complete list of data contracts
used by the DataService, can be found in the "DataService web service" article.

DeleteQuery data contract
The DeleteQuery contract is used to delete sections. The data is transferred to the DataService via HTTP by using the
POST request with the following URL:

// URL format of the POST query to DataService to delete data.
http(s)://[Bpm'online application address]/[Configuration number]/dataservice/[Data
fromat]/reply/DeleteQuery
// URL example of the POST query to DataService to delete data.
http(s)://example.bpmonline.com/0/dataservice/json/reply/DeleteQuery

The DeleteQuery data contract has a hierarchical structure with multiple nesting levels. In the bpm'online
application server part, the DeleteQuery data contract is represented by the InsertQuery class of the
Terrasoft.Nui.ServiceModel.DataContract namespace of the Terrasoft.Nui.ServiceModel.dll class library. However,
for simplicity, the hierarchical structure of the DeleteQuery data contract is conveniently presented as a JSON
format object:

{
 "RootSchemaName":"[Root schema]",
 "OperationType":[Record operation type],
 "ColumnValues":[Column values. Not used.],
 "Filters":[Query filters]
}

The basic properties of the DeleteQuery class and their possible values are presented in table 1.

Table 1. DeleteQuery class properties.

Property Type Description
RootSchemaName string A string containing the name of the root object schema of the

added record.

OperationType QueryOperationType Operation type is set by the QueryOperationType
namespace Terrasoft.Nui.ServiceModel.DataContract
namespace enumeration value. For the InsertQuery
theQueryOperationType.Insert value is set.

QueryOperationType enumeration values:

Select 0

Insert 1

Update 2

Delete 3

Batch 4

ColumnValues ColumnValues Contains a collection of column values of the added record.
Inherited from the BaseQuery parent class. Not used in this
type of queries.

Filters Filters Query filter collection. Its Filter type is defined in the
Terrasoft.Nui.ServiceModel.DataContract namespace.

The Filters class is defined in the Terrasoft.Nui.ServiceModel.DataContract namespace. The properties of this class
are described in the "DataService. Data filtering" article.

IMPORTANT

Bpm’online developer guide 739

https://msdn.microsoft.com/en-us/library/ms733127(v=vs.110).aspx

The DeleteQuery query class instance must contain a link to the correctly initialized Filters class instance in
the Filters property. Otherwise ALL section records will be deleted.

Deleting records using a third-party application example
Case description

You need to create a console application that, using the DataService service, will delete the "John Best" contact
record added in the example of the "DataService. Adding records" article.

Case implementation algorithm

1. Сreate and configure a C# console application project

Using the Microsoft Visual Studio (version 2017 and up) development environment, create a Visual C# console
application project and name it DataServiceDeleteExample. The [Target framework] project property must be set to
.NET Framework 4.7.

In the References section of the project you need to add dependencies of the following libraries:

System.Web.Extensions.dll is a class library included in the .NET Farmework
Terrasoft.Core.dll is a main class library of the application server kernel. Can be found by the following
path: [Directory with the installed application]\Terrasoft.WebApp\bin\Terrasoft.Core.dll
Terrasoft.Nui.ServiceModel.dll class library the application services. Can be found by the following path:
[Directory with the application installed]\Terrasoft.WebApp\bin\Terrasoft.Nui.ServiceModel.dll.
Terrasoft.Common.dll is a main class library of the application server kernel. Can be found by the
following path: [Directory with the installed application]\Terrasoft.WebApp\bin\Terrasoft.Common.dll

Add using directives to the application source code file:

using System;
using System.Text;
using System.IO;
using System.Net;
using System.Collections.Generic;
using Terrasoft.Nui.ServiceModel.DataContract;
using Terrasoft.Core.Entities;
using System.Web.Script.Serialization;
using Terrasoft.Common;

2. Add field declarations and constants to the application source code

To access the DataService features, you must add the following fields and constants to the application source code:

 // Main bpm'online URL. Has to be changed to a custom one.
 private const string baseUri = @"http://example.bpmonline.com";
// Query string to the Login method of the AuthService.svc service.
 private const string authServiceUri = baseUri +
@"/ServiceModel/AuthService.svc/Login";
 // DeleteQuery query path string.
 private const string deleteQueryUri = baseUri +
@"/0/DataService/json/reply/DeleteQuery";
 // Bpm'online cookie authentication.
 private static CookieContainer AuthCookie = new CookieContainer();

Three string constant fields that are used to carry out the authentication requests and requests to read data are
declared here. The authentication data will be stored in the AuthCookie field.

3. Add a method that performs authentication in the bpm'online application

You need to authenticate the newly created application to access the DataService web service.

Bpm’online developer guide 740

The algorithm and an implementation example of a method that performs a request to the AuthService.svc service
for user authentication can be found in the Authenticating external requests to bpm'online services article.

4. Implement a query to add a record

As the previously declared updateQueryUri constant contains the path for sending data in JSON format, the data
sent must be pre-configured in the form of a string containing a description of the JSON object corresponding to the
UpdateQuery data contract. This can be done directly in a lowercase variable but it is much easier and safer to create
an instance of the UpdateQuery class, fill its properties, and then serialize it to a string. This can be done by adding
the following source code:

// Query class instance.
var deleteQuery = new DeleteQuery()
{
 // Root schema name.
 RootSchemaName = "Contact",
 // Query filters.
 Filters = new Filters()
 {
 // Filter type — group.
 FilterType = Terrasoft.Nui.ServiceModel.DataContract.FilterType.FilterGroup,
 // Filter collection.
 Items = new Dictionary<string, Filter>()
 {
 // Filtration by name.
 {
 // Key.
 "FilterByName",
 // Value.
 new Filter
 {
 // Filter type — comparison filter.
 FilterType =
Terrasoft.Nui.ServiceModel.DataContract.FilterType.CompareFilter,
 // Comparison type — starts with an expression.
 ComparisonType = FilterComparisonType.Equal,
 // Expression to be checked.
 LeftExpression = new BaseExpression()
 {
 // Expression type — schema column.
 ExpressionType =
EntitySchemaQueryExpressionType.SchemaColumn,
 // Column path.
 ColumnPath = "Name"
 },
 // Filtration expression.
 RightExpression = new BaseExpression()
 {
 // Expression type — parameter.
 ExpressionType = EntitySchemaQueryExpressionType.Parameter,
 // Expression parameter.
 Parameter = new Parameter()
 {
 // Parameter data type — text.
 DataValueType = DataValueType.Text,
 // Parameter value.
 Value = "John Best"
 }
 }
 }
 }
 }

Bpm’online developer guide 741

 }
};
// Class instance serialization of the JSON string adding query.
var json = new JavaScriptSerializer().Serialize(updateQuery);

This creates an instance of the DeleteQuery class. The "Contact" value is set in the RootSchemaName property. To
delete a particular record or group of records, you need to set a link to the correctly initialized Filters class instance
to the Filters property. In this case, a single filter that selects only records with the "John Best" value in the [Full
name] column is added to the filter collection.

In the final step you must perform POST query to the DataService service. To do this, create an instance of the
HttpWebRequest class, fill in its properties, attach a previously created string with the JSON object to a request, and
then execute and process the result of the query to the DataService service. To do this, add the following source
code:

// Converting a JSON object string to a byte array.
byte[] jsonArray = Encoding.UTF8.GetBytes(json);
// Creating an insrance of HTTP request.
var updateRequest = HttpWebRequest.Create(updateQueryUri) as HttpWebRequest;
// Defining a request method.
updateRequest.Method = "POST";
// Determining type of request content.
updateRequest.ContentType = "application/json";
// Adding authentication cookie received earlier to a request.
updateRequest.CookieContainer = AuthCookie;
// Set length for request content.
updateRequest.ContentLength = jsonArray.Length;
// Plase a JSON-object to request content.
using (var requestStream = updateRequest.GetRequestStream())
{
 requestStream.Write(jsonArray, 0, jsonArray.Length);
}
// Executing HTTP request and getting a response from server.
using (var response = (HttpWebResponse)updateRequest.GetResponse())
{
 // Displaying response in console.
 using (StreamReader reader = new StreamReader(response.GetResponseStream()))
 {
 Console.WriteLine(reader.ReadToEnd());
 }
}

DataService. Batch queries

General provisions
The DataService web service of bpm'online is a RESTful (Representational State Transfer, REST) service. The
RESTful data management interface does not require converting data to an external format, such as XML. In a
simple RESTful service, each information unit is determined by a global Identifier such as URL. Each URL, in its
turn, has a strictly specified format. This is not an optimal way to transfer large arrays of data.

With the use of the DataService, the data can be automatically configured in various data formats such as XML,
JSON, HTML, CSV, and JSV. The data structure is determined by data contracts. A complete list of data contracts
used by the DataService, can be found in the "DataService web service" article.

Bach queries

Bpm’online developer guide 742

https://msdn.microsoft.com/en-us/library/system.net.httpwebrequest(v=vs.110).aspx
https://en.wikipedia.org/wiki/Representational_state_transfer
https://msdn.microsoft.com/en-us/library/ms733127(v=vs.110).aspx

Batch queries are used to minimize requests to DataServise, which improves application performance. Packet query
is a collection that contains a custom set of DataService requests. The query data is transferred to DataService via
HTTP, with the help of POST by the following URL:

// URL format of the batch POST query to DataService.
http(s)://[Bpm'online application address]/[Configuration number]/dataservice/[Data
fromat]/reply/BatchQuery
// URL example of the batch POST query to DataService.
http(s)://example.bpmonline.com/0/dataservice/json/reply/BatchQuery

The data that comprises a batch query can be passed in different formats. One of the more convenient formats is
JSON: The structure of a batch query in JSON format is as follows:

{
 "items": [
 {
 "__type": "[Full qualified name of the query type]",
 //One-time query contents.
 ...
 },
 // Other one-time queries.
 ...
]
}

To generate the contents of one-time queries that comprise a batch query, use the following data constants:
InsertQuery, SelectQuery, UpdateQuery and DeleteQuery.

Example of using a batch query in a third-party application
Case description

Create a console application that will use DataService to:

Add a contact record with the value "John Smith" in the [Full name] column;

Change the value of the [Business phone] column to 012 345 67 89 for all contact records that have "John
Smith" as the value in the [Full name] column.

Records must be added and modified via a batch query.

Case implementation algorithm

1. Create and set up a C# application project

Using the Microsoft Visual Studio development environment (version 2017 and up), create a Visual C# console
application project and specify the project name, for example, DataServiceBatchExample. Set ".NET Framework
4.7" for the project property [Target framework].

In the References section of the project, add dependencies from the following libraries:

System.Web.Extensions.dll – class library included in .NET Farmework;
Terrasoft.Core.dll – library of base bpm'online server core classes. It can be found using the following
path: [Bpm'online setup catalog]\Terrasoft.WebApp\bin\Terrasoft.Core.dll;
Terrasoft.Nui.ServiceModel.dll — application service class library. It can be found using the following
path: [Bpm'online setup catalog]\Terrasoft.WebApp\bin\Terrasoft.Nui.ServiceModel.dll;
Terrasoft.Common.dll – library of base bpm'online server core classes. It can be found using the following
path: [Bpm'online setup catalog]\Terrasoft.WebApp\bin\Terrasoft.Common.dll.

Add the "using" directives to the application source code file:

using System;
using System.Text;

Bpm’online developer guide 743

using System.IO;
using System.Net;
using System.Collections.Generic;
using Terrasoft.Nui.ServiceModel.DataContract;
using Terrasoft.Core.Entities;
using System.Web.Script.Serialization;
using Terrasoft.Common;

2. Add fields and constants and field declarations to the source code

To access DataService features, add the following fields and constants to the application source code:

// Primary URL of bpm'online application. Must be repoaced with a custom one.
private const string baseUri = @"http://example.bpmonline.com";
// Request string to the Login methid of the AuthService.svc service.
private const string authServiceUri = baseUri +
@"/ServiceModel/AuthService.svc/Login";
// Path string for the BatchQuery.
private const string batchQueryUri = baseUri +
@"/0/DataService/json/reply/BatchQuery";
// Bpm'online authentication cookie.
private static CookieContainer AuthCookie = new CookieContainer();

Here, three string fields are declared. These fields will be used to form authentication query and read data queries
execution paths. Authentication data will be saved in the AuthCookie field.

3. Add method that performs bpm'online application authentication

Authentication is required to enable access of the created application to the DataService.

Both the algorithm and example of implementation method, which contains the query to AuthService.svc for user
authentication, are available in the "Authenticating external requests to bpm'online services" article.

4. Implement query adding request

Because the batchQueryUri constant declared previously earlier contains a path for sending data in the JSON
format, sent data must be configured beforehand as a string that contains a JSON object description. Use data
contract classes to create separate queries then serialize them in a string.

For a query to add a contact record with the name "John Smith", add the following program code:

// Insert query.
var insertQuery = new InsertQuery()
{
 RootSchemaName = "Contact",
 ColumnValues = new ColumnValues()
 {
 Items = new Dictionary<string, ColumnExpression>()
 {
 {
 "Name",
 new ColumnExpression()
 {
 ExpressionType = EntitySchemaQueryExpressionType.Parameter,
 Parameter = new Parameter
 {
 Value = "John Smith",
 DataValueType = DataValueType.Text
 }
 }
 }
 }
 }

Bpm’online developer guide 744

};

For more information on the InsertQuery data contract please see the "DataService. Adding records" article.

To change the value of the [Business phone] column to 012 345 67 89 for all contact records that have "John Smith"
value in the [Full name] column, add the following code:

 // Update query.
var updateQuery = new UpdateQuery()
{
 RootSchemaName = "Contact",
 ColumnValues = new ColumnValues()
 {
 Items = new Dictionary<string, ColumnExpression>()
 {
 {
 "Phone",
 new ColumnExpression()
 {
 ExpressionType = EntitySchemaQueryExpressionType.Parameter,
 Parameter = new Parameter()
 {
 Value = "0123456789",
 DataValueType = DataValueType.Text
 }
 }
 }
 }
 },
 Filters = new Filters()
 {
 FilterType = Terrasoft.Nui.ServiceModel.DataContract.FilterType.FilterGroup,
 Items = new Dictionary<string, Filter>()
 {
 {
 "FilterByName",
 new Filter
 {
 FilterType =
Terrasoft.Nui.ServiceModel.DataContract.FilterType.CompareFilter,
 ComparisonType = FilterComparisonType.Equal,
 LeftExpression = new BaseExpression()
 {
 ExpressionType =
EntitySchemaQueryExpressionType.SchemaColumn,
 ColumnPath = "Name"
 },
 RightExpression = new BaseExpression()
 {
 ExpressionType = EntitySchemaQueryExpressionType.Parameter,
 Parameter = new Parameter()
 {
 DataValueType = DataValueType.Text,
 Value = "John Smith"
 }
 }
 }
 }
 }
 }
};

For more information on the UpdateQuery data contract, please see the "DataService. Updating records"

Bpm’online developer guide 745

article.

After serializing the created instances of the query class, add information about the qualified name of the
corresponding data contract to the strings with JSON objects. Compose the string with batch query:

// Serialization of update query class instance in a JSON string.
var jsonInsert = new JavaScriptSerializer().Serialize(insertQuery);
// Inserting query type in a JSON string.
jsonInsert = jsonInsert.Insert(1, @"""__type"":
""Terrasoft.Nui.ServiceModel.DataContract.InsertQuery"",");
// Serialization of instance of the update query class in a JSON string.
var jsonUpdate = new JavaScriptSerializer().Serialize(updateQuery);
// Inserting query type in a JSON string.
jsonUpdate = jsonUpdate.Insert(1, @"""__type"":
""Terrasoft.Nui.ServiceModel.DataContract.UpdateQuery"",");
// Creating batch query.
var json = @"{""items"": [" + jsonInsert + "," + jsonUpdate + "]}";

The next step is to execute the POST DataService query. To do this, create an instance of the HttpWebRequest class,
fill its properties and connect the string with JSON object, created earlier, then execute the DataService query and
process its result. To do this, add the following source code:

// Converting a JSON object string in a byte array.
byte[] jsonArray = Encoding.UTF8.GetBytes(json);
// Creating an instance of HTTP request.
var batchRequest = HttpWebRequest.Create(deleteQueryUri) as HttpWebRequest;
// Defining request method.
batchRequest.Method = "POST";
// Determining request content.
batchRequest.ContentType = "application/json";
// Adding authentication cookie received earlier to a query.
batchRequest.CookieContainer = AuthCookie;
// Set the ContentLength property of the WebRequest.
batchRequest.ContentLength = jsonArray.Length;

// Adding JSON object to the query contents.
using (var requestStream = batchRequest.GetRequestStream())
{
 requestStream.Write(jsonArray, 0, jsonArray.Length);
}
// Executing HTTP request and getting reply from server.
using (var response = (HttpWebResponse)batchRequest.GetResponse())
{
 // Displaying response in console.
 using (StreamReader reader = new StreamReader(response.GetResponseStream()))
 {
 Console.WriteLine(reader.ReadToEnd());
 }
}
// Application execution delay.
Console.ReadKey();

OData

Contents
Possibilities for the bpm'online integration over the OData protocol
Working with bpm'online objects over the OData protocol using Http request
Working with bpm'online objects over the OData protocol WCF-client
Examples of requests for filter selection

Bpm’online developer guide 746

https://msdn.microsoft.com/en-us/library/system.net.httpwebrequest(v=vs.110).aspx

Executing OData queries using Fiddler

Possibilities for the bpm'online integration over the OData protocol

General
Open Data (OData) protocol is an open web-protocol for requesting and updating data based on the REST
architectural trekking using the Atom/XML and JSON standards .

The access to the bpm'online data and objects over the OData protocol may be received by any third-party
application, which supports exchange with HTTP messages and may process XML or JSON data. In this case, data
are available in the form of resources addressed over URI .

The access to data and its modification is implemented with the help of standard HTTP – GET, PUT/MERGE, POST
and DELETE commands .

ATTENTION

Using PUT and DELETE HTTP methods will cause “405 Method not allowed” error until WebDAV HTTP
extension is switched off in application Web.Config.

Working over the OData has several features conditioned by the specifics of the REST approach :

The application server does not store session status. All data required for a request processing is contained
in the request itself .
OData objects have the idempotence property. This means that a repeated action over an object does not
modify the latter.
When the GET request receives the object value, no modification of this or any other object must occur.

Today, a large number of client libraries for work with OData have been developed for popular application and
mobile platforms, including:

 .NET
Silverlight
JavaScript/HTML5
Java
PHP
Ruby
WP7
Android
iOS

All client libraries for working with OData may be downlowded using the following link
http://www.odata.org/libraries.

Implementation of the OData protocol in bpm'online
The bpm'online application supports the following operations with objects and their collections over the OData
protocol:

Group of operations Operations
Operations with objects Adding an object

Updating an object

Bpm’online developer guide 747

http://www.odata.org/libraries

Deleting an object
Adding relationships between objects
Deleting relationships between objects
Receiving metadata — description of all business entities
Receiving an objects collection
Receiving a specific object
Receiving a separate field of a specific object
Selecting several fields of a specific object
Extending an object with fields from lookup objects
Sorting objects
Receiving first N objects of the collection
Returning objects collections by bypassing first N objects (with N+1
of the object)
All arithmetical and logic operations supported by the protocol
Grouping filters

Functions of work with strings bool substringof(string po, string p)
string toupper(string p0)
bool endswith(string p0, string p1)
bool startswith(string p0, string p1)
int length(string p0)
string trim(string p0)

Functions of work with date and
time

int year (DateTime p0)
int month(DateTime p0)
int day(DateTime p0)

NOTE

Please note that bpm'online implements the forced paging when returning resultant objects collections. A
request returns first 40 objects by default. To modify the default paging implementation, standard structures
of OData requests may be used: $top, $skip, $orderby .

Below are the examples of building requests for access to bpm'online objects over the OData protocol .

Work with bpm'online objects over the OData protocol
OData service for access to bpm'online objects

The access to bpm'online entities over the OData protocol is provided by the EntityDataService.svc web-service.

The address of the EntityDataService.svc service is as follows:

http[s]://<name_address_of_bpm'online>/0/ServiceModel/EntityDataService.svc

Example

https://myserver.com/BpmonlineWebApp/0/ServiceModel/EntityDataService.svc

The data model of the EntityDataService.svc service is described in its metadata which can be received using the
standard OData syntaxes structure — $metadata.

Example

https://myserver.com/BpmonlineWebApp/0/ServiceModel/EntityDataService.svc/$metadata

Request authetication

Bpm’online developer guide 748

http://www.odata.org/blog/queryable-odata-metadata/

All requests to bpm'online must be authenticated .

The authentication methods supported by bpm'online are described in the article Authenticating external
requests to bpm'online services.

Examples of implementing the access to bpm'online objects
over the OData protocol

Working with bpm'online objects over the OData protocol using Http request
Working with bpm'online objects over the OData protocol WCF-client

Working with bpm'online objects over the OData protocol using Http
request

The following issues will be considered in this article:

Operations of working with objects and object collections
Functions of work with strings
Functions of working with date and time

To ensure successful compilation of the examples below, the following must be added to the software code:

Using directives

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Net;
using System.Xml;
using System.Xml.Linq;

Declaration of variables and constants

// String of address bpm’online OData servise.
private const string serverUri = "http://<server_name>/<BPMonline
application_name>/0/ServiceModel/EntityDataService.svc/";
private const string authServiceUtri = "http://<server_name>/<BPMonline
application_name>/ServiceModel/AuthService.svc/Login";

// Links to XML name spaces.
private static readonly XNamespace ds =
"http://schemas.microsoft.com/ado/2007/08/dataservices";
private static readonly XNamespace dsmd =
"http://schemas.microsoft.com/ado/2007/08/dataservices/metadata";
private static readonly XNamespace atom = "http://www.w3.org/2005/Atom";

Operations of working with objects and object collections
Receiving the objects collection

To receive the object collection, the HTTP-method GET is used.

Records are returned by pages, 40 records per page. If a request is supposed to return more than 40 records, the

Bpm’online developer guide 749

reception of the next page must be ensured to reach the end of the current page.

The example below demonstrates the use the $select structure to receive separate object fields (see OData Version
3.0 Core Protocol). The example shows that the request implementation results in the return of the contacts
collection with the Id and Name fields.

The example below also uses Forms authentication. The bpm'online user name and password are transmitted in
parameters of the GetOdataCollectionByAuthByHttpExample(string userName, string userPassword) method.

// Request string
// GET <BPMonline application
address>/0/ServiceModel/EntityDataService.svc/ContactCollection?select=Id,Name

public static void GetOdataCollectionByAuthByHttpExample(string userName, string
userPassword)
{
 // Creating an authentication request.
 var authRequest = HttpWebRequest.Create(authServiceUtri) as HttpWebRequest;
 authRequest.Method = "POST";
 authRequest.ContentType = "application/json";
 var bpmCookieContainer = new CookieContainer();
 // Including the cookie use into the request.
 authRequest.CookieContainer = bpmCookieContainer;
 // Receiving a stream associated with the authentication request.
 using (var requestStream = authRequest.GetRequestStream())
 {
 // Recording the BPMonline user accounts and additional request parameters
into the stream.
 using (var writer = new StreamWriter(requestStream))
 {
 writer.Write(@"{
 ""UserName"":""" + userName + @""",
 ""UserPassword"":""" + userPassword + @""",
 ""SolutionName"":""TSBpm"",
 ""TimeZoneOffset"":-120,
 ""Language"":""En-us""
 }");
 }
 }
 // Receiving an answer from the server. If the authentication is successful,
cookies will placed in the
 // bpmCookieContainer object and they may be used for further requests.
 using (var response = (HttpWebResponse)authRequest.GetResponse())
 {
 // Creating a request for data reception from the OData service.
 var dataRequest = HttpWebRequest.Create(serverUri + "ContactCollection?
select=Id, Name")
 as HttpWebRequest;
 // The HTTP method GET is used to receive data.
 dataRequest.Method = "GET";
 // Adding pre-received authentication cookie to the data receipt request.
 dataRequest.CookieContainer = bpmCookieContainer;
 // Receiving a response from the server.
 using (var dataResponse = (HttpWebResponse)dataRequest.GetResponse())
 {
 // Uploading the server response to an xml-document for further
processing.
 XDocument xmlDoc = XDocument.Load(dataResponse.GetResponseStream());
 // Receiving the collection of contact objects that comply with the
request condition.
 var contacts = from entry in xmlDoc.Descendants(atom + "entry")
 select new
 {

Bpm’online developer guide 750

http://www.odata.org/documentation/odata-version-3-0/odata-version-3-0-core-protocol/
http://www.odata.org/documentation/odata-version-3-0/odata-version-3-0-core-protocol/

 Id = new Guid(entry.Element(atom + "content")
 .Element(dsmd + "properties")
 .Element(ds + "Id").Value),
 Name = entry.Element(atom + "content")
 .Element(dsmd + "properties")
 .Element(ds + "Name").Value
 };
 foreach (var contact in contacts)
 {
 // Implementing actions with contacts.
 }
 }
 }

If the request is required to return more than 40 records at once, this may be implemented using the
$top parameter, where the required number of records returned by the request is specified. The example below
forms a string of the request to the server to receive the first 60 objects of the contacts collection.

Example of using the $top parameter

string requestUri = serverUri + "ContactCollection?$top=60";

Bpm'online supports the use of the $skip parameter, which allows requesting resources from the service by
bypassing the set number of records.

The example below demonstrates the formation of a string of the request to the service to receive the contacts
collection starting with the eleventh record.

Example of using the $skip parameter

string requestUri = serverUri + "ContactCollection?$skip=10";

The service resources may be received in the sorted form. For this purpose, the $orderby [asc|desc] parameter must
be used in a request. The field, by which the results are to be sorted, must be specified in the parameter. In addition,
one of the following sorting directions may be specified for this parameter:

ascending (asc)
descending (desc)

The ascending sorting (asc) is used by default.

The example below forms a string of the request to the service to receive the contacts collection sorted by the
ascending Name field value.

Example of using the $orderby parameter for ascending sorting

string requestUri = serverUri + "ContactCollection?$orderby=Name";

The $top, $skip, $orderby parameters may be used in various combinations to receive a certain fragment of the
collection (see OData Version 3.0 Core Protocol).

Example of using the combined $orderby, $top, $skip parameters

string requestUri = serverUri + "ContactCollection?
$top=4&$skip=1&$orderby=City/Name";

Receiving an object with set features

The HTTP-method GET is used to receive an object.

A certain object which meets specific conditions (for example, contact with the set Id or account with a certain name,
etc.) may be received by several methods (the examples below use Basic authentication of requests).

Setting the Id of the sought object as a parameter of the collection

// Request string:
// GET <BPMonline application

Bpm’online developer guide 751

http://www.odata.org/documentation/odata-version-3-0/odata-version-3-0-core-protocol/

address>/0/ServiceModel/EntityDataService.svc/ContactCollection(guid'00000000-0000-
0000-0000-000000000000')

public static void GetOdataObjectByIdExample()
{
 // Id of the sought object.
 string contactId = "00000000-0000-0000-0000-000000000000";

 // Forming a string of the request to the service.
 string requestUri = serverUri + "ContactCollection(guid'" + contactId + "')";

 // Creating an object of the request to the service.
 var request = HttpWebRequest.Create(requestUri) as HttpWebRequest;
 request.Method = "GET";
 request.Credentials = new NetworkCredential("BPMUserName", "BPMUserPassword");
 using (var response = request.GetResponse())
 {
 // Receiving a response from the service in the xml format.
 XDocument xmlDoc = XDocument.Load(response.GetResponseStream());
 // Receiving the contact objects collection satsifying the request condition.
 var contacts = from entry in xmlDoc.Descendants(atom + "entry")
 select new
 {
 Id = new Guid(entry.Element(atom + "content")
 .Element(dsmd + "properties")
 .Element(ds + "Id").Value),
 Name = entry.Element(atom + "content")
 .Element(dsmd + "properties")
 .Element(ds + "Name").Value
 // Initiating the object properties required for
further use.
 };
 foreach (var contact in contacts)
 {
 // Implementing actions over the contact.
 }
 }
}

This method may be used only if an object with the set Id must be received.

If the sought object parameter is not Id or the sought object is determined by several parameters, the
$filter structure must be used to determine the parameters.

Using the $filter structure to form a complex condition for the object selection

The $filter structure allows building logic expressions using the sought object selection conditions .

The $filter expressions may use links to properties and literals, strings, numbers and logical expressions (true,
false). The $filter expressions use arithmetical, logical operations, grouping operations, operations with strings, date
and time. The full list of operations implemented by the $filter structure is provided in the OData specification.

Below is the example of receiving the object with the set Id, using the $filter structure to set the condition.

// Request string:
// GET <BPMonline application
address>/0/ServiceModel/EntityDataService.svc/ContactCollection?$filter=Id eq
guid'00000000-0000-0000-0000-000000000000'

public static void GetOdataObjectByFilterConditionExample()
{
 // Id of the sought object.

Bpm’online developer guide 752

http://www.odata.org/documentation/odata-version-3-0/odata-version-3-0-core-protocol/
http://www.odata.org/documentation/odata-version-3-0/odata-version-3-0-core-protocol/
http://www.odata.org/documentation/odata-version-3-0/odata-version-3-0-core-protocol/

 string contactId = "00000000-0000-0000-0000-000000000000";
 // Forming a string of the request to the service.
 string requestUri = serverUri + "ContactCollection?$filter = Id eq guid'" +
contactId + "'";
 // Creating an object of the request to the service.
 var request = HttpWebRequest.Create(requestUri) as HttpWebRequest;
 request.Method = "GET";
 request.Credentials = new NetworkCredential("BPMUserName", "BPMUserPassword");
 using (var response = request.GetResponse())
 {
 // Receiving a response from the service in the xml format.
 XDocument xmlDoc = XDocument.Load(response.GetResponseStream());
 // Receiving the contact objects collection satisfying the request condition.
 var contacts = from entry in xmlDoc.Descendants(atom + "entry")
 select new
 {
 Id = new Guid(entry.Element(atom + "content")
 .Element(dsmd + "properties")
 .Element(ds + "Id").Value),
 Name = entry.Element(atom + "content")
 .Element(dsmd + "properties")
 .Element(ds + "Name").Value
 // Initiating the object properties required for further
use.
 };
 foreach (var contact in contacts)
 {
 // Implementing actions over the contact.
 }
 }
}

Complex conditions for several fields of an object may be created using the $filter structure.

Below is the example of returning the contact objects collections created by a SomeUserName user after 2012-11-01.

// Request string:
// GET <BPMonline applicationn
address>/0/ServiceModel/EntityDataService.svc/ContactCollection?$filter=CreatedOn gt
datetime'2012-11-01' and CreatedBy/Name eq 'SomeUserName'

public static void GetOdataObjectByFilterDiffConditionExample()
{
 // Name of the user that created the objects.
 string userName = "BPMUserName";
 // Objects creation date.
 string datetime = "2012-11-01";
 // Forming a string of the request to the service.
 string requestUri = serverUri + "ContactCollection?$filter=CreatedOn gt
datetime'" + datetime +
 "'and CreatedBy/Name eq '" + userName + "'";
 // Creating an object of the request to the service.
 var request = HttpWebRequest.Create(requestUri) as HttpWebRequest;
 request.Method = "GET";
 request.Credentials = new NetworkCredential(userName, "BPMUserPassword");
 using (var response = request.GetResponse())
 {
 // Receiving a response from the service in the xml format.
 XDocument xmlDoc = XDocument.Load(response.GetResponseStream());
 // Receiving the contact objects collection satisfying the request condition.
 var contacts = from entry in xmlDoc.Descendants(atom + "entry")
 select new

Bpm’online developer guide 753

 {
 Id = new Guid(entry.Element(atom + "content")
 .Element(dsmd + "properties")
 .Element(ds + "Id").Value),
 Name = entry.Element(atom + "content")
 .Element(dsmd + "properties")
 .Element(ds + "Name").Value
 // Initiating the object properties required for further
use.
 };
 foreach (var contact in contacts)
 {
 // Implementing actions over the contact.
 }
 }
}

More examples of building requests using the $filter structure may be found in the article "Examples of requests
for filter selection".

Creating a new object

The HTTP-method POST is used to create an object.

In this case, the request subject must be formed in the Atom/XML or JSON format so that it contains all required
object fields. All possible fields of the created object are described in the service metadata .

Below is the example of creating a new contact. The example uses Basic authentication of the request .

// Request string:
// POST <BPMonline application
address>/0/ServiceModel/EntityDataService.svc/ContactCollection/

public static void CreateBpmEntityByOdataHttpExample()
{
 // Creating a xml message containing data on the created object.
 var content = new XElement(dsmd + "properties",
 new XElement(ds + "Name", "Jhon Gilts"),
 new XElement(ds + "Dear", "Jhon"));
 var entry = new XElement(atom + "entry",
 new XElement(atom + "content",
 new XAttribute("type", "application/xml"), content));
 Console.WriteLine(entry.ToString());
 // Creating a request to the service which will add a new object to the contacts
collection.
 var request = (HttpWebRequest)HttpWebRequest.Create(serverUri +
"ContactCollection/");
 request.Credentials = new NetworkCredential("BPMUserName", "BPMUserPassword");
 request.Method = "POST";
 request.Accept = "application/atom+xml";
 request.ContentType = "application/atom+xml;type=entry";
 // Recording the xml message to the request stream.
 using (var writer = XmlWriter.Create(request.GetRequestStream()))
 {
 entry.WriteTo(writer);
 }
 // Receiving a response from the service regarding the operation implementation
result.
 using (WebResponse response = request.GetResponse())
 {
 if (((HttpWebResponse)response).StatusCode == HttpStatusCode.Created)
 {
 // Processing the operation implementation result.

Bpm’online developer guide 754

 }
 }
}

Modifying an existing object

The PUT (or MERGE in the latest OData versions) HTTP-method is used to modify a record.

New values of the fields to be modified are transmitted in the request subject. The collection whose object is
modified must be specified in the request string and the modified object Id must be specified as the collection
parameter.

Below is the example of modifying the name of the contact with the Id 00000000-0000-0000-0000-
000000000000 from the ContactCollection contacts collection. The example uses the Basic authentication of
requests.

// Request string:
// PUT <BPMonline application
address>/0/ServiceModel/EntityDataService.svc/ContactCollection(guid'00000000-0000-
0000-0000-000000000000')
// or
// MERGE <Адрес приложения
BPMonline>/0/ServiceModel/EntityDataService.svc/ContactCollection(guid'00000000-0000-
0000-0000-000000000000')
public static void UpdateExistingBpmEnyityByOdataHttpExample()
{
 // Id of the object record to be modified.
 string contactId = "00000000-0000-0000-0000-000000000000";
 // Creating an xml message containing data on the modified object.
 var content = new XElement(dsmd + "properties",
 new XElement(ds + "Name", "New name")
);
 var entry = new XElement(atom + "entry",
 new XElement(atom + "content",
 new XAttribute("type", "application/xml"),
 content)
);
 // Creating a request to the service which will modify the object data.
 var request = (HttpWebRequest)HttpWebRequest.Create(serverUri
 + "ContactCollection(guid'" + contactId + "')");
 request.Credentials = new NetworkCredential("BPMUserName", "BPMUserPassword");
 // or request.Method = "MERGE";
 request.Method = "PUT";
 request.Accept = "application/atom+xml";
 request.ContentType = "application/atom+xml;type=entry";
 // Recording the xml message to the request stream.
 using (var writer = XmlWriter.Create(request.GetRequestStream()))
 {
 entry.WriteTo(writer);
 }
 // Receiving a response from the service regarding the operation implementation
result.
 using (WebResponse response = request.GetResponse())
 {
 // Processing the operation implementation result.
 }
}

Deleting an object

The HTTP-method DELETE is used to delete a record .

The collection whose object is deleted must be specified in the request string and the deleted object Id must be
specified as the collection parameter .

Bpm’online developer guide 755

Below is the example of deleting the contact with the Id 00000000-0000-0000-0000-000000000000 from the
ContactCollection contacts collection. The example uses the Basic authentication of requests .

// Request string:
// DELETE <BPMonline application
address>/0/ServiceModel/EntityDataService.svc/ContactCollection(guid'00000000-0000-
0000-0000-000000000000')

public static void DeleteBpmEntityByOdataHttpExample()
{
 // Id of the object record to be deleted.
 string contactId = "00000000-0000-0000-0000-000000000000";
 // Creating a request to the service which will delete the data.
 var request = (HttpWebRequest)HttpWebRequest.Create(serverUri
 + "ContactCollection(guid'" + contactId + "')");
 request.Credentials = new NetworkCredential("BPMUserName", "BPMUserPassword");
 request.Method = "DELETE";
 // Receiving a response from the service regarding the operation implementation
result.
 using (WebResponse response = request.GetResponse())
 {
 // Processing the operation implementation result.
 }
}

Functions of work with strings
BPMonline supports the following functions of work with the OData protocol strings which may be used for building
expressions of the $filter structure.

Function Example of the request string Request
implementation
result

bool substringof(string po,
string p)

<Service address >/ContactCollection?
$filter=substringof('Smith', Name)

Collection of contacts
whose name contains
the 'Smith' sub-string.

string toupper(string p0) <Service address > /ContactCollection?
$filter=toupper(Name) eq 'TEST USER'

Collection of contacts
whose name is equal to
'TEST USER' in the
upper case.

bool endswith(string p0,
string p1)

<Service address > /ContactCollection?
$filter=endswith(Name, 'User')

Collection of contacts
whose name ends with
the 'User' sub-string.

int length(string p0) <Service address > /ContactCollection?
$filter=length(Name) gt 10

Collection of contacts
whose name length
exceeds 10 characters.

string trim(string p0) <Service address > / ContactCollection?
$filter=trim(Name) eq 'Test User'

Collection of contacts
whose name is equal to
'Test User' after
removing the initial
and end spaces.

The full list of functions for working with the OData protocol strings is provided in the official OData specification.

Functions of working with date and time
BPMonline supports the following functions of work with the OData protocol dates which may be used for building

Bpm’online developer guide 756

http://www.odata.org/documentation/odata-version-3-0/odata-version-3-0-core-protocol/

expressions of the $filter structure.

Function Example of the request string Request
implementation
result

int year(DateTime p0) <Service address >/ContactCollection?
$filter=year(BirthDate) ge 1950 and year(BirthDate) le
1990

Collection of contacts
whose year of birth is
within the range of the
year 1950 to 1990,
inclusive.

int month(DateTime p0) <Service address >/ContactCollection?
$filter=month(BirthDate) eq 5

Collection of contacts
born in May.

int day(DateTime p0) <Service address >/ContactCollection?
$filter=day(BirthDate) eq 15

Collection of contacts
born on the 15th day.

The full list of functions for working with the OData protocol dates is provided in the official OData specification.

Working with bpm'online objects over the OData protocol WCF-client

General
The access to bpm'online entities over the OData protocol is provided by the EntityDataService.svc web-service:

Address of the OData service

http[s]://<server_name>/<bpm'online_application_name> + "/0/ServiceModel/EntityDataSe
rvice.svc/"

Example of the OData service address

http://myserver.com/bpmonlineWebApp/0/ServiceModel/EntityDataService.svc

Generating proxy classes of the EntityDataService.svc service
General

The key point in the organization of the WCF client operation is receiving metadata of the service and creating client
proxy classes. A client application will use these mediation classes to exchange data with the web-service.

The following must be performed to implement the .NET client application that could work with the OData service
of bpm'online:

1. Create a .NET project where the integration with bpm'online will be implemented.
2. Generate client proxy classes of the EntityDataService.svc service.
3. Create an instance of the execute environment for the EntityDataService.svc service.
4. Implement the client business logic of integration using the methods of the created proxy class instance.

Proxy classes may be generated on the client by several methods considered below.

Creating proxy classes using the DataServiceModel Metadata Utility Tool
(DataSvcutil.exe) utility

DataSvcUtil.exe is a command string program provided by WCF Data Services services. The program uses the
OData channel and forms client classes of the data service required for access to the data service from the .NET

Bpm’online developer guide 757

http://www.odata.org/documentation/odata-version-3-0/odata-version-3-0-core-protocol/

Framework client application. This program forms data classes using the following sources of metadata:

WSDL — a document of metadata of the service describing the data model provided by the data service.
Data model file (CSDL) determined using the language for determining the conceptual schema (CSDL)
described in the specification [MC–CSDL]: format of the file determining the conceptual schema.
EDMX file created with the help of programs for work with the EDM model being a part of Entity
Framework. Additional data are given in the specification [MC–EDMX]: EDM model for the data service
package format.

The DataSvcUtil.exe program is installed in the .NET Framework catalogue.

This is usually the folder C:\Windows\Microsoft.NET\Framework\v4.0. For 64-bit system versions this is the
folder C:\Windows\Microsoft.NET\Framework64\v4.0.

Format of calling the DataSvcutil.exe utility

datasvcutil /out:file [/in:file | /uri:serviceuri] [/dataservicecollection]
[/language:devlang] [/nologo] [/version:ver] [/help]

The DataSvcutil.exe utility is covered in the corresponding section of the MSDN.

Creating proxy classes in the project of the Visual Studio client application

Proxy classes for the WCF client may be created directly from Visual Studio. For this purpose, the following
sequence of actions must be implemented:

1. Right-click the project where the integration with bpm'online must be implemented, select the Add Service
Reference… item in the right-click menu

2. Enter the full address of the OData service, namely EntityDataService.svc in the Address field in the opened
window.

3. Press the Go button. As a result, the service authentication window will open. The name and password of the
bmp'online user must be specified in the window. If the authentication is successful, the entities supported by
the service will be displayed in the Services window.

4. In the Namespase field, enter the name of the names space where generated proxy classes will be located. For
example, bpm'onlineServiceReference. A link to this names space must be added afterwards to the using
block of the project code.

5. Press the OK button. Proxy classes will be generated. A new Reference.cs code file containing the description
of proxy classes will be added to the project. These classes may be used now for addressing and interacting
with the data service resources as with objects.

NOTE

Visual Studio may generate proxy classes of the service from the service metadata file saved on the disk. For
this purpose, fulfill part. 1 of the instructions. Then, enter the full path to the metadata file with the prefix
"file://" in the Address dialogue window.

Example: file://C:/metadata.xml"

After this, fulfill part. 3—5 of the instructions.

Examples of working with bmp'online entities in the WCF
client
When proxy classes of the service are generated, a link to the Microsoft.Data.Services.Client.dll assembly is added
to the project. This assembly supports the OData v.3 protocol. If, by any reason, the earlier version of the protocol
must be used in the client application, a link to the corresponding assembly must be added manually.

This client library allows making requests to the EntityDataService.svc data service using standard software
templates .NET Framework, and include the use of the LINQ request language.

To ensure successful compilation of the examples below, the following must be added to the project code:

Using directives

Bpm’online developer guide 758

http://www.odata.org/media/16348/[mc-csdl].pdf
http://www.odata.org/media/16343/[mc-edmx].pdf
http://www.odata.org/media/16343/[mc-edmx].pdf
http://msdn.microsoft.com/en-us/library/ee383989.aspx

using System;
using System.Data.Services.Client;
using System.Net;
using Terrasoft.Sdk.Examples.BPMonlineServiceReference;
using System.Linq;

Declaring the variable of the OData service address

private static Uri serverUri = new
Uri("http://<server_name>/<application_name>/0/ServiceModel/EntityDataService.svc/");

Receiving the objects collection of the service

To receive the objects collection of the service, the DataServiceQuery universal class is used. This class represents a
request to the service, which returns the collection of a certain type of entities.

To implement the request to the EntityDataService.svc data service, an instance of the environment context object
for the bmp'online must be created.

One ought to bear in mind that all external requests to bpm'online web-services must be authenticated. Detailed
methods of authentication may be found in the article Authenticating external requests to bpm'online
services.

Forms authentication implemented on the basis of the example in the clause above will be in further examples.

To implement the forms authentication, the LoginClass class with authServiceUri fields (string of a request to the
Login method of the AuthService.svc authenticated service) and AuthCookie (Cookie authentications of bpm'online)
were created. The TryLogin(string userName, string userPassword) method implementing the user authentication
and saving the server response in the AuthCookie field may also be used.

In addition, the OnSendingRequestCookie (object sender, SendingRequestEventArgse) method is created. The
method will be called in response to an event of the SendingRequest context instance (creating a new
HttpWebRequest instance).

The OnSendingRequestCookie method authenticates the user and Cookies received in response are added to the
data receipt request.

static void OnSendingRequestCookie(object sender, SendingRequestEventArgs e)
{
 // Calling the method of the LoginClass class, which authenticates the user
method transmitted in parameters.
 LoginClass.TryLogin("BPMUserName", "BPMUserPassword");
 var req = e.Request as HttpWebRequest;
 // Adding pre-received authentication cookie to the data receipt request.
 req.CookieContainer = LoginClass.AuthCookie;
 e.Request = req;
}

A request to the service may be implemented by one of the following methods:

Implementing a LINQ request to the DataServiceQuery named object received from the service context.
Implicit listing of the DataServiceQuery object received from the service context.
Explicit call of the Execute method of the DataServiceQuery or BeginExecute object for asynchronous
execution.

Below are the examples of access to EntityDataService.svc objects by one of the above methods.

 1) Example of receiving the contacts collection via a LINQ request

This example demonstrates how the LINQ request returning all contact entities of the EntityDataService.svc service
must be determined and implemented.

public static void GetOdataCollectioByLinqWcfExample()
{
 // Creating the context of the BPMonline application.

Bpm’online developer guide 759

 var context = new BPMonline(serverUri);
 // Determining the method which adds authentication cookie when creating a new
request.
 context.SendingRequest += new EventHandler<SendingRequestEventArgs>
(OnSendingRequestCookie);
 try
 {
 // Building a LINQ request to receive the contacts collection.
 var allContacts = from contacts in context.ContactCollection
 select contacts;
 foreach (Contact contact in allContacts)
 {
 // Implementing actions with contacts.
 }
 }
 catch (Exception ex)
 {
 // Error processing.
 }
}

 2) Example of receiving the contacts collection via an implicit request to the OData service
via the context object

This example demonstrates how the context must be used to implement the implicit request returning all contact
entities of the EntityDataService.svc service.

public static void GetOdataCollectionByImplicitRequestExample()
{
 // Creating a context object of the BPMonline application.
 var context = new BPMonline(serverUri);
 // Determining the method which adds authentication cookie when creating a new
request.
 context.SendingRequest += new EventHandler<SendingRequestEventArgs>
(OnSendingRequestCookie);
 try
 {
 // Determining an implicit request to the service to receive the contacts
collection.
 DataServiceQuery<Contact> allContacts = context.ContactCollection;
 foreach (Contact contact in allContacts)
 {
 // Implementing actions with contacts.
 }
 }
 catch (Exception ex)
 {
 // Error processing.
 }
}

3) Example of receiving the contacts collection via an explicit request to the OData service via
the context object

This example demonstrates how the DataServiceContext context must be used to implement a request to the
EntityDataService.svc service returning all contact entities.

public static void GetOdataCollectionByExplicitRequestExample()
{
 // Determining a Uri request to the service which returns the contacts
collection.
 Uri contactUri = new Uri(serverUri, "ContactCollection");

Bpm’online developer guide 760

 // Creating a context object of the BPMonline application.
 var context = new BPMonline(serverUri);
 // Determining the method which adds authentication cookie when creating a new
request.
 context.SendingRequest += new EventHandler<SendingRequestEventArgs>
(OnSendingRequestCookie);
 try
 {
 // Implementing an explicit request to the service by calling the Execute<>()
method.
 foreach (Contact contact in context.Execute<Contact>(contactUri))
 {
 // Implementing actions with contacts.
 }
 }
 catch (Exception ex)
 {
 // Error processing.
 }
}

Receiving an object with set features

public static void GetOdataObjectByWcfExample()
{
 // Creating the context of the BPMonline application.
 var context = new BPMonline(serverUri);
 // Determining the method which adds authentication cookie when creating a new
request.
 context.SendingRequest += new EventHandler<SendingRequestEventArgs>
(OnSendingRequestCookie);
 var contact = context.ContactCollection.Where(c =>
c.Name.Contains("User")).First();
 // Implementing actions over the contact.
}

Creating a new object

public static void CreateBpmEntityByOdataWcfExample()
{
 // Creating a new contact, initiating properties.
 var contact = new Contact()
 {
 Id = Guid.NewGuid(),
 Name = "New Test User"
 };
 // Creating and initiating properties of a new account, to which the created
contact refers.
 var account = new Account()
 {
 Id = Guid.NewGuid(),
 Name = "Some Company"
 };
 contact.Account = account;
 // Creating the context of the BPMonline application.
 var context = new BPMonline(serverUri);
 // Determining the method which adds authentication cookie when creating a new
request.
 context.SendingRequest += new EventHandler<SendingRequestEventArgs>
(OnSendingRequestCookie);
 // Adding the created contact to the contacts collection of the service data
model.

Bpm’online developer guide 761

 context.AddToAccountCollection(account);
 // Adding the created account to the accounts collection of the service data
model.
 context.AddToContactCollection(contact);
 // Setting the relationship between the created contact and account in the
service data model.
 context.SetLink(contact, "Account", account);
 // Saving the modification of data in BPMonline by one request.
 DataServiceResponse responces = context.SaveChanges(SaveChangesOptions.Batch);
 // Processing the server responses.
}

Modifying an existing object

public static void UpdateBpmEntityByOdatetWcfExample()
{
 // Creating the context of the BPMonline application.
 var context = new BPMonline(serverUri);
 // Determining the method which adds authentication cookie when creating a new
request.
 context.SendingRequest += new EventHandler<SendingRequestEventArgs>
(OnSendingRequestCookie);
 // The contact on which basis the data will be modified is selected from the
contacts collection.
 var updateContact = context.ContactCollection.Where(c =>
c.Name.Contains("Test")).First();
 // Modifying the selected contact properties.
 updateContact.Notes = "New updated description for this contact.";
 updateContact.Phone = "123456789";
 // Saving the modifications in the service data model.
 context.UpdateObject(updateContact);
 // Saving the modification of data in BPMonline by one request.
 var responces = context.SaveChanges(SaveChangesOptions.Batch);
}

Deleting an object

public static void DeleteBpmEntityByOdataWcfExample()
{
 // Creating the context of the BPMonline application.
 var context = new BPMonline(serverUri);

 context.SendingRequest += new EventHandler<SendingRequestEventArgs>
(OnSendingRequestCookie);
 // The object which will be deleted is selected from the contacts collection.
 var deleteContact = context.ContactCollection.Where(c =>
c.Name.Contains("Test")).First();
 // Deleting the selected object from the service data model.
 context.DeleteObject(deleteContact);
 // Saving the modification of data in BPMonline by one request.
 var responces = context.SaveChanges(SaveChangesOptions.Batch);
 // Processing the server responses.
}

Examples of requests for filter selection

Bpm’online developer guide 762

We recommend familiarization with the article "Working with bpm'online objects over the OData protocol
using Http request".

The structure $filter of the OData protocol is used to build up data filter conditions. The full list of operations
implemented by the $filter structure is provided in the OData specification.

Links, literals, strings, numbers and logical expressions (true, false) may be used in $filter expressions. $filter
expressions support arithmetical, logical operations, grouping operations, operations with strings, date and time .

Logical operators

Template Name Description

eq Equals All contacts whose [Name] field equals to the 'SomeUserName' value.

Request string :

GET <BPMonline application
address>/0/ServiceModel/EntityDataService.svc/ContactCollection?
$filter=Name eq 'SomeUserName'

ne Does not equal All contacts whose [Name] field is not equal to the 'SomeUserName' value.

Request string:

GET <BPMonline application
address>/0/ServiceModel/EntityDataService.svc/ContactCollection?
$filter=Name ne 'SomeUserName'

gt More All contacts whose [BirthDate] field exceeds the '1990-12- 12T12:00' value.

Request string:

GET <BPMonline application
address>/0/ServiceModel/EntityDataService.svc/ContactCollection?
$filter=BirthDate gt datetime'1990-12-12T12:00'

ge More or equals All contacts whose [BirthDate] field exceeds or equals to the '1990-12-
12T12:00' value.

Request string:

GET <BPMonline application
address>/0/ServiceModel/EntityDataService.svc/ContactCollection?
$filter=BirthDate ge datetime'1990-12-12T12:00'

lt Less All contacts whose [BirthDate] field is less than the '1990-12- 12T12:00' value.

Request string:

GET <BPMonline application
address>/0/ServiceModel/EntityDataService.svc/ContactCollection?
$filter=BirthDate lt datetime'1990-12-12T12:00'

le Less or equals All contacts whose [BirthDate] field is less or equals to the '1990-12-12T12:00'
value.

Request string:

GET <BPMonline application
address>/0/ServiceModel/EntityDataService.svc/ContactCollection?
$filter=BirthDate le datetime'1990-12-12T12:00'

Bpm’online developer guide 763

http://www.odata.org/documentation/odata-version-3-0/odata-version-3-0-core-protocol/

and And All contacts whose [Name] field equals to the 'SomeUserName' value and the
[BirthDate] field is less than the '1990-12-12T12:00' value.

Request string:

GET <BPMonline application
address>/0/ServiceModel/EntityDataService.svc/ContactCollection?
$filter=Name eq 'SomeUserName' and BirthDate le datetime'1990-12-
12T12:00'

or Or All contacts whose [Name] field equals to the 'SomeUserName' value and the
[BirthDate] field is less than the '1990-12-12T12:00' value.

Request string:

GET <BPMonline application
address>/0/ServiceModel/EntityDataService.svc/ContactCollection?
$filter=Name eq 'SomeUserName' and BirthDate le datetime'1990-12-
12T12:00'

not Not All contacts whose [Name] field does not end with 'ame'.

Request string:

GET <BPMonline application
address>/0/ServiceModel/EntityDataService.svc/ContactCollection?
$filter=not endswith(Name, 'ame')

Arithmetic operators

Template Name Description

add Addition Select all products, for which the price (the [Price] field) satisfies the condition
(Price + 2) = 35.55

Request string:

GET <BPMonline application
address>/0/ServiceModel/EntityDataService.svc/ProductCollection?
$filter=Price add 2.00m eq 35.55m

sub Subtraction Select all products, for which the price (the [Price] field) meets the condition
(Price - 2) = 35.55

Request string:

GET <BPMonline application
address>/0/ServiceModel/EntityDataService.svc/ProductCollection?
$filter=Price sub 2.00m eq 35.55m

mul Multiplication Select all products, for which the price (the [Price] field) meets the condition
(Price * 2) = 35.55

Request string:

GET <BPMonline application
address>/0/ServiceModel/EntityDataService.svc/ProductCollection?
$filter=Price mul 2.00m eq 35.55m

div Division Select all products, for which the price (the [Price] field) meets the condition
(Price / 2) = 35.55

Request string:

GET <BPMonline application

Template Name Description

Bpm’online developer guide 764

address>/0/ServiceModel/EntityDataService.svc/ProductCollection?
$filter=Price div 2 eq 35.55m

To build up complex conditions of data filter in the $filters structure, various functions may be used:

- arithmetical;

- functions of work with strings;

- functions of work with date and time;

- functions of works with objects collection.

Learn more about these functions in the "Working with bpm'online objects over the OData protocol using
Http request" article.

The full list of OData protocol functions is represented in OData official specification.

Operator any

Any operator applies logic expressions to each collection of items and returns a value of true, if an expression is
correct for at least one collection item. Any operator will return a true value without an argument, if the collection
contains at least one item.

Example.

Select all invoices that contain at least one product with the 'SomeProductName' name.

Request string:

GET <BPMonline application address>/0/ServiceModel/EntityDataService.svc/InvoiceCollection?
$filter=InvoiceProductCollectionByInvoice/any(d:d/Product/Name eq 'SomeProductName')

OData protocol data types

You should take into account data types that are filtered upon making queries. The literal character, located in the
right part of a logical expression, should be of the same type as the field on the left part. The same rule applies to the
use of mathematical functions. Strings, numbers, literal characters that are used in building of the expression,
should have equal types of data.

Data type Definition Examples

Edm.Binary Binary data of fixed or floating length.

Entry mask:

binary'[A-Fa-f0-9][A-Fa-f0-9]*'

X'[Fa-f0-9][A-Fa-f0-9]*'

NOTE

X and binary are case-sensitive.

The space should be absent between the functional word and
the value.

Example: X'23AB'

Example:
binary'23ABFF'

Edm.Boolean Represents logical value.

Entry mask:

true | false

Example: true

Example: false

Edm.Byte Represents 8-byte unsigned integer value.

Entry mask:

Example: 255

Template Name Description

Bpm’online developer guide 765

[0-9]+

Edm.DateTime Represents date and time within the range from 12:00;00
midnight, January 1, 1753 A.D. to 11:59:59 P.M., December 9999
A.D.

Entry mask:

datetime'yyyy-mm-ddThh:mm[:ss[.fffffff]]'

NOTE

datetime is case-sensitive.

The space should be absent between the functional word and
the value.

Example:
datetime'2000-12-
12T12:00'

Edm.Decimal Numerical value with fixed accuracy.

This type describes the value within the range from negative
10^255+1 to positive 10^255-1.

Entry mask:

[0-9]+.[0-9]+M|m

Example:
2.345M

Edm.Double Represents numerical value with floating point up to 15 characters.

Entry mask:

[0-9]+ ((.[0-9]+) | [E[+ | -][0-9]+])d

Example: 1E+10d

Example: 2.029d

Example: 2.0d

Edm.Single Represents numerical value with floating point up to 7 characters
Entry mask.

Entry mask:

[0-9]+.[0-9]+f

Example: 2.0f

Edm.Guid Represents 128-bit value, unique identifier.

Entry mask:

guid'dddddddd-dddd-dddd-dddd-dddddddddddd',

where d — [A-Fa-f0-9]

 NOTE

Guid is case-sensitive.

The space should be absent between the functional word and
the value.

Example:
guid'12345678-aaaa-
bbbb-cccc-
ddddeeeeffff'

Edm.Int16 Represents signed 16-bit value.

Entry mask:

[-][0-9]+

Example: 16

Example: -16

Edm.Int32 Represents signed 32-bit integer value.

Entry mask:

[-] [0-9]+

Example: 32

Example: -32

Data type Definition Examples

Bpm’online developer guide 766

Edm.Int64 Represents signed 64-bit integer value.

Entry mask:

[-] [0-9]+L

Example: 64L

Example: -64L

Edm.SByte Represents signed 8-bit integer value.

Entry mask:

[-] [0-9]+

Example: 8

Example: -8

Edm.String Character data of floating or fixed length.

Entry mask:

'<any UTF-8 character>'

Example: 'Hello
OData'

Data type Definition Examples

Executing OData queries using Fiddler

Introduction
Integration with bpm’online using the OData protocol requires executing HTTP requests to the
EntityDataService.svc. Requests can be compiled in any programming language: C#, PHP, etc. However, it is
recommended to use HTTP request debugging tools, such as PostMan or Fiddler for better understanding of general
principles for request formatting. This article covers examples of requests composed with the help of Fiddler.

More information about OData protocol can be found in the “Possibilities for the bpm'online integration
over the OData protocol” article.

Preliminary settings

ATTENTION

If the user who is making requests to EntityDataService.svc is not a member of the system administrator user
group, add this user to the [Access to OData] group in the [Operation permissions] section (Fig. 1 and 2).

Also, enable access to object for external services for this user to work with bpm’online objects via OData (Fig.
3).

Fig. 1. The [Access to OData] group in the [Operation permissions] section

Bpm’online developer guide 767

https://www.getpostman.com/
http://www.telerik.com/fiddler

Fig. 2. User in the [Access to OData] group

Fig. 3. Enabling access to object for external services for the [Activity] object

Bpm’online developer guide 768

Authentification
Before making requests to EntityDataService.svc, a third party application must be authenticated and receive the
corresponding cookies. Bpm’online’s authentication uses a separate web service: AuthService.svc. For more
information about this service, please see the “The AuthService.svc authentication service” article.

To execute a request to AuthService.svc using Fiddler, go to the [Composer] tab and execute the following (Fig. 4):

1. Select HTTP method POST.

2. Specify the authentication service URL generated according to the following mask:

http(s)://[bpm'online application address]/ServiceModel/AuthService.svc/Login

Example:

https://012496-sales-enterprise.bpmonline.com/ServiceModel/AuthService.svc/Login

3. Specify HTTP protocol version 1.1.

4. Specify the type of the request body:

Content-Type: application/json

5. Add the request body – a JSON object with the authentication data (login and password):

{"UserName": "User01", "UserPassword":"User01"}

Fig. 4. Generating authentication request

Bpm’online developer guide 769

Execute the request by clicking the [Execute] button. As a result, the Fiddler session window will display a response
from the AuthService.svc service (Fig. 5). Double-click the reply string (1) to open the [Inspectors] tab with the
response properties.

Fig. 5. Properties of HTTP response from the AuthService.svc

Bpm’online developer guide 770

ATTENTION

The cookies received in the HTTP response (BPMLOADER, .ASPXAUTH and BPMCSRF) are to be used in all
further requests to bpm'online, that require authentication data (Fig. 5, 2).

ATTENTION

If the authentication has been successful, the response body will contain a JSON object whose Code property
will be set to “0” (Fig. 5, 3). In case of errors, JSON obkect properties will contain corresponding code and
message.

Adding data
Example: add a new activity. Fill out the [Title], [Owner] and [Notes] columns.

To compose a request to add such data using Fiddler, go to the [Composer] tab and execute the following (Fig. 6):

1. Select HTTP method POST.

2. Specify the EntityDataService.svc service URL generated according to the following mask:

http(s)://[bpm'online application
address]/0/ServiceModel/EntityDataService.svc/ActivityCollection/

3. Specify HTTP protocol version 1.1.

4. Add the following in the request title:

Query content type – application/json.
Required cookies (BPMLOADER, .ASPXAUTH, BPMSESSIONID и BPMCSRF).

Bpm’online developer guide 771

CSRF token BPMCSRF that contains the value of the corresponding cookie (BPMCSRF).

Example of request’s HTTP title:

Accept: application/atom+xml
Content-Type: application/atom+xml;type=entry
Cookie: BPMSESSIONID=cxa54p2dsb4wnqbbzvgyxcoo; BPMCSRF=6yCmyILSlIE8/toyQm9Ca.;
BPMLOADER=rqqjjeqyfaudfyk4xu404j5f; .ASPXAUTH=697...A292D8164;
BPMCSRF: 6yCmyILSlIE8/toyQm9Ca.

ATTENTION

If protection from CSRF attacks is enabled, use both the BPMCSRF cookie and BPMCSRF token. For more
information, see “Protection from CSRF attacks during integration with bpm'online”.

Protection from CSRF attacks is disabled on bpm’online trial websites. Therefore, there is no need to use both
BPMCSRF cookie and token in the request titles.

ATTENTION

User session is created only upon the first request to the EntityDataService.svc, after which the
BPMSESSIONID cookie will be returned in the response (Fig. 8, 2). Therefore, there is no need to add
BPMSESSIONID cookie to the title of the first request (Fig. 6, 4).

If you do not add BPMSESSIONID cookie to each subseqnent request, then each request will create a new user
session. Significant frequency of requests (several or more requests a minute) will increase the RAM
consumption which will decrease performance.

5. Add contents in XML format to the HTTP request body:

<?xml version="1.0" encoding="utf-8"?>
<entry xmlns="http://www.w3.org/2005/Atom">
 <content type="application/xml">
 <properties
xmlns="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata">
 <Title
xmlns="http://schemas.microsoft.com/ado/2007/08/dataservices">process the incomming
website form request</Title>
 <Notes
xmlns="http://schemas.microsoft.com/ado/2007/08/dataservices">please, email to
client@gmail.com and process the following request: clients request</Notes>
 <OwnerId
xmlns="http://schemas.microsoft.com/ado/2007/08/dataservices">64844c83-c6c2-4eee-
a0e9-e26cef529d2f</OwnerId>
 </properties>
 </content>
</entry>

This request fills out all required object columns.

ATTENTION

If an object column is a lookup, specify the lookup database Id instead of lookup name. Add the “Id” suffix to
the lookup column name in the request. In the current example, the lookup column is [Owner], and the
“OwnerId” identifier is specified for it in the request.

You can view the OwnerId value in the browser, by opening corresponding record for editing (Fig. 7) obtain via
a query.

Fig. 6. Composing an insert query

Bpm’online developer guide 772

Fig. 7. Contact Id displayed in the browser

Execute the request by clicking the [Execute] button. As a result, the Fiddler session window will display a response
from the EntityDataService.svc service (Fig. 8). Double-click the reply string (1) to open the [Inspectors] tab with
the response properties.

Fig. 8. Properties of HTTP response from the EntityDataService.svc

Bpm’online developer guide 773

NOTE

The response from the EntityDataService.svc service may contain the BPMSESSIONID cookie if the request is
executed for the first time (Fig. 8, 2).

The response body contains the added record in the XML format (Fig. 8, 3). The <id> XML element contains the
identifier of the added activity, that can be used in other requests that need to work with this record.

As a result, a new record will be added in the [Activities] section (Fig. 9).

Fig. 9. Results of the activity add request

Bpm’online developer guide 774

Data selection
The data select query does not have body. Data filtering is done based on the URL parameter values. For more
information on the data select queries with filters, see the “Examples of requests for filter selection” article.

To compose a request to select data using Fiddler, go to the [Composer] tab and execute the following (Fig. 10):

1. Select HTTP method POST.

2. Specify the EntityDataService.svc service URL generated according to the following mask:

http(s)://[bpm'online application
address]/0/ServiceModel/EntityDataService.svc/ActivityStatusCollection?
$filter=Code%20eq%20'InProgress'

3. Specify HTTP protocol version 1.1.

4. In the request title, specify the request body type as application/atom+xml. Add all necessary cookies to the
request title (BPMLOADER, .ASPXAUTH, BPMSESSIONID, BPMCSRF) and the BPMCSRF token:

Accept: application/atom+xml
Content-Type: application/atom+xml;type=entry
Cookie: BPMSESSIONID=cxa54p2dsb4wnqbbzvgyxcoo; BPMCSRF=6yCmyILSlIE8/toyQm9Ca.;
BPMLOADER=rqqjjeqyfaudfyk4xu404j5f; .ASPXAUTH=697...A292D8164;
BPMCSRF: 6yCmyILSlIE8/toyQm9Ca.

Fig. 10. Composing data select query

Bpm’online developer guide 775

Execute the request by clicking the [Execute] button. As a result, the Fiddler session window will display a response
from the EntityDataService.svc service (Fig. 11). Double-click the reply string (1) to open the [Inspectors] tab with
the response properties. The body of the HTTP response contains the selection result (2).

Fig. 11. Properties of HTTP response from the EntityDataService.svc

Update data
Example: modify the title of the added activity.

Bpm’online developer guide 776

To compose a request to add data using Fiddler, go to the [Composer] tab and execute the following (Fig. 12):

1. Specify HTTP method POST.

ATTENTION

Using HTTP methods PUT and DELETE will cause the "405 Method not allowed” error if HTTP extension
WebDAV is disabled in the application’s Web.Config file.

2. Specify the EntityDataService.svc service URL generated according to the following mask:

http(s)://[bpm'online application
address]/0/ServiceModel/EntityDataService.svc/ActivityCollection(guid'XXXXXXXX-XXXX-
XXXX-XXXX-XXXXXXXXXXXX')

Use the unique identifier of the added record (a record Id looks like this: 9741fffe-ff81-46ba-8d99-1f488ec5502e),
which can be obtained in an HTTP response to rhe add request. You can also view record Id in a browser, by opening
a record for editing (Fig. 13).

3. Specify HTTP protocol version 1.1.

4. In the request title, specify the request body type as application/atom+xml. Add all necessary cookies to the
request title (BPMLOADER, .ASPXAUTH, BPMSESSIONID, BPMCSRF) and the BPMCSRF token:

Accept: application/atom+xml
Content-Type: application/atom+xml;type=entry
Cookie: BPMSESSIONID=cxa54p2dsb4wnqbbzvgyxcoo; BPMCSRF=6yCmyILSlIE8/toyQm9Ca.;
BPMLOADER=rqqjjeqyfaudfyk4xu404j5f; .ASPXAUTH=697...A292D8164;
BPMCSRF: 6yCmyILSlIE8/toyQm9Ca.

5. Add contents in the XML format to the request body.

<?xml version="1.0" encoding="utf-8"?>
<entry xmlns="http://www.w3.org/2005/Atom">
 <content type="application/xml">
 <properties
xmlns="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata">
 <Title
xmlns="http://schemas.microsoft.com/ado/2007/08/dataservices">process the incomming
website form request (Updated)</Title>
 </properties>
 </content>
</entry>

NOTE

It is recommended to specify only columns that can be modified.

Fig. 12. Composing data update query

Bpm’online developer guide 777

Fig. 13. Activity Id displayed in the browser

Execute the request by clicking the [Execute] button. As a result, the Fiddler session window will display a response
from the EntityDataService.svc service (Fig. 14). Double-click the reply string (1) to open the [Inspectors] tab with
the response properties. The body of the HTTP response is empty (2).

Bpm’online developer guide 778

Fig. 14. Properties of HTTP response from the EntityDataService.svc

As a result, the title of the record will be modified (Fig. 15).

Fig. 15. Results of the activity edit request

Integration of third-party sites via iframe

Bpm’online developer guide 779

Introduction
One way to integrate external solutions in the bpm’online is to use the iframe HTML element.

The iframe HTML element is used to display third-party web page inside the web page where the element is placed.
The iframe element is implemented in the HTML code of the page via the <iframe> and </iframe> tags. URL of the
displayed page is set using the src attribute. More information about this element can be found in the article.

The third-party web application can be implemented to bpm’online with the iframe element. The advantage of this
approach is the convenience of viewing the third-party web resources (pages, video, etc.) directly from the
bpm’online. The main disadvantage is the need of a custom implementation of data exchange between the
bpm’online and the web resource displayed in the iframe.

ATTENTION

Note, that some sites prohibit uploading of their pages into the iframe element.

ATTENTION

To exchange data between bpm'online and third-party web applications it is recommended to use the
DataService service or the OData protocol.

The Terrasoft.controls.IframeControl component is implemented in the client part of the bpm’online core. This
component is used to display custom HTML markup in the bpm’online. For example, it is used, on the email
templates edit page of the [Email templates] lookup. The disadvantage of this component is the lack of the ability to
bind data to the src property, that is, the inability to display a third-party web resource.

An alternative to using the Terrasoft.controls.IframeControl component is to add view model schemas of the
common container to the diff array and specify the iframe element in it’s HTML property. The case of adding a
container with the iframe element is described in the “Developing an advanced marketplace application”
marketplace development article. The disadvantage of this approach is the inability to reuse the developed code in
other sections of the bpm'online.

Integration case
Case description

Create a [WEB] tab on the record edit page in the [Accounts section]. The tab will contain a site which URL will be
specified in the [Web] field.

Case implementation algorithm

1. Create a component where the displaying of the web page by specified URL will be
implemented.

For this, create a new module in the custom package. The procedure for creating a module is covered in the
“Creating a custom client module schema” article. Set the following parameter values for created module:

[Name] — UsrIframeControl.
[Title] — UsrIframeControl.

Create the Terrasoft.controls.UsrIframeControl class in this module using the Ext.define() method. The class
should inherit the Terrasoft.Component as parent class. Main properties of the new class:

tpl – an array of strings that contains a template of HTML markup of the component that will use the
iframe element.
id – a string that contains id of the component.
src – a string that contains URL of the site to display in the iframe.

Bpm’online developer guide 780

https://www.w3schools.com/html/html_iframe.asp
https://academy.bpmonline.com/documents/studio/7-10/email-templates-lookup
https://academy.bpmonline.com/documents/technic-sdkmp/7-9/developing-advanced-marketplace-application

wrapClass – a string with the name of the component CSS class.

The complete source code of the schema is available below:

Ext.define("Terrasoft.controls.UsrIframeControl", {
 extend: "Terrasoft.Component",
 alternateClassName: "Terrasoft.UsrIframeControl",
 // HTML template of a component.
 tpl: [
 /*jshint quotmark:true */
 '<iframe id="{id}" src="{src}" class="{wrapClass}"></iframe>'
 /*jshint quotmark:false */
],
 // Component ID.
 id: null,
 // URL of the website implemented in the iframe.
 src: null,
 // CSS class of the component.
 wrapClass: ["usr-iframe"],
 // Sets the URL of a website.
 setIframeSrc: function(value) {
 value = value || "";
 if (this.src !== value) {
 this.src = value;
 this.safeRerender();
 }
 },
 // Initializes a component.
 init: function() {
 this.callParent(arguments);
 var selectors = this.selectors = this.selectors || {};
 selectors.wrapEl = selectors.wrapEl || "#" + this.id;
 },
 // Loads a website to the iframe.
 LoadPageBySrc: function() {
 var iframe = this.getWrapEl();
 iframe.dom.src = this.src;
 },
 // The event handler for the first drawing of the component.
 onAfterRender: function() {
 this.callParent(arguments);
 this.LoadPageBySrc();
 },
 // The event handler of re-drawing of the component.
 onAfterReRender: function() {
 this.callParent(arguments);
 this.LoadPageBySrc();
 },
 // Returns the configuration object of binding the component poperties.
 getBindConfig: function() {
 var bindConfig = this.callParent(arguments);
 return Ext.apply(bindConfig, {
 src: {
 changeMethod: "setIframeSrc"
 }
 });
 },
 // Returns data about the component template.
 getTplData: function() {
 var tplData = this.callParent(arguments);
 return Ext.apply(tplData, {
 src: this.src,

Bpm’online developer guide 781

 wrapClass: this.wrapClass
 });
 }
});

Add the CSS styles for correct displaying of the component. To do this, add the following code to the LESS tab of the
created module:

.usr-iframe {
width: 100%;
height: 600px;
}

Save the module schema to apply changes.

2. Place the component on the record edit page of the [Accounts] section.

For this, create the [Account edit page] replacing schema in the custom package. The procedure for creating a
replacing schema is covered in the “Creating a custom client module schema”. Add the following source code
to the replacing schema:

// Add a module in which the component is implemented in an array of dependencies.
define("AccountPageV2", ["UsrIframeControl", "css!UsrIframeControl"], function() {
 return {
 entitySchemaName: "Account",
 diff: /**SCHEMA_DIFF*/[
 // Adding the [WEB] tab.
 {
 "operation": "insert",
 "name": "WebTab",
 "values": {
 "caption": "WEB",
 "items": []
 },
 "parentName": "Tabs",
 "propertyName": "tabs",
 "index": 1
 },
 // Adding a custom component.
 {
 "operation": "insert",
 "parentName": "WebTab",
 "propertyName": "items",
 "name": "UsrIframe",
 "values": {
 "generator": function() {
 return {
 "className": "Terrasoft.UsrIframeControl",
 "src": {"bindTo": "getSource"}
 };
 }
 }
 }
]/**SCHEMA_DIFF*/,
 methods: {
 // Used to bind data.
 getSource: function() {
 return this.get("Web");
 }
 }
 };

Bpm’online developer guide 782

});

Here, the configuration objects of the [WEB] tab and the custom component for displaying a component are added
to the array of modifications of the view model

Terrasoft.UsrIframeControl. Binding the data of the [Web] column to the src property of the component is
performed with the getSource() method.

After saving the schema and reloading the application page, the [WEB] tab will appear on the edit page of a section
record.The tab will display a web page by the URL specified in the [Web] field (Fig. 1). If the [Web] field is empty
then the tab will be empty too.

Fig. 1. Case result

Web-To-Object. Using landings and web-forms

Introduction
Web-to-Object is a mechanism for implementing simple one-way integrations with bpm’online. It enables you to
create records in bpm'online sections (leads, cases, orders, etc.) simply by sending the necessary data to the Web-to-
Object service.

The most common cases of using the Web-to-Object service are the following:

Integrating bpm'online with custom landings and web forms. The service call is performed from a landing
(a customized custom page with a web form), after the visitor submits the completed web form.

Integrating with external systems to create bpm'online objects.

Using Web-to-Object will enable you to configure the registration of virtually any objects in bpm'online (e.g., a lead,
an order or a case).

The [Landings and web-forms] section is used to work with landing in bpm’online. This section is available in all
bpm’online products, however it might not be enabled in workplaces of certain products (e.g., bpm’online sales).
Each record in the [Landing and web-forms] section corresponds to a landing page. The record edit page features a
[Landing setup] tab.

Learn more about the process of creating landing pages based on the Web-to-Case mechanism in the “Creating

Bpm’online developer guide 783

https://academy.bpmonline.com/documents/marketing/7-10/landing-pages-and-web-forms-section#XREF_19264

Web-to-Case landing pages” article.

Implementing the Web-to-Object service
The main functionality of the Web-To-Object mechanism is contained in the WebForm package and is common to
all products. Depending on the product, this functionality may be extended by the Web-to-Lead (the WebLeadForm
package), Web-to-Order (the WebOrderForm package), and Web-to-Case (the WebCaseForm package)
mechanisms.

To process data received from a web-form of a lending, the WebForm package implements the
GeneratedObjectWebFormService configuration service (the Terrasoft.Configuration.GeneratedWebFormService
class). The data of the landing’s web-form is accepted as the argument of the public string
SaveWebFormObjectData(FormData formData) method. They are then passed to the public void
HandleForm(FormData formData) method of the Terrasoft.Configuration.WebFormHandler class, in which the
corresponding system object is created.

External API of the Web-to-Object service
To use the service, send a POST request to:

[Bpm'online application
path]/0/ServiceModel/GeneratedObjectWebFormService.svc/SaveWebFormObjectData

For example:

http://mybpmonline.com/0/ServiceModel/GeneratedObjectWebFormService.svc/SaveWebFormOb
jectData

The content type of the request is application/json. In addition to the required cookies, the JSON object containing
the data of the web-form must be added to the content of the request. JSON object example:

{
 "formData":{
 "formId":"d66ebbf6-f588-4130-9f0b-0ba3414dafb8",
 "formFieldsData":[
 {"name":"Name","value":"John Smith"},
 {"name":"Email","value":"j.smith@bpmoline.com"},
 {"name":"Zip","value":"00000"},
 {"name":"MobilePhone","value":"0123456789"},
 {"name":"Company","value":"bpmonline"},
 {"name":"Industry","value":""},
 {"name":"FullJobTitle","value":"Sales Manager"},
 {"name":"UseEmail","value":""},
 {"name":"City","value":"Boston"},
 {"name":"Country","value":"USA"},
 {"name":"Commentary","value":""},
 {"name":"BpmHref","value":"http://localhost/Landing/"},
 {"name":"BpmSessionId","value":"0ca32d6d-5d60-9444-ec34-5591514b27a3"}
]
 }
}

Using the Web-to-Object service
Integrating with custom landings and web-forms

Integrating bpm'online with custom landings and web-forms is covered in the following articles:

The [Landing and web-forms] section
Creating Web-to-Case landing pages

Integrating with external systems

Bpm’online developer guide 784

https://academy.bpmonline.com/documents/marketing/7-10/landing-pages-and-web-forms-section#XREF_19264

To integrate with external systems:

1. Create a new record in the [Landing and web-forms] section

2. Get the address to the service (serviceUrl property) and the identifier (the landingId property) from the
configuration object of the created record.

3. Implement the process of sending a POST-request to the Web-to-Object service (at the received address) in the
external system. Add the necessary data to the request in form of a JSON object. Set the value of the received
identifier to the formId property of the JSON object.

The ProcessEngineService.svc web service

Introduction
Running the business processes is one of the purpose of integration the external application with bpm’online. The
ProcessEngineService.svc web service that allows to start business processes from outside is implemented for this.
The ProcessEngineService.svc web service is available by following URL:

http[s]://<bpm'online_application_address>/0/ServiceModel/ProcessEngineService.svc

Attention

Before calling a web-service via external tools, authenticate the user, whose name will be used to execute
queries. For this, use the AuthService.svc service (see. "The AuthService.svc authentication service" and
"Authenticating external requests to bpm'online services" articles). This service will return the
correspondent cookies, which you have to use when querying the ProcessEngineService.svc.

Moreover, if the SCRF attacks defense is enabled in your application, add the BPMCSRF token to the query
headers (see. "Protection from CSRF attacks during integration with bpm'online").

See the examples of executing queries to bpm'online web-services after user authentication in the "Executing
OData queries using Fiddler".

NOTE

A ProcessEngineService.svc use case is available in the "How to run bpm'online processes via web
service" article. The full list of the web service methods can be found in the .NET class libraries of
platform core (on-line documentation) documentation.

ProcessEngineService.svc methods
Business process launch

To start specific business process you will need to call the Execute() method of the service. You can call the Execute()
method via GET and POST HTTP requests. General format of the Execute() method:

http[s]://<bpm'online_application_address>/0/ServiceModel/ProcessEngineService.svc/PR
OCESSSCHEMANAME/Execute[?<optional incoming parameters of the business process>]

Where PROCESSSCHEMANAME – the name of the business process schema in the bpm’online.

NOTE

The name of the business process schema can be found in the [Configuration] section.

Bpm’online developer guide 785

https://academy.bpmonline.com/documents/marketing/7-10/landing-pages-and-web-forms-section#XREF_19264

For example, start the UsrSomeProcess process. The procParam parameter with the 15 as a value is passed to the
process. The GET string will be as follows:

.../0/ServiceModel/ProcessEngineService.svc/UsrSomeProcess/Execute?procParam=15

The ProcessEngineService.svc process enables to start specific business process and get the result of execution of
this process with the specific parameter. For this, call the Execute() method in the following format:

http[s]://<bpm'online_application_address>/0/ServiceModel/ProcessEngineService.svc/PR
OCESSSCHEMANAME/Execute?ResultParameterName=RESULTPARAMETERNAME[&<optional incoming
parameters of the business process>],

where

PROCESSSCHEMANAME – the name of the business process schema which instance will be launched
RESULTPARAMETERNAME – the name of the process parameter, that stores the result of the process
execution. If this parameter is not specified, the web service will launch the specified business process
without waiting its execution result.

ATTENTION

If the RESULTPARAMETERNAME parameter is disabled in the called process, the web service will return
null.

For example, start the CustomProcess process. The process result is stored in the CustomProcessResult outgoing
process parameter. In addition, the incomeParam parameter with the "IncomeParamValue” value is passed to the
CustomProcess process. The GET string will as follows:

.../0/ServiceModel/ProcessEngineService.svc/CustomProcess/Execute?
ResultParameterName=CustomProcessResult&incomeParam=IncomeParamValue

The result of executing the Execute() method is returned as a string containing the JSON object (it is possible to get
the null). Deserialization of the JSON object and bringing the result to a specific type of data must be performed in
the code that calls the web service.

Executing a separate element of the business process

To execute a separate element of the business process, call the ExecProcElByUId() web service method. This method
accepts the Id of the executed process element as a parameter. The format of the ExecProcElByUId()method call:

http[s]://<bpm'online_application_address>/0/ServiceModel/ProcessEngineService.svc/Ex
ecProcElByUId/PROCELUID

where PROCELUID – id of the executed process element.

ATTENTION

Only the element of the launched process can be executed.

If the ExecProcElByUId() process element has been already completed at the moment of calling the method,
this element will not be executed.

Bpm’online developer guide 786

Platform description

Contents
System Settings
Working with data structure
User interface
Controls
Dashboard widgets
Scheduler setup
Integration
Self-service Portal
ClientMessageBridge
Sync Engine synchronization mechanism
Data Enrichment and Prediction
Bpm'online lending
Bpm'online marketing
Bpm'online service
DataManager class description and use cases
Feature Toggle. Mechanism of enabling and disabling functions
The MoneyUtilsMixin mixin
The DecimalUtils module
Basic macros in the MS Word printables
Web-to-Case
Separate query pool
Development recommendations for Right-To-Left mode
Client static content in the file system
Record deactivation
Monitoring of private properties overriding. The Terrasoft.PrivateMemberWatcher class
The [Timeline] tab
Server content in the file system
Logging in bpm’online. Log4net

System Settings

Contents
Setting user session timeout

Setting user session timeout

Introduction
The procedure for user session timeout setup in bpm’online 7.9.1 and up is different from the earlier versions. In the
earlier versions, the user session timeout was specified by configuring application pool in the IIS and editing

Bpm’online developer guide 787

bpm’online configuration files. Starting with version 7.9.1, session timeouts are set up in the system settings.

Setting user session timeouts for bpm’online 7.9.0 and
earlier.
To set up the user session timeout:

1. Set the idle duration on the IIS in the application pool settings.

To do this, select an application (Fig. 1, 1), in the list of application pools (2), select the pool (3) where the
application is published. Open advanced settings (4) and set the needed value for the [Idle Time-out (minutes)]
parameter (5).

Fig. 1 Setting the idle duration in the IIS application pool settings.

2. Modifying the Web.config parameters

Modify the session and authentication parameters in the Web.config files used by the loader and the application (the
“internal” and “external” Web.config files).

To modify the session parameter, assign the needed timeout value to the timeout attribute of the sessionState

Bpm’online developer guide 788

element, which is a subordinate to the system.web element. This value must match the value set in the [Idle Time-
out (minutes)] parameter (see item 1).

The authorization parameter is set up in the forms element of the authentication and system.web elements. To
modify it, assign a corresponding timeout value in the timeout attribute. The authorization parameter value must be
less than the value of the session parameter.

An example of the Web.config setup is available below:

<system.web>
...
 <authentication mode="Forms">
 <forms loginUrl="~/NuiLogin.aspx" protection="All" timeout="59" name=".ASPXAUTH"
path="/" requireSSL="false" slidingExpiration="true" defaultUrl="ViewPage.aspx?
Id=4e342d5e-bd89-4b79-98e2-22e433122403" cookieless="UseDeviceProfile"
enableCrossAppRedirects="true" />
 </authentication>
...
 <sessionState mode="InProc" timeout="60" cookieName="BPMLOADER" />
</system.web>

Setting user session timeouts for bpm’online 7.9.1 and up
Starting with version 7.9.1, session timeouts are set up using the UserSessionTimeout system setting. The value of
this setting contains user session timeout in minutes.

By default the UserSessionTimeout system setting value is 60 minutes. The minimum session timeout is 10 minutes,
and the maximum is 720 minutes.

If the system setting is deleted, empty, or otherwise unavailable, the application is still operational. In this case, the
timeout value will be taken from the application Web.config session parameter.

Setting the value of the UserSessionTimeout system setting when updating from
earlier versions

When updating bpm’online applications version 7.9.0 and earlier, the UserSessionTimeout system setting will be
automatically added when the Base package is installed. Default value will be “60”. If the timeout value has been
modified earlier, you can edit it manually or use the WorkspaceConsole.

The required WorkspaceConsole parameters for updating the value are available in table 1. For more information on
working with the WorkspaceConsole, please refer to the “Working with WorkspaceConsole” article.

Table 1. WorkspaceConsole settings

Parameter Description

-operation Name of the operation for system value actualization. Use the following value to
update system settings: ActualizeUserSessionTimeoutSettingsValue.

-WebApplicationPath Path to the deployed application. Example: "C:\bpmonline79"

-workspaceName Name of the workspace. Default value: Default.

-logPath Paths where the WorkspaceConsole will create log files. Example: "C:\Log".

After running the utility with the specified parameters, the value of session timeout of the UserSessionTimeout
system setting will be taken from the application Web.config file. If the timeout specified in the Web.config file is not
within the range of acceptable values (less than 10 or more than 720), the specified value will still be assigned to the
system setting. At the same time, the SysSettings.config file in the loader will be modified to make the value
acceptable. For example, “1000” is specified as the timeout value in the Web.config file:

<sessionState cookieName="BPMSESSIONID" timeout="1000" mode="Custom"
customProvider="RedisSessionStore">,

In this case, after WorkspaceConsole executes a command with the parameters specified in table 1, tha value of the
system setting will become “1000” and the following will be specified in the SysSettings.config file:

Bpm’online developer guide 789

<sysSetting key="UserSessionTimeout" valueType="int" operation="max" value="1000" />

Attention!

If the system setting cannot be found in the database, then it is possible that errors occurred during the
update. In this case, WorkspaceConsole operation will result in error as well.

NOTE

After updating the application and setting the UserSessionTimeout system setting value, no additional session
timeout setup on the application pool level is required. There is no need to specify authentication timeout as
well.

Working with data structure

Contents
Configuration localizable resources
Localizable resource structure and use
Localization tables
Bound data structure

Configuration localizable resources

Introduction
Configuration resources are localizable strings and images used by the application to display information to the user.

The application resources are places in the packages and bound to the base schema in the schema hierarchy. When
resources of a certain schema are queried, all resources are gathered throughout the hierarchy, after which a flat list
of the gathered resources is generated.

Resources displayed as a hierarchy
There are two modes of displaying schema resources: design mode (Design-time) and application runtime mode
(Run-time).

Design-time mode

This mode is used to display resources in designers and wizards. Schema resources are displayed only up to the
package that contains the schema. Package resources that are not part of the hierarchy are not taken into account.
For example, the ChildSchema schema (Fig. 1) will have the following resources:

BaseResource: BaseValue;
ChildResource: ChildValue.

The resources of the PackageWithReplacedResource1 and PackageWithReplacedResource2 packages that are not a
part of the hierarchy are not taken into account. The resources in the PackageWithReplacedChildResource1 and
PackageWithReplacedChildResource2 packages that are lower that the requested schema in the hierarchy are not
taken into account as well.

Fig. 1 An example of the package hierarchy

Bpm’online developer guide 790

If a schema is requested along with the package from which all resources must be obtained, then the resulting set of
resources will be generated up to the level of the requested package. For example, ChildSchema schema resources up
to the BottomPackage level will be as follows:

BaseResource: BaseValue;
ChildResource: ReplacedChildValue2;
ChildResource1: Value1;
ChildResource2: Value2.

The value of the ChildResource here has been changed to ReplacedChildValue2. This occurred because it has been
replaced in the packages one level lower (Level 2). Packages with higher position value take precedence. If the
position values are the same, the first package (if sorted by name) will take precedence.

Run-time mode

This mode displays resources in all system sections except for designers. The mechanism for obtaining resources is
similar to the mechanism used in the Design-time mode. The main difference is that when a schema is requested,
the resulting list will contain resources from packages that are not directly a part of the hierarchy. For example, if
the ChildSchema resources are requested, the result will be as follows:

BaseResource: ReplacedBaseValue2;
Resource1: Value1;
Resource2: Value2;
ChildResource: ReplacedChildValue2;
ChildResource1: Value1;
ChildResource2: Value2.

Default resource view
If there are no resource values that can be displayed for users for a non-default culture, then the values are

Bpm’online developer guide 791

“reverted” to the default culture values.

This mechanism is implemented in the Terrasoft.Common.LocalizableString (displays a localized string) and
Terrasoft.Common.LocalizableImage (displays a localized image) classes. These classes contain the following
properties and methods for obtaining localized values:

Value – a property that returns the value of a localized object for the current culture or the default culture,
if the former is not found.
HasValue – a property that returns the flag indicating that the value of a localized object exists for the
current culture or the default culture, if the former is not found.
GetCultureValue() – a method that returns the value of a localized object for the current culture or the
default culture, if the former is not found.
HasCultureValue() – a method that returns he flag indicating that the value of a localized object exists for
the current culture.

Storing resources
Resources needed for the application operation are stored in the database. Resources can be stored in a version
control system for installing on a new application or transferring between applications.

Storing resources in the database

The resources for each string or image are stored in the SysLocalizableValue database table in the “key-value”
format. The table structure is available in table 1. Each record in the SysLocalizableValue table is bound to a
package and an Id of the base Id schema. The schema itself can be located in a different package.

Table 1. SysLocalizableValue table structure

Column name Description

Id Table record Id

CreatedOn Table record creation date

CreatedById Link to the Contact who created the record.

ModifiedOn Table record last modification date

ModifiedById Link to the last Contact who edited the record.

SysPackageId Link to the package (SysPackage).

SysSchemaId Link to the base schema (SysSchema). This column is filled in for
configuration resources only.

ResourceManager Name of the resource manager. This column is filled in for core resources only.

SysCultureId Link to the culture (SysCulture).

ResourceType The type of resource.

IsChanged Indicates whether the resource has been modified by the user.

Key Resource key.

Value Value of the string resource.

ImageData Value of the image resource.

Default resource saving

If a resource is created by a user whose culture is not default, a record matching the user’s culture will be created for
the resource. Newly created resources are automatically duplicated in the default culture. As a result, a similar
resource record will be created with a link to the default culture. The new value of the resource will be displayed in
all cultures if they don’t have a native value for that resource (please see the “Default resource view” section of this
article).

Storing resources in the version control system and file system

Bpm’online developer guide 792

The resource structure in the version control system and file system is covered in the "Resource storage structure” of
the "Localizable resource structure and use” article.

Localizable resource structure and use

Introduction
Starting with version 7.8.3, the storage location of localized package resources has changed. In previous versions,
the resources were stored in the SysSchemaResource table as BLOB data. Now, the localized resources are stored in
the SysLocalizableValues table in text form.

For each set of schema resources in the package-schema-culture bundle, the checksum is stored in the
SysPackageResourceChecksum table, which allows you to quickly determine if there are any changes to the package
resources when updating the package. The checksum allowed for resources to be separated from schemas, enabling
users to create translation packages.

ATTENTION

The approach to working with language cultures has changed in bpm’online 7.11.1. Now, the application uses
only the cultures that have [Active] checkbox selected. This improves performance of different types of tasks,
such as logging in, opening a record page, etc. However, all installed language cultures will be used when
working with section and detail wizards, process and case designers and the [Translation] section.

Storing resources
Resource storage structure

The resources have been moved from schemas to a package, enabling users to create translation packages. To store
schema resources with the same name, but with different managers (e.g. Entity and ClientUnitSchema), the names
of the schema managers with the prefix "SchemaManager" clipping were added to the resource package names.

Fig. 1. Storing resources in a package

A package can contain resources for a schema that is defined in another package. In addition, the package can
contain resources without containing schemas ("translation package").

The SysLocalizableValue table

The resources are stored in the SysLocalizableValue table for every localizable string or image. Each record is bound
to the package and the base schema identifier. The main fields of the SysLocalizableValue table are listed in Table 1.

Table 1. The main fields of the SysLocalizableValue table

Bpm’online developer guide 793

https://msdn.microsoft.com/en-us/library/bb895234.aspx

Column name Description
Id Record identifier.

ImageData Graphic resource value.

IsChanged A checkbox for specifying if the resource has been changed.

Key Resource key.

ResourceManager Resource manager name. Populated only for core resources.

ResourceType Resource type.

SysCultureId Culture identifier.

SysPackageId Package identifier.

SysSchemaId Base schema identifier. Populated only for configuration resources.

Value String resource value.

Schema import and export

The format for storing resources in exported schemas has also changed. Now the resources in the exported schemas
are stored in XML format.

Working with localizable resources
Updating the package from the repository

By using the new resource storage mechanism, all changes to localized resources are displayed when the package is
updated (Fig. 2).

Fig. 2. Displaying resources when updating a package

Possible resource states:

[Modified] – the resource was changed.
[Added] – a new resource has been added.
[Deleted] – a resource has been deleted.
[Conflict] – a resource was modified and fixed in SVN when another developer was working on it.

Committing a package to storage

When the package is committed, all changes to the localized resources are also displayed in the repository (Fig. 3).

Fig. 3. Displaying resources when a package is committed

Bpm’online developer guide 794

Conflicts when a package is committed and updated

It is not currently possible to block resources in the application. If the developer modifies the schema resources, and
the package has already been modified and the same resources have been modified in it, they will see a list of those
resources with the [Conflict] state. This means that the version and contents of the resources modified by the
developer do not match the version and contents committed in SVN. When the developer commits again, their
modifications will block the modifications committed in SVN. Such conflicts must be resolved manually in SVN
clients (e.g. Tortoise).

Fig. 4. Displaying conflicts when updating a package

Editing resources in the file system.

Editing resources directly is available starting with version 7.8.3. To do this, you need to upload them to the file
system (e.g. with Tortoise), and then make changes and commit to SVN.

ATTENTION

For each resource value in the SysLocalizableValue table, there is only one record with the corresponding
references to SysPackageId, SysSchemaId, SysCultureId, and a specific Key value. Therefore, when you
commit a resource with the [Conflict] state, the table will write the last value.

Updating resources with a direct SQL query to the database

If you change the SysLocalizableValue table value with an SQL query, you must also change the value of the
IsChanged column in the SysPackageResourceChecksum table for the corresponding schema. Otherwise, when the
package is updated, the application will not detect a conflict.

You can not add data to the SysLocalizableValue table with a direct SQL query, because there is no information
about the added resources in the corresponding schema metadata.

Bpm’online developer guide 795

Localization tables

Localization tables are created for objects with at least one localizable column. These tables store localizable data for
all languages (cultures) except for the default one.

ATTENTION

The approach to working with language cultures has changed in bpm’online 7.11.1. Now, the application uses
only the cultures that have [Active] checkbox selected. This improves performance of different types of tasks,
such as logging in, opening a record page, etc. However, all installed language cultures will be used when
working with section and detail wizards, process and case designers and the [Translation] section.

The default localization table name is Sys[schema_name]Lcz, where [schema_name] is the object schema with the
localizable columns. General localization table structure:

Table 1. – General localization table structure

Column name Description

Id Record identifier.

ModifiedOn Modification date.

RecordId A link to the localized record in the main object table.

SysCultureId Culture link.

LczColumn1

Columns corresponding to the object's localizable columns.
LczColumn2

...

LczColumnN

The localization table structure of the Random object with the LocalizableText column:

Fig. 1. The link between the main table and the localization table.

Use the object designer to specify / change the name of the table. Go to the advanced schema object properties and
specify the name of the localization object.

Fig. 2. Localization table name in the object designer

Bpm’online developer guide 796

Bound data structure

Introduction
Bpm’online comes with full multilanguage support since version 7.8. As a result, the storage structure of resources
and bound data has been reworked.

Data binding specifics (compared to version 7.8):

A new SysPackageDataLcz table now contains localized bindings data.
A new mechanism for creating and installing bindings.
A new SVN data storing structure.

The SysPackageDataLcz localization table
An additional table is used for storing localized bound data:

Table 1. SysPackageDataLcz table columns

Column name Description
Id Unique identifier.

SysPackageSchemaDataId A reference to the unique binding identifier in the SysPackageSchemaData
table.

SysCultureId Unique culture identifier reference.

Data Localized data.

ATTENTION

The binding mechanism interface is identical to that of the previous versions.

Bpm’online developer guide 797

Creating a binding
If a schema does not contain localized columns, the bound data for this schema is still stored in the
SysPackageSchemaData table. Data binding for a schema with localized columns:

The bound data is still stored in the SysPackageSchemaData table.
The SysPackageDataLcz table contains localized bindings data.
Every record in SysPackageDataLcz corresponds with a record in SysPackageSchemaData, with a
reference to the unique SysCultureId identifier. For example, if two cultures (English and Spanish) are
installed in the system, each entry in the SysPackageSchemaData table will correspond to entries in the
SysPackageDataLcz table, with a reference to the corresponding record identifier in the
SysPackageSchemaData table, and the culture identifier in the SysCulture table.

Installing bound data
Installing data for a schema without localized columns is done in the corresponding schema table. If the data
includes any localized values (i.e. there are corresponding records in the SysPackageDataLcz table), the installation
occurs not only in the corresponding schema table, but also in its localized Sys[schema_name]Lcz table.

For example, the bound data for the ContactType schema is installed. Non-localized data is installed in the
ContactType table, and the localized data is installed in the ContactType table (default culture values), and the
SysContactTypeLcz table (the values of all other cultures included in the binding and in the system).

ATTENTION

If you are working with a system schema (the name begins with the “Sys” prefix), then the “Sys” prefix is not
re-added to the localization table. For example, if the schema name is SysTest1, the localized data table name
will be SysTest1Lcz, and not SysSysTest1Lcz.

Storing data in SVN
The structure of storing the bound schema data in SVN for bpm'online version 7.8 and higher:

Fig. 1. SVN data storing structure

Non-localized data is stored in the data.json file. All localized data is located in the corresponding files in the
Localization subdirectory. For example, for the Country schema of the Base package, the data is localized for only
two languages and stored in the corresponding files - data.en-US.json and data.es-ES.json (Fig. 1).

User interface

Contents
AMD concept Modules
Modular development principles in bpm'online
Client Modules
Client view model schemas
Sandbox. Module message exchange

Bpm’online developer guide 798

Sandbox. Bidirectional messages
Sandbox. Loading and unloading modules
New bindTo format at setting connection between view and viewModel

AMD concept Modules

Introduction
Starting from version 7.0, the client part of the bpm'online application has a modular structure: it is designed as a
set of functional blocks, implemented in separate modules. While the application is running, the modules and their
dependencies are loaded in accordance with the Asynchronous Module Definition (AMD) approach.

The AMD approach declares the mechanism for defining and asynchronous loading of modules and their
dependencies, which allows you to load only the data needed to work with the system at the moment. The AMD
concept is supported by various JavaScript frameworks. In bpm'online, the RequireJS loader is used to work with
modules.

Modules
A module is a code fragment encapsulated in a separate block that can be downloaded and executed independently.

In JavaScript, modules are created in accordance with the "Module” programming pattern. A classic implementation
of this pattern is using anonymous functions that return specific values (object, function, etc.) associated with the
module. The module value is exported to the global object. Example:

// Immediately-invoked functional expression (IIFE). Anonymous function,
// which initializes the "myGlobalModule" property of the global object with a
function,
// that returns module value. Thus, the module actually loads,
// which can later be accessed through the "myGlobalModule" global property.
(function () {
 // Access to a module on which the current module depends.
 // This module already should be loaded to the
 // "SomeModuleDependency" global variable at the moment of access.
 // "this" context in this case is a global object.
 var moduleDependency = this.SomeModuleDependency;
 // The declaration in the property of the global function object that returns the
module value.
 this.myGlobalModule = function () { return someModuleValue; };
}());

When interpreter finds a functional expression like this, it immediately resolves it. As a result, a function that will
return the module value will be placed in the myGlobalModule property of the global object.

The main disadvantages of this approach are the complexity of declaration and use of the dependency modules for
the modules of such type. In particular, the disadvantages are:

1. All module dependencies must already be loaded at the moment of anonymous function execution.
2. The dependency modules are loaded via the <script><script/> HTML element at the page header. Global

variable names are then used to access the modules. At the same time, the developer must clearly understand
and implement the order in which all dependency modules are loaded.

3. As a result, the modules are loaded before the page is rendered, therefore the modules cannot access the page
controls to implement custom logic.

This means that the modules cannot be loaded dynamically; no additional logic can be applied at page loading, etc.
In large projects like bpm'online, the complexity of managing a large number of modules with many dependencies

Bpm’online developer guide 799

http://en.wikipedia.org/wiki/Asynchronous_module_definition
http://requirejs.org/
http://www.adequatelygood.com/JavaScript-Module-Pattern-In-Depth.html

that can overlap each other is a problem.

The “RequireJS” loader
RequireJS is an AMD-based module declaring and loading mechanism that helps avoid the disadvantages of
working with large numbers of modules. Basic principles of the RequireJS loader operation:

1. Modules are declared in a special define() function, which registers a factory function to instantiate a module.
At the same time, it does not load the module immediately when function is called.

2. The module dependencies are passed as a string array and not through the properties of the global object.
3. The loader executes the loading of all dependency modules passed as arguments to define(). The modules are

loaded asynchronously, and the loader determines their loading order arbitrarily.
4. After the loader completes loading of all specified module dependencies, it will call the factory function that

will return the module value. The downloaded dependency modules will be passed to the factory function as
arguments.

Module declaration. The “define()” function

For the loader to work with an asynchronous module, this module must be declared in the source code by the
define() function in the following way:

define(
 ModuleName,
 [dependencies],
 function (dependencies) {
 }
);

The parameters of the define() function are listed in Table 1.

Table 1. - The parameters of the define() function

Argument Value
ModuleName Module name string. Optional parameter.

If the parameter is not specified, the loader will assign the module name, based on its
location in the application script tree. However, to access the module from other parts
of the application (including the cases when this module must be asynchronously
loaded as a dependency of another module), the parameter must be specified.

dependencies An array of module names that this module depends on. Optional parameter.

RequireJS loads all dependencies passed in the array. Note that the order of
dependencies in the dependencies array enumeration must correspond to the order of
parameters in the enumeration passed to the factory function. The factory function will
be called only after all dependencies listed in the dependencies parameter have been
loaded. The loading of dependency modules is asynchronous.

function(dependencies) Anonymous factory function that instantiates the module. Required parameter.

The objects that are associated by the loader with the dependency modules listed in the
dependencies argument are passed to the function as arguments. Access to the
properties and methods of the dependency modules within the created module is
carried out through these arguments. The order of modules in the dependencies
enumeration must correspond to the order of the factory function arguments.

The factory function will be called only after all dependency modules of the current
module (listed in the dependencies parameter) have been loaded.

The factory must return a value that the loader will associate as the exported value of
created module. The return value can be:

An object, which is the module for the system. After this module is initially
download by the client, it is saved in the browser cache. If the module

Bpm’online developer guide 800

http://requirejs.org/
https://github.com/amdjs/amdjs-api/wiki/AMD#define-function-

declaration has been modified after it was downloaded to the client (for
example, during the configuration logic implementation), then the cache
needs to be cleared and the module must be loaded again. An example of
module declaration that returns the declared module as an object is provided
below.
The module constructor function. The context object in which the module will
be created is passed as an argument to the constructor. Loading this module
will result in creating of the module instance (instantiated module) on the
client. Reloading of this module to the client with the require() function will
create another instance of the module. These two instances of the same
module will be treated by the system as two different independent modules.
An example of declaring an instantiated module is the CardModule module
from the NUI package.

An example of using the define() function to declare a SumModule, which adds two numbers.

// The "SumModule" module has no dependencies.
// So, an empty array is passed as the second argument, and
// parameters are not passed to the anonymous factory function.

define("SumModule", [], function () {
 // The body of the anonymous function contains internal functionality
implementation of the module.
 var calculate = function (a, b) { return a + b; };
 // The value returned by the function is an object, which is the module for the
system.
 return {
 // Object description. In this case, the module is an object with the "summ"
property.
 // The value of this property is a function with two arguments, returning
the sum of these arguments.

 summ: calculate
 };
});

The factory function returns the object as the module value, which the module will be for the system.

Modular development principles in bpm'online

Types of bpm’online modules
All client functions in bpm’online can be broken down into the following groups:

Base libraries
Core
Sandbox
Client modules

Base libraries

Base libraries are third-party JavaScript libraries used in the application. The RequireJS library is used as the
module loader. The ExtJS framework functions are used in the configuration logic for working with interface
controls. JQuery, Backbone and other frameworks are used as well. All third-party JavaScript libraries are placed in
the Terrasoft.WebApp\Resources\ui folder of the application.

Bpm’online developer guide 801

http://requirejs.org/
https://www.sencha.com/products/extjs/
https://jquery.com/
http://backbonejs.org/

Core

The main purpose of the bpm’online client core is to provide a unified interface for interaction of all other client
parts of the system. The core provides API for accessing base client libraries, defines the sandbox contents for
modules, provides access to system enumerations and constants, implements client mechanism for working with
data, etc. The core does not work directly with the system modules. It is only aware of the primary application
module (ViewModule), which loads all remaining modules.

To access the core functions used in the custom client logic, a module must import the terrasoft module as a
dependency.

Sandbox

A module is an isolated programming unit. It is not aware of other system modules except for the names of the
modules from which it depends. A special object called the sandbox is designed for interaction between the modules.

The sandbox provides the two key mechanisms for interaction between the modules in the system:

1. A mechanism for message exchange between the modules. Modules can communicate with each other only
through messages. If module needs to inform other modules that its status has changed, it publishes a
message using the sandbox.publish() method of the sandbox. If a module needs to receive messages about
status changes of other modules, it must subscribe to those messages. The subscription is done through
calling the sandbox.subscribe() sandbox method.

2. Loading modules “on-demand” into the specified area of the application (for visual modules). In the process
of implementing custom business logic, you many need to load dynamically the modules that have not been
declared as dependencies. These modules can be loaded in the process of the module declaration, in the
define() function. The sandbox.load() sandbox method is used for this.

To enable interaction with other modules, a module must import the sandbox module as dependency.

Client modules

Client modules are separate functional blocks that are loaded and run on-demand, according to the AMD technology.
All custom functions are implemented in client modules. Despite several functional differences, all bpm'online client
modules have similar structure that matches the module description format in AMD. For more information about
client modules, please see the “Client Modules” article.

The “ext-base”, “terrasoft” and “sandbox” modules
Bpm’online contains modules that are used in most client modules of a configuration. These are the ext-base module
of the ExtJs framework functions, the terrasoft module of the Terrasoft objects and name spaces, and the sandbox
module that implements the mechanism for message exchange between modules. These modules can be accessed in
the following way:

// Module definition and getting dependency module links.
define("ExampleModule", ["ext-base", "terrasoft", "sandbox"],
 // Ext — link to the object that grants access to the ExtJs features.
 // Terrasoft — link to the object that grants access to the system variables,
core variables, etc.
 // sanbox — used for message exchange between modules.
 function (Ext, Terrasoft, sandbox) {
});

Specifying base modules in the ["ext-base", "terrasoft", "sandbox"] dependencies is not required. After creating
module’s class object, the Ext, Terrasoft and sanbox modules will be available as object properties: this.Ext,
this.Terrasoft, this.sanbox.

Declaring module class The Ext.define() method
One of the more important ExtJs javascript framework functions in bpm’online is class declaration. The define()
method of the global Ext object is used for this. An example of declaring a class with this method:

// Terrasoft.configuration.ExampleClass — class name with

Bpm’online developer guide 802

// name space compliance.
Ext.define("Terrasoft.configuration.ExampleClass", {
 // Shortened class name.
 alternateClassName: "Terrasoft.ExampleClass",
 // Name of the class from which inheritance is made.
 extend: "Ext.String",
 // Block for declaring static properties and methods.
 static: {
 // Example of a static property.
 myStaticProperty: true,

 // Example of a static method.
 getMyStaticProperty: function () {
 // Example of access to a static property.
 return Terrasoft.ExampleClass.myStaticProperty;
 }
 },
 // Example of a dynamic property.
 myProperty: 12,
 // Example of a class dynamic method.
 getMyProperty: function () {
 return this.myProperty;
 }
});

Examples of various options for creating class instances:

// Creating a class instance by full name.
var exampleObject = Ext.create("Terrasoft.configuration.ExampleClass");
// Creating a class instance by a shortened name (alias).
var exampleObject = Ext.create("Terrasoft.ExampleClass");
// Creating a class instance with the specified properties.
var exampleObject = Ext.create("Terrasoft.ExampleClass", {
 // Overriding object property from 12 to 20.
 myProperty: 20,
 // Defining a new method for the current class instance.
 myNewMethod: function () {
 return this.getMyProperty() * 2;
 }
});

Inheriting a module class
In a simple implementation of a module, its contents is either a simple object with a set of methods and properties,
or a constructor function that the module must return to a function that is called after its loading.

define("ModuleExample", [], function () {
 // Example of a module that returns a simple object.
 return {
 init: function () {
 // The method will be called on module initialization,
 // but the module contents will not get into the DOM.
 }
 }
});
define("ModuleExample", [], function () {
 // Example of a module that returns a constructor function.
 return function () {
 this.init = function () {
 // The method will be called on module initialization,
 // but the module contents will not get into the DOM.
 }

Bpm’online developer guide 803

 }
});

Such simple module cannot add its view to the Document Object Model (DOM), unless you explicitly implement the
render() method, which would return a view instance and insert it to the DOM. The logic for calling the render()
method in a module object is covered on the application core level. The destroy() method is not implemented in such
module as well. If the module is visual, i.e., it contains the render() method, then it will be impossible to unload the
view from the DOM, unless the unloading logic is implemented in the destroy() method.

In most cases, the module class should be inherited from Terrasoft.configuration.BaseModule or
Terrasoft.configuration.BaseSchemaModule, where the following methods are already implemented:

Init() – a method for module initialization. Initializes the properties of class object and subscribes to
messages.
render() – a method for rendering the module view in the DOM. Returns a view. Accepts a single renderTo
argument, which is the element where the module object view will be inserted.
Destroy() – a method that deletes a module view, view model, unsubscribes from messages and destroys
the module class object.

Below is an example of a simple module class inherited from "Terrasoft.BaseModule". This module adds a button to
the DOM. Clicking the button will display a text message and then the button is deleted from the DOM.

define("ModuleExample", [], function () {
 Ext.define("Terrasoft.configuration.ModuleExample", {
 // Short class name.
 alternateClassName: "Terrasoft.ModuleExample",
 // The class from which the inheritance is done.
 extend: "Terrasoft.BaseModule",
 // Reguired property. If it is not defined, an error will be generated on the
 // "Terrasoft.core.BaseObject" level, since the class is inherited from
"Terrasoft.BaseModule".
 Ext: null,
 // Reguired property. If it is not defined, an error will be generated on the
 // "Terrasoft.core.BaseObject"level, since the class is inherited from
"Terrasoft.BaseModule".
 sandbox: null,
 // Reguired property. If it is not defined, an error will be generated on the
 // "Terrasoft.core.BaseObject"level, since the class is inherited from
"Terrasoft.BaseModule".
 Terrasoft: null,
 // View model.
 viewModel: null,
 // View. A button is used as an example.
 view: null,
 // If the init() method is not implemented in this class,
 // then, when an instance of the current class is created,
 // the init() method of the parent class Terrasoft.BaseModule will be called.
 init: function () {
 // Executes the logic of the init() method of the parent class.
 this.callParent(arguments);
 this.initViewModel();
 },
 // Initializes a view model.
 initViewModel: function () {
 // Saving module class context
 // for accessing it from the view model.
 var self = this;
 // Creating a view model.
 this.viewModel = Ext.create("Terrasoft.BaseViewModel", {
 values: {
 // Button caption.
 captionBtn: "Click Me"
 },

Bpm’online developer guide 804

https://en.wikipedia.org/wiki/Document_Object_Model

 methods: {
 // Button click handler.
 onClickBtn: function () {
 var captionBtn = this.get("captionBtn");
 alert(captionBtn + " button was pressed");
 // Calls a method for unloading the view and view model,
 // which results in deleting the button from the DOM.
 self.destroy();
 }
 }
 });
 },
 // Creates a view (button),
 // binds it to the view model and inserts in the DOM.
 render: function (renderTo) {
 // A button is created as a view.
 this.view = this.Ext.create("Terrasoft.Button", {
 // Container where the button will be placed.
 renderTo: renderTo,
 // The id HTML attribute.
 id: "example-btn",
 // Class name.
 className: "Terrasoft.Button",
 // Button caption.
 caption: {
 // Binds the button caption
 // with the captionBtn property of the view model.
 bindTo: "captionBtn"
 },
 // Handler method for the button click event.
 click: {
 // Binds the button click handler
 // to the onClickBtn() method of the view model.
 bindTo: "onClickBtn"
 },
 // Button style. Available styles are defined in the enumeration.
 // Terrasoft.controls.ButtonEnums.style.
 style: this.Terrasoft.controls.ButtonEnums.style.GREEN
 });
 // Binds the view and the view model.
 this.view.bind(this.viewModel);
 // Gets the view that will be inserted in the DOM.
 return this.view;
 },

 // Deletes unused objects.
 destroy: function () {
 // Destroys the view, which results in deleting the button from the DOM.
 this.view.destroy();
 // Deletes the unused view model.
 this.viewModel.destroy();
 }
 });
 // Gets module object.
 return Terrasoft.ModuleExample;
});

Notes

Adding the button using the ViewModel schema is described in the "How to add a button to a section",
"How to add a button to an edit page in the new record add mode" и "How to add the button on

Bpm’online developer guide 805

the edit page in the combined mode" articles.

Synchronous and asynchronous module initialization
There are two ways to initialize a module class instance: synchronously and asynchronously.

Synchronous initialization

A module is initialized synchronously if the isAsync: true property (of the configuration object that is passed as a
parameter of the loadModule() method) is not specified at its loading. For example, if the following is executed:

this.sandbox.loadModule([moduleName])

...Then the module class methods will be loaded synchronously. The init() method will be called first, then the
render() method will be immediately executed.

Below is an example of a synchronously initialized module.

define("ModuleExample", [], function () {
 Ext.define("Terrasoft.configuration.ModuleExample", {
 alternateClassName: "Terrasoft.ModuleExample",
 Ext: null,
 sandbox: null,
 Terrasoft: null,
 init: function () {
 // This is executed first upon module initialization.
 },
 render: function (renderTo) {
 // This is executed on the module initialization, right after the init
method.
 }
 });
});

Asynchronous initialization

A module is initialized asynchronously if the isAsync: true property (of the configuration object that is passed as a
parameter of the loadModule() method) is specified at its loading. For example, if the following is executed:

this.sandbox.loadModule([moduleName], { isAsync: true })

In this case, a single parameter will be passed to the init() method: a callback function with the current module
context. When calling the callback function, the render() method of the loaded module is called. The view will be
added to the DOM only after the render() method is executed.

Below is an example of an asynchronously initialized module.

define("ModuleExample", [], function () {
 Ext.define("Terrasoft.configuration.ModuleExample", {
 alternateClassName: "Terrasoft.ModuleExample",
 Ext: null,
 sandbox: null,
 Terrasoft: null,
 // This is executed first upon module initialization.
 init: function (callback) {
 setTimeout(callback, 2000);
 },
 render: function (renderTo) {
 // The method is executed after a 2 second delay.
 // The delay is specified in the setTimeout() function argument, in the
init() method.
 }
 });

Bpm’online developer guide 806

});
});

Chain of modules
Sometimes a model must be shown in the view of other model. For example, the SelectData page for selecting a
lookup value must be displayed to set a value in a certain field on the current page. In this case, the current page
module must not be unloaded, and the lookup selection page view must be displayed in its container. To implement
this, use module chains.

To start building a chain, add the keepAlive property in the configuration object of the loaded module. For example,
a lookup selection module selectDataModule must be called from the current page module CardModule. To do this,
the following code must be executed:

sandbox.loadModule("selectDataModule", {
 // Id of the loaded module view.
 id: "selectDataModule_id",
 // The view that will be added to the current page container.
 renderTo: "cardModuleContainer",
 // Specifies that the current module must not be unloaded.
 keepAlive: true
});

After the code is executed, a module chain will be created, consisting of the current page module and the lookup
selection page module. Clicking the [Add new record] button from the current selectData page module will open a
new page and add another module to the chain. This way you can add any number of module instances to a chain.
Active module (the one that is currently displayed on the page) is always the last element in the chain. If an
intermediate element in the chain is set as active, then all elements that are located after it will be destroyed. Use the
loadModule function to activate a chain element and pass the module Id as its parameter:

sandbox.loadModule("someModule", {
 id: "someModuleId"
});

The core will destroy all chain elements after the specified one and will execute standard module loading logic (call
the init() and render() methods). The render() method will be passed to the container where the previous active
module was placed. All modules in the chain can work (receive and send messages, save data, etc.) as before.

If the keepAlive is not added to the configuration object (or added with the keepAlive: false value) on loading of the
loadModule() method, then the module chain will be destroyed.

Client Modules

Introduction
Client Modules are separate functional blocks, downloaded and run on demand in accordance with the AMD
technology. System functions are implemented via client modules. All client modules in bpm’online share
description structures that correspond with AMD module description format.

Client module types
The following client module types are available in bpm’online:

non-visual modules (module schema)
visual modules (view model schema)
expanding modules and replacing client modules

Bpm’online developer guide 807

Non-visual modules (module schema)

Non-visual modules represent system functionality that is not associated with data binding or data display in the UI.
Examples of non-visual modules in the system are business rule modules (BuisnessRuleModule) and utility modules
that implement service functions.

Go to the [Configuration] section, click [Add] and select [Module] to create a non-visual module (Fig. 1, 1).

(Fig. 1, 1). Creating non-visual modules

Visual module (view model schema);

Visual modules are used to implement ViewModel presentation models in the system, according to the MVVM
pattern. Visual modules encapsulate both the data used in the GUI controls and methods for working with that data.
Examples of visual modules are the section, detail and page modules.

Go to the [Configuration] section, click [Add] and select [Schema of the View Model] (Fig. 1, 2) to create a visual
module. (Fig. 1, 2).

Replacing client modules

Use replacing client modules if you need to modify or expand the functionality of base modules.

Go to the [Configuration] section, click [Add] and select [Replacing client module] (Fig. 1, 3) to create a replacing
client module.

Client module features
The “init()” and “render()” methods

A default bpm’online client module can contain two methods:

The init() method implements the logic that is executed when the module is loaded. This method is called
first by the client core if it’s been detected upon module loading. The init() method usually implements
subscriptions to events of other modules and initializes the module values.
The render(renderTo) method implements the module visualization logic. The client core will
automatically call this method (if it is available) upon module loading. Before data visualization, the
mechanism for binding the view (View) and the view model (ViewModel) must be triggered for correct

Bpm’online developer guide 808

http://en.wikipedia.org/wiki/Model_View_ViewModel

data processing. As a rule, this mechanism is initiated in the render() method: the bind() method is called
in the view object. If the module is loaded into a container, a reference to this container will be passed to
the render() method as an argument. The visual modules must implement the render() method.

Case

Create a module with the init() and render() methods. Both methods must display a message. The client kernel will
first call the init () method and then the render() method when the module is loaded. A message must alert you each
time a method is called.

NOTE

You can test any visual module, perform client downloads and generate visualization in the base version of
bpm’online. To do this, generate the following address string:

[Application URL]/[Configuration Number]/NUI/ViewModule.aspx#[Module name]

Example: http://myserver.com/BPMonlineWebApp/0/Nui/ViewModule.aspx#CustomModule

The CustomModule module will be returned to the client, and its visual representation will be displayed in the
central area of the application.

Case implementation:

1. Create a client module schema: Go to the [Configuration] section, click [Add] and select [Module] (Fig. 1, 1) to
create a non-visual module.

2. Set the [Title] property to “Standard module example” and the [Name] property to "ExampleStandartModule".
Select the name of the schema package in the [Package] property.

3. Add the following code to the [Source code] tab:

// Declaring the “ExampleStandartModule” module. The module does not have any
dependencies,
// so an empty array is passed as the second parameter.
define("ExampleStandartModule", [],
 // The factory function returns a module object with two methods.
 function () {
 return {
 // The method will be called first by the core upon loading to the
client.
 init: function () {
 alert(“Calling the init() method of the “ExampleStandartModule”
module.”);
 },
 The method will be called by the kernel when the module is loaded into
the container. The link to the container is passed to the method
 // as the renderTo parameter. A message will display a page control id
element,
 // which has to display the visual data of the module. centerPanel by
default.
 render: function (renderTo) {
 alert(“Calling the render() method of the “ExampleStandartModule”
module. The module is uploaded to the container ” + renderTo.id);
 }
 };
 });

4. Save and publish the schema.

You can run the example by executing the following query: [Application URL]/[Workplace
number]/NUI/ViewModule.aspx#ExampleStandartModule

Calling a function of a module from another module. Utility modules

Bpm’online developer guide 809

http://myserver.com/BPMonlineWebApp/0/Nui/ViewModule.aspx#CustomModule

Although a module is essentially an isolated software unit, the functions of other modules can be used in its logic.
The module with the intended functionality needs to be imported as a dependency for that to occur. Access to the
dependency module instance is granted through the factory function argument.

You can group auxiliary and service methods into separate utility modules and import them into modules that
require this functionality.

Case

Create a standard module with the init() and render() methods. The method for displaying a message window must
be taken out to a separate utility module.

Case implementation:

1. Create a schema for the client module with the following properties:

Assign “Utility module example” to the [Title] property.
Assign "ExampleUtilsModule" to the [Name] property.

Select the name of the schema package in the [Package] property.

2. Add the following code to the [Source code] tab:

// Declaring a utility module. The module does not have any dependencies and only
contains one method
// for displaying a message.
define("ExampleUtilsModule", [],
 function () {
 return {
 // The method for displaying a message. The message displayed in the
window
 // is passed to the method as the “information” argument.
 showInformation: function (information) {
 alert(information);
 }
 };
 });

3. Save and publish the utility module schema.

4. Create a client schema with the following properties:

[Title]: “Utility module use example”.
[Name]: "UseExampleUtilsStandartModule”.

5. Add the following code to the [Source code] tab:

// The ExampleUtilsModule dependency module is imported to the module for access to
the utility method.
// The factory function argument – a link to a loaded utility module.
define("UseExampleUtilsStandartModule", ["ExampleUtilsModule"],
 function (ExampleUtilsModule) {
 return {
 // The utility method for displaying a message window is called in the
init() and render() functions
 // with a message which is passed to the utility method as an argument.
 init: function () {
 ExampleUtilsModule.showInformation (“Calling the init() method of the
UseExampleResourceStandartModule module”.);
 },
 render: function (renderTo) {
 ExampleUtilsModule.showInformation(“Calling the render() method of
the UseExampleUtilsStandartModule module. The module is uploaded to the container “ +
renderTo.id);
 }

Bpm’online developer guide 810

 };
 });

6. Save and publish the schema.

You can run the example by executing the following query: [Application URL]/[Workplace
number]/NUI/ViewModule.aspx#UseExampleUtilsStandartModule

Working with resources

Localized strings and images are the resources of the client schema that are most often used in the implementation
logic of the module.

Add resources to the client schema in the [Structure] tab of the client schema designer. The application core
automatically generates a special [Client module name]Resources module, which contains resources of the client
module. The localizableStrings property stores schema's localized strings. The images property stores image
resources.

In order to access a resource module from a client module, you need to import the resource module as a dependency
into the client module.

ATTENTION

We recommend using localized resources rather than string literals or constants in the module code.

Case

Similar to previous cases, create an ExampleResourceModule module with the init() and render() methods. Use the
ExampleUtilsModule method of the utility module to display the message window. Contents displayed in message
windows must be specified by the values of localized strings in a client schema, rather than string literals.

Case implementation:

1. Create a client module with the following properties:

[Title]: “Resource module use example”.
[Name]: “ExampleResourceModule”.

Select the name of the schema package in the [Package] property.

2. In the created schema, add two localizable strings that will be displayed in the messages. To add a localizable
string in the [Structure] tab, right-click the [LocalizableStrings] element and select [Add].

Assign the following properties for the message string of the init() method:

[Name]: “InitMessage”.
[Value]: “Calling the init() method of the UseExampleResourceStandartModule module”.

Assign the following properties for the message string of the render() method:

[Name]: “RenderMessage”.
[Value]: “Calling the render() method of the UseExampleResourceStandartModule module”.

3. Add the following code to the [Source code] tab:

Two dependency modules are loaded into the module: the “ExampleUtilsModule” utility
module, created earlier, and the
// ExampleResourceModuleResources resource module. The resource module is not
explicitly created – it is generated by the core on the basis of
// resources added to the client schema.
define("ExampleResourceModule",
 ["ExampleUtilsModule", "ExampleResourceModuleResources"],
 // Now, the messages in init() and render() are not specified by
 // constant values, but localized strings.
 function (utils, resources) {
 return {

Bpm’online developer guide 811

 init: function () {
 utils.showInformation(
 // Access to the localized InitMessage line, in which the message
for the init() method is stored.
 resources.localizableStrings.InitMessage);
 },
 render: function () {
 utils.showInformation(
 // Access to the localized RenderMessage line, in which the
message for the render() method is stored.
 resources.localizableStrings.RenderMessage);
 }
 }
 });

4. Save and publish the schema.

Using replacing client modules

The extension modules of the basic functionality do not support inheritance in its traditional sense. You must
completely transfer (or copy) the program code of the original module when creating extension modules, and then
make your changes in the extension module. Although you do not need to transfer the code of the original module
while creating replacing client modules, you still can not use its resources. All resources (localized strings, images)
must be duplicated in the replacement schema.

Client view model schemas

Introduction
A custom view model schema is a visual module schema that implements client part of the application. Custom view
model schema is a kind of configuration object for generating views and view models by the ViewGenerator and
ViewModelGenerator generators of bmp’online. Custom module types are described in the "Client Modules”
article.

Source code structure of custom schema
All schemas have a common structure. Schema source code example:

define("ExampleSchema", [], function() {
 return {
 entitySchemaName: "ExampleEntity",
 mixins: {},
 attributes: {},
 messages: {},
 methods: {},
 rules: {},
 businessRules: /**SCHEMA_BUSINESS_RULES*/{}/**SCHEMA_BUSINESS_RULES*/,
 modules: /**SCHEMA_MODULES*/{}/**SCHEMA_MODULES*/,
 diff: /**SCHEMA_DIFF*/[]/**SCHEMA_DIFF*/
 };
});

A Schema configuration object is returned by anonymous factory function that is called after loading the module.
The object can have following properties:

entitySchemaName – object (model) schema name that will be used by this client schema.

Bpm’online developer guide 812

mixins – configuration object that contains mixin declaration. More information about the mixins you can find in
the "Mixins. The "mixins" property” article.

attributes – configuration object that contains schema attributes. More information about the attributes you can
find in the "Attributes. The "attributes" property” article.

messages – configuration object that contains schema messages. More information you can find in the "Messages.
The "messages" property” article.

methods – configuration object that contains schema methods. More information about this property you can find
in the "Methods. The "methods" property” article.

rules – configuration object that contains schema business rules. More information about this property you can find
in the "Rules. The "rules" property” article.

businessRules — configuration object that contains schema business rules, which are created or edited via the
section wizard or detail wizard. Marker comments /**SCHEMA_BUSINESS_RULES*/ are used by the wizards and
therefore are required. More information about this property you can find in the "Business rules. The
businessRules property" article.

modules – configuration object that contains schema modules. Marker comments / ** SCHEMA_MODULES * / are
used by the wizards and therefore are required. More information about this property you can find in the
"Modules. The "modules" property” article.

NOTE

To load a detail on a page the details property is used. But the detail is a module and it is appropriate to use
the modules property.

diff – configuration object array that contains schema view description. Marker comments / ** SCHEMA_DIFF * /
are used by the wizards and therefore are required. For more information about the diff array configuration, please
refer to the "The "diff" array" article.

properties — configuration object which contains the view model properties. Detailed information about this
property is available in the "Properties. The "properties" property" article.

$-properties — automatically generated properties for the view model attributes. More information can be found in
the "Automatically generated view model properties" article.

Mixins. The "mixins" property

Introduction
A mixin is a class designed to extend the functions of other classes. Mixins are separately created classes with
additional functionality. Mixins expand the functionality of schemas, allowing to avoid duplication of commonly
used logic in schema methods. Mixins are different from other modules added to the dependency list in a way that
their methods can be addressed directly, much like those of a schema.

Using mixins
// WizardUtilities – a module in which the mixin class is implemented.
define("ExampleSchema", ["WizardUtilities"], function () {
 return {
 entitySchemaName: "Contact",
 mixins: {
 // Connecting mixins.
 WizardUtilities: "Terrasoft.WizardUtilities"
 },

Bpm’online developer guide 813

 attributes: {},
 messages: {},
 methods: {},
 rules: {},
 modules: /**SCHEMA_MODULES*/{}/**SCHEMA_MODULES*/,
 diff: /**SCHEMA_DIFF*/[]/**SCHEMA_DIFF*/
 };
});

The mixin functionality will be available in a schema it was added to.

ATTENTION

Mixins are designed in form of modules that must be connected to the schema dependencies list when it is
declared by the define function.

Attributes. The "attributes" property

Introduction
Attributes is a configuration object property of the view model schema. It contains configuration objects that
describe the model attributes. A model column is the attribute. All object schema columns are included in the
attributes collection automatically upon generation.

Attribute base properties
The schema attributes have the following base properties:

dataValueType – attribute data type. This property is used for generation of views. The available data
types are represented by the Terrasoft.DataValueType enumeration.
type – column type. Optional parameter used in the BaseViewModel internal work. The available column
types are represented by the Terrasoft.ViewModelColumnType enumeration.
value – the attribute value. The value of this parameter will be set in the view model at its creation.

Attention!

You can specify numeric, string and Boolean values in the value attribute.

If the attribute type involves the use of a reference type value (array, object, collection, etc.), its initial value
must be initialized using methods.

An example of using attribute base properties:

attributes: {
 // Attribute name.
 "NameAttribute": {
 // Data type.
 "dataValueType": this.Terrasoft.DataValueType.TEXT,
 // Column type.
 "type": this.Terrasoft.ViewModelColumnType.VIRTUAL_COLUMN,
 // Default value.
 "value": "NameValue"
 }
}

Bpm’online developer guide 814

Attributes additional properties
Attributes can have the following properties:

Caption – attribute title.
isRequired – indicates whether the attribute is required.
Dependencies – dependency from another model attribute. For example, setting dependencies of an
attribute on the value of another attribute. The property is used to create calculated fields. More
information about the calculated fields and the uses of this parameter can be found in the "Adding
calculated fields” article.
lookupListConfig – property that configures lookup field features. More information about this parameter
can be found in the "Using filtration for lookup fields. Examples” article. This is a configuration
object that can contain the following optional properties:

columns – an array of column names that will be added to the query with the Id column and the
primary display column.
orders – an array of configuration objects that determine the sorting of displayed data.
filter – a method that returns an object of Terrasoft.BaseFilter class or its inheritor that will be
applied to the query. Can not be used with the “filters” property.
filters – filters array (methods that return collections of the Terrasoft.FilterGroup class). Can
not be used with the filter property.

An example of using attribute additional properties:

attributes: {
 // Attribute name.
 "Client": {
 // Attribute header.
 "caption": { "bindTo": "Resources.Strings.Client" },
 // Attribute is required.
 "isRequired": true
 },

 // Attribute name.
 "ResponsibleDepartment": {
 lookupListConfig: {
 // Additional columns.
 columns: ["SalesDirector"],
 // Sort column.
 orders: [{ columnPath: "FromBaseCurrency" }],
 // Filter definition function.
 filter: function()
 {
 // Returns filter of Type column, which is equal the "Competitor" constant.
 return this.Terrasoft.createColumnFilterWithParameter(
 this.Terrasoft.ComparisonType.EQUAL,
 "Type",
 ConfigurationConstants.AccountType.Competitor);
 }
 }
 },
 // Attribute name.
 "Probability": {
 // Determination of the column dependency.
 "dependencies": [
 {
 // Depends on the "Stage" column.
 "columns": ["Stage"],
 // The name of the handler method for the "Stage" column change.
 // setProbabilityByStage() method is defined in methods property
 // of schema object.
 "methodName": "setProbabilityByStage"

Bpm’online developer guide 815

 }
]
 }
},
methods: {

 // "Stage" column modification handler method
 setProbabilityByStage: function()
 {
 // Getting the Stage column value.
 var stage = this.get("Stage");
 // The condition for the "Probability" column modification.
 if (stage.value && stage.value ===
 ConfigurationConstants.Opportunity.Stage.RejectedByUs)
 {
 // Setting the "Probability" column value.
 this.set("Probability", 0);
 }
 }
}

Messages. The "messages" property

Introduction
Data exchange between modules is organized through messages.

There are two message modes:

Address. Address messages are only received by the last subscriber. To switch to address mode, set the
mode property to this.Terrasoft.MessageMode.PTP.
Broadcasting. Broadcasting messages are received by all subscribers. To switch to broadcasting mode, set
the mode property to this.Terrasoft.MessageMode.BROADCAST.

The list of available message modes is represented by the Terrasoft.MessageMode enumeration.

There are two message directions:

Publication – a message that can only be published (outbound). To set the direction for message
publishing, set the direction property to this.Terrasoft.MessageDirectionType.PUBLISH.
Subscription – a message that can only be subscribed to (inbound). To set the direction for message
subscription, set the direction property to this.Terrasoft.MessageDirectionType.SUBSCRIBE.

ATTENTION

The same message can not be announced with different directions in the schema inheritance hierarchy.

Message use examples
Message publishing

Declare a message with the “publishing” direction in the schema you want to publish the message in.

messages: {
 // Message name.
 "GetColumnsValues": {

Bpm’online developer guide 816

 // Message type – address.
 mode: this.Terrasoft.MessageMode.PTP,
 // Message direction – publication
 direction: this.Terrasoft.MessageDirectionType.PUBLISH
 }
}

Publishing is done through calling the publish method from the sandbox class instance.

// The GetColumnsValues method for obtaining message publication resuls.
getColumnsValues: function(argument) {
 // Message publishing.
 return this.sandbox.publish("GetColumnsValues", argument, ["key"]);
}

In this code:

“GetColumnsValues” – message name.
Argument – the argument passed to the handler function of the subscriber. An object with message
parameters.
["Key"] – an array of tags for filtering messages.

The sandbox property is declared in all schemas.

ATTENTION

Message publishing can return the handler function result only in the “address” mode.

Message subscription

A message with the "subscription" direction should be declared in the subscription schema.

messages: {
 // Message name.
 "GetColumnsValues": {
 // Message type – address.
 mode: this.Terrasoft.MessageMode.PTP,
 // Message direction – subscription.
 direction: this.Terrasoft.MessageDirectionType.SUBSCRIBE
 }
}

A subscription is carried out by calling the subscribe method in the sandbox class instance.

this.sandbox.subscribe("GetColumnsValues", messageHandler, context, ["key"]);

In this code:

“GetColumnsValues” – message name.
messageHandler – message handler function.
Context – handler function execution context.
["Key"] – an array of tags for filtering messages.

In the “address” mode, the messageHandler method should return the object, which is processed as the result of
message publication.

methods: {
 messageHandler: function(args) {
 // Returning the object that is being processed as a result of message
publishing.
 return { };
 }
}

Bpm’online developer guide 817

In broadcast mode, the messageHandler method returns nothing.

methods: {
 messageHandler: function(args) {
 }
}

Methods. The "methods" property

Introduction
The methods property of the view model schema contains a collection of methods that form the business logic of the
schema and affect the view model. Create new methods and override (replace) base methods of parent schemas in
this property. By default, the scope of methods is the view model scope.

Examples of method declaration
An example of a replaced method

Add the [Email] column completion requirement logic to the setValidationConfig method logic of the
Terrasoft.configuration.BaseSchemaViewModel class.

methods: {
 // Method name.
 setValidationConfig: function() {
 // Calling the logic of the setValidationConfig parent schema method.
 this.callParent(arguments);
 // Setting up the validation for the [Email] column.
 this.addColumnValidator("Email", EmailHelper.getEmailValidator);
 }
}

An example of a new method

methods: {
 // Method name.
 getBlankSlateHeaderCaption: function() {
 // Accessing the MasterColumnInfo column values.
 var masterColumnInfo = this.get("MasterColumnInfo");
 // Returning method work results.
 return masterColumnInfo ? masterColumnInfo.caption : "";
 },
 // Method name.
 getBlankSlateIcon: function() {
 // Returning method work results.
 return
this.Terrasoft.ImageUrlBuilder.getUrl(this.get("Resources.Images.BlankSlateIcon"));
 }
}

Rules. The "rules" property

Bpm’online developer guide 818

Introduction
Rules is a standard system mechanism, which enables the developer to add an implementation of typical functions
by configuring view model columns.

The functions of rules are implemented in the BusinessRuleModule client module. Add the BusinessRuleModule
module to the list of schema dependencies to use these functions.

define("CustomPageModule", ["BusinessRuleModule"],
 function(BusinessRuleModule) {
 return {
 // Client module implementation
 };
 });

Rule types are defined in the RuleType enumeration of the BusinessRuleModule module.

General procedure for declaring the rules:
All rules are described in the rules property of the schema.
The rules are applied to view model columns, not to controls.
Rules have names.
Rule parameters are set in its configuration object.

To learn more about business rules and to see the examples of their use, please refer to the “Setting the edit page
fields using business rules” chapter.

Business rules. The businessRules property

Introduction
In bpm’online, the behavior configuration of page / detail fields is done through business rules. Using business
rules, you can configure the following field behavior:

Hiding and displaying fields
Enable or disable editing
Compulsory or optional
Filtering lookup fields depending on other field values

Unlike the business rules defined in the rules property of the page view model schema (see “ Rules. The "rules"
property”), the business rules defined in the businessRules property are generated by the detail or the section
wizard and have a higher execution priority. The BusinessRuleModule enumeration is not used when describing the
generated business rule.

When creating a new business rule, the wizard generates a name for it and adds it to the custom schema of the edit
page view model.

If the business rule is disabled, the enabled property of its configuration object is set to false.

When you delete a business rule, its configuration object remains in the custom schema of the edit page view model,
but the removed property is set to true.

Bpm’online developer guide 819

ATTENTION

We do not recommend editing the businessRules property manually!

Editing an existing business rule
After editing the custom business rule in the wizard, the business rule configuration object remains unchanged in
the rules property of the edit page view modelю This creates a new version of the business rule configuration object
with the same name in the businessRules property.

The business rule defined in the businessRules property has a higher execution priority when processing a business
rule at runtime. Therefore, subsequent changes to this rule in the rules property will not affect the system in any
way.

NOTE

When you delete or disable the business rule, the changes made in the configuration object of the
businessRules property have a higher priority.

Modules. The "modules" property

Introduction
The modules property contains a configuration object responsible for declaration and configuration of modules and
details loaded to a page. The / ** SCHEMA_MODULES * / marker comments are required, since they are necessary
for the work of the wizards.

NOTE

To load a detail to a page, use the details property. However, since details are essentially modules, we
recommend using the modules property instead.

An example of using the modules property
modules: /**SCHEMA_MODULES*/{
 // Loading the module
 // Module title. Must be the same as the name property in the diff massive.
 "TestModule": {
 // Optional Loaded module id Will be generated by the system if not
specified.
 "moduleId": "myModuleId",.
 // If the parameter is not specified, BaseSchemaModuleV2 will be used for
loading.
 "moduleName": "MyTestModule",
 // Configuration object. When the module is loaded, it is passed as
instanceConfig. It stores a set of initial parameter values for the module.
 "config": {
 "isSchemaConfigInitialized": true,
 "schemaName": "MyTestSchema",
 "useHistoryState": false,
 // Additional module parameters.
 "parameters": {
 // Parameters added to a schema during its initialization.

Bpm’online developer guide 820

 "viewModelConfig": {
 masterColumnName: "PrimaryContact"
 }
 }
 }
 },

 // Loading a detail.
 // Detail name.
 "Project": {
 // The name of a schema detail.
 "schemaName": "ProjectDetailV2",
 "filter": {
 // Section object schema column.
 "masterColumn": "Id",
 // Detail object schema column.
 "detailColumn": "Opportunity"
 }
 }
}/**SCHEMA_MODULES*/

The "diff" array

Introduction
The “diff” array is an array of modifications described in the “diff” property of a schema. The array is used for
generating module views in the system UI. Each array element is a metadata. The UI controls are generated based
on these metadata.

The diff property contains an array of configuration objects that are responsible for schema display. The diff array
contains objects that configure display of containers, controls, modules, fields and other visual components.

The diff array object properties
The diff array elements have the following properties:

operation – can have the following values:
set – schema element value is set by the values parameter.
merge – the values from the parent, replacing and replacement schemas are merged. The
properties from values parameter have the highest priority.
remove – the element is removed from the schema.
move – the element is moved to another parent element.
insert – the element is inserted in the schema.

name – the name of schema element that the operation is applied to.
parentName – the name of schema parent element where the element is placed as a result of the insert or
move operation;
propertyName – the name of parent element parameter in the insert operation. Also used in the remove
operation if it is needed to remove specific element parameters and not the element itself;
index – the index in which the parameter is being moved or inserted. The parameter is used in the insert
and move operations. If the parameter is not specified, the element will be inserted as the last element in
the array.
values – the object whose properties will be set or merged with schema element properties. It is used in

Bpm’online developer guide 821

the set, merge and insert operations.

Bpm'online has a set of basic elements that can be displayed on a page. They are specified in the
Terrasoft.ViewItemType list (Table. 1).

Table 1. – Element type

Name Description
GRID_LAYOUT Grid element that contains placements of other elements

TAB_PANEL Set of tabs.

DETAIL Detail.

MODEL_ITEM View model element.

MODULE Module.

BUTTON Button.

LABEL Label.

CONTAINER Container.

MENU Drop-down list.

MENU_ITEM Drop-down list element.

MENU_SEPARATOR Drop-down list separator.

SECTION_VIEWS Section views.

SECTION_VIEW Section view.

GRID List.

SCHEDULE_EDIT Scheduler.

CONTROL_GROUP Group of controls.

RADIO_GROUP Group of radio buttons.

DESIGN_VIEW Customizable view.

COLOR_BUTTON Color.

IMAGE_TAB_PANEL Set of tabs with icons.

HYPERLINK Hyperlink.

INFORMATION_BUTTON Information button with tooltip.

TIP Tooltip.

An example of using the “diff” property
diff: /**SCHEMA_DIFF*/[
 {
 "operation": "insert",
 "name": "CardContentWrapper",
 "values": {
 "id": "CardContentWrapper",
 "itemType": Terrasoft.ViewItemType.CONTAINER,
 "wrapClass": ["card-content-container"],
 "items": []
 }
 },
 {
 "operation": "insert",
 "name": "CardContentContainer",
 "parentName": "CardContentWrapper",

Bpm’online developer guide 822

 "propertyName": "items",
 "values": {
 "itemType": Terrasoft.ViewItemType.CONTAINER,
 "items": []
 }
 },
 {
 "operation": "insert",
 "name": "HeaderContainer",
 "parentName": "CardContentContainer",
 "propertyName": "items",
 "values": {
 "itemType": Terrasoft.ViewItemType.CONTAINER,
 "wrapClass": ["header-container-margin-bottom"],
 "items": []
 }
 },
 {
 "operation": "insert",
 "name": "Header",
 "parentName": "HeaderContainer",
 "propertyName": "items",
 "values": {
 "itemType": Terrasoft.ViewItemType.GRID_LAYOUT,
 "items": [],
 "collapseEmptyRow": true
 }
 }
]/**SCHEMA_DIFF*/

Alias mechanism

General Information
The Alias mechanism – provides partial backward compatibility when user interface is changed in the new versions
of the product. In the process of developing new versions, sometimes it becomes necessary to move page elements to
new areas. In case the users have customized the page, the changes could lead to unpredictable consequences. The
Alias mechanism helps to avoid this by interacting with the json-applier class which is diff array builder. This class
merges all the parameters of the base and custom replacing schemas.

Diff – an array of objects, responsible for displaying schema elements. It can have containers, controls, modules and
fields. For more information about the diff array, see the "The "diff" array” article.

Details
The alias property contains information about the previous element name. This information is taken into account
when building a diff array of modifications, and informs that both the elements with a new name, and the elements
with the name specified in alias must be considered. The alias is a configuration object that links two different
elements – the new one and the old one. When building a diff array the alias configuration object can be used to
exclude application of certain properties and operations to the element in which the alias is declared. The alias
object can be added to any element in diff array.

Alias object structure

Bpm’online developer guide 823

The alias object contains three custom properties:

name – the name associated with the new element. This name will be used to locate the elements in the
replaced schemas and connect them with the new element.

ATTENTION

The value of the name element of the diff array should not be equal to the alias.name property.

excludeProperties – array of properties of the values object of the diff modification array element. These
properties will not be used when generating diff.
excludeOperations – array of operations that should not be applied to this element when the diff
modification array is generated.

Usage example of the alias object :

// diff. array
diff: /**SCHEMA_DIFF*/ [
 {
 // The operation with the element.
 "operation": "insert",
 // Element new name.
 "name": "NewElementName",
 // Element values.
 "values": {
 // ...
 },
 // Alias configuration object.
 "alias": {
 // Element previous name.
 "name": "OldElementName",
 // Exclude properties array.
 "excludeProperties": ["layout", "visible", "bindTo"],
 // Exclude operations array.
 "excludeOperations": ["remove", "move", "merge"]
 }
 },
 ///...
]

An example of the Alias mechanism usage for multiple
schema replacement
There is an initial element of the diff array with the name "Name" and a set of properties. The element is located in
the Header container. This schema was replaced several times and each time the “Name” element is moved and
modified in every possible way.

Diff property of the base schema

diff: /**SCHEMA_DIFF*/ [
 {
 // Insert operation.
 "operation": "insert",
 // The name of the parent element to insert into.
 "parentName": "Header",
 // The name of the parent element with which operation is performed.
 "propertyName": "items",
 // Element name.
 "name": "Name",
 // Element property values object.
 "values": {
 // Layout.

Bpm’online developer guide 824

 "layout": {
 // Column number.
 "column": 0,
 // Row number.
 "row": 1,
 // Number of joined columns.
 "colSpan": 24
 }
 }
 }
] /**SCHEMA_DIFF*/

Diff property after first replacement of the base schema:

diff: /**SCHEMA_DIFF*/ [
 {
 // Merging properties of the two elements.
 "operation": "merge",
 "name": "Name",
 "values": {
 "layout": {
 "column": 0,
 // Row number. The element is moved.
 "row": 8,
 "colSpan": 24
 }
 }
 }
] /**SCHEMA_DIFF*/

Diff property after second replacement of the base schema:

diff: /**SCHEMA_DIFF*/ [
 {
 //Moving the element.
 "operation": "move",
 "name": "Name",
 //The name of the parent element where the element is moved.
 "parentName": "SomeContainer"
 }
] /**SCHEMA_DIFF*/

In the new version, the "Name" element was moved from the SomeContainer element to the ProfileContainer
element and must remain there regardless of the client customization. For this, the element gets a new name
"NewName" and an alias configuration object is added to it.

diff: /**SCHEMA_DIFF*/ [
 {
 // Insert operation.
 "operation": "insert",
 // The name of the parent element in which insert is carried out.
 "parentName": "ProfileContainer",
 // The name of the parent element property with which operation is performed.
 "propertyName": "items",
 // Element new name.
 "name": "NewName",
 // Object with element property values.
 "values": {
 // Binding to a property value or a function
 "bindTo": "Name",
 // Layout.
 "layout": {

Bpm’online developer guide 825

 // Column number.
 "column": 0,
 // Row number.
 "row": 0,
 // Number of joined columns.
 "colSpan": 12
 }
 },

 // Alias configuration object.
 "alias": {
 // Element previous name.
 "name": "Name",
 // Array of excluded properties.
 "excludeProperties": ["layout"],
 // Array of ignored operations.
 "excludeOperations": ["remove", "move"]
 }
 }
] /**SCHEMA_DIFF*/

Alias has been added in the new element. The parent element and its location on the edit page also has been
changed. The excludeProperties property stores a set of properties that will be ignored when the difference is
applied. The excludeOperations property stores a set of operations that will not be applied to the element from
replacements.

In this example layout properties of all “Name” element inheritors are excluded and remove and move operations
are not allowed. This indicates that the "NewName” element will only contain a root layout property and all of the
"Name" element properties from replacements except Layout. Same applies to operations.

The result for the diff array builder will be:

diff: /**SCHEMA_DIFF*/ [
 {
 // Insert operation.
 "operation": "insert",
 // The name of the parent element in which insert is carried out.
 "parentName": "ProfileContainer",
 // The name of the parent element property with which operation is performed.
 "propertyName": "items",
 // Element new name.
 "name": "NewName",
 //Object with element property values.
 "values": {
 // Bind to a property value or a function
 "bindTo": "Name",
 // Layout.
 "layout": {
 // Column number.
 "column": 0,
 // Row number.
 "row": 0,
 // Number of joined columns.
 "colSpan": 12
 },
 }
 },
] /**SCHEMA_DIFF*/

Schema formatting requirements for compatibility with wizards

Bpm’online developer guide 826

General information
In general, a client schema has three components:

1. Automatically generated code that contains a schema description, its dependencies, localized resources, and
messages.

2. Visualization styles (may not be present in certain types of client schemas).
3. Schema code – syntactically correct JavaScript code that defines the module.

Changes made to client schemas using wizards (adding a field, changing the tab position, adding a detail or a module
to the edit page layout, etc.) are saved by modifying the diff, modules, details and businessRules properties of the
schema structure. For more information about the schema structure, please see the "Client view model
schemas” article. Due to technical limitations, marker comments for these properties are used to identify them
uniquely in the schema code.

Marker comments
Marker comments identify the diff, modules and details properties of the schema structure if it is edited with the
help of wizards.

In addition to the basic validation, the checking procedure for client schemas will indicate the schemas without the
necessary comments when a wizard is run. Schema validation rules are given in Table 1.

Table 1. Schema validation rules

Schema type Required marker comments
View model schema of the
EditViewModelSchema edit page

details: /**SCHEMA_DETAILS*/{}/**SCHEMA_DETAILS*/,

modules: /**SCHEMA_MODULES*/{}/**SCHEMA_MODULES*/,

diff: /**SCHEMA_DIFF*/[]/**SCHEMA_DIFF*/

businessRules:
/**SCHEMA_BUSINESS_RULES*/{}/**SCHEMA_BUSINESS_RULES*/

View model schema of
ModuleViewModelSchema section

modules: /**SCHEMA_MODULES*/{}/**SCHEMA_MODULES*/,

diff: /**SCHEMA_DIFF*/[]/**SCHEMA_DIFF*/

View model schema of
EditControlsDetailViewModelSchema
detail with edit fields

modules: /**SCHEMA_MODULES*/{}/**SCHEMA_MODULES*/,

diff: /**SCHEMA_DIFF*/[]/**SCHEMA_DIFF*/

View model schema of
DetailViewModelSchema detail

modules: /**SCHEMA_MODULES*/{}/**SCHEMA_MODULES*/,

diff: /**SCHEMA_DIFF*/[]/**SCHEMA_DIFF*/

View model schema of
GridDetailViewModelSchema detail
with editable list

modules: /**SCHEMA_MODULES*/{}/**SCHEMA_MODULES*/,

diff: /**SCHEMA_DIFF*/[]/**SCHEMA_DIFF*/

The schema types are determined by the ClientUnitSchemaType enumeration.

The declaration rules of the diff property
The diff property contains an array of configuration objects that are responsible for schema display. The diff array
may contain objects that configure display of containers, controls, modules, fields and other visual components. For
more information about the diff array, see the "The "diff" array” article.

Bpm’online developer guide 827

Proper use of converters

The converter is a function executed in the viewModel environment that receives viewModel, properties and returns
a result of the corresponding type. For the wizards to work correctly, the value of the diff property must be in JSON
format. Therefore, the converter value must be the name of the view model method, and not the inline function.

An example the converter improper use:

diff: /**SCHEMA_DIFF*/[
 {
 //...
 "bindConfig": {
 converter: function(val) {
 // ...
 }
 }
 }
]/**SCHEMA_DIFF*/

An example the converter proper use:

methods: {
 someFunction: function(val) {
 //...
 }
},

diff: /**SCHEMA_DIFF*/[
 {
 //...
 "bindConfig": {
 "converter": "someFunction"
 }
 //...
 }
]/**SCHEMA_DIFF*/

Parent element (container)

Parent element is a DOM element into which the module draws its view. For correct work of the wizard, it is
necessary that the parent container have only one child element.

An example of incorrect view placement in parent element:

<div id="OpportunityPageV2Container" class="schema-wrap one-el" data-item-
marker="OpportunityPageV2Container">
 <div id="CardContentWrapper" class="card-content-container page-with-left-el"
data-item-marker="EntityLoaded"></div>
 <div id="DuplicateContainer" class="DuplicateContainer"></div>
</div>

An example of correct view placement in parent element:

<div id="OpportunityPageV2Container" class="schema-wrap one-el" data-item-
marker="OpportunityPageV2Container">
 <div id="CardContentWrapper" class="card-content-container page-with-left-el"
data-item-marker="EntityLoaded"></div>
</div>

When adding, changing, moving an element in the diff (the insert, merge, move operations), the parentName
property (the parent element name) is required.

An example of incorrect view element specification in the diff property:

Bpm’online developer guide 828

{
 "operation": "insert",
 "name": "SomeName",
 "propertyName": "items",
 "values": {}
}

An example of correct view element specification in the diff property:

{
 "operation": "insert",
 "name": "SomeName",
 "propertyName": "items",
 "parentName": "SomeContainer",
 "values": {}
}

In case if parentName property is missing, at the wizard launch, an error will be displayed, indicating that the page
cannot be set up by the wizard.

The parentName property value must match the name of the parent element in the corresponding base page
schema. For example, for edit pages, it is "CardContentContainer".

The Name uniqueness

Each new diff array element must have a unique name.

An example of incorrect adding of elements to the diff array:

{
 "operation": "insert",
 "name": "SomeName",
 "values": { }
},
{
 "operation": "insert",
 "name": "SomeName",
 "values": { }
}

An example of correct adding of elements to the diff array:

{
 "operation": "insert",
 "name": "SomeName",
 "values": { }
},
{
 "operation": "insert",
 "name": "SomeSecondName",
 "values": { }
}

The non-existing parent element

If you specify the name of a non-existing container element as the parent element in the parentName property, the
"Schema cannot have more than one root object" error will occur, since the added element will be placed in the root
container.

The placement of view elements

In order to be able to customize and modify the view elements, they must be located on the markup grid. In the
bpm'online, each grid row has 24 cells (columns). The layout property is used to place elements on the grid.

The grid element properties:

Bpm’online developer guide 829

column – left column index

row – upper row index

colSpan – the number of columns occupied

rowSpan – the number of rows occupied

An example of element placement:

{
 "operation": "insert",
 "parentName": "ParentContainerName",
 "propertyName": "items",
 "name": "ItemName",
 "values": {
 // Element location.
 "layout": {
 // Start with a "0" column.
 "column": 0,
 // Place in the 5th row of the grid.
 "row": 5,
 // Take 12 columns wide.
 "colSpan": 12,
 // Take 1 row height.
 "rowSpan": 1
 },
 "contentType": Terrasoft.ContentType.ENUM
 }
}

Number of operations

If the client schema is changed without using a wizard, it is recommended to add no more than one operation for
one element in the edited schema for the correct operation of the wizard.

Inheritance rules
It is obligatory for the client schema to be a descendant of the BaseModulePageV2 base schema. It is recommended
to create client schemas using the menu commands in the [Configuration] section (Figure 1) or with the help of the
wizards.

Fig. 1. The commands for client schemas creation that are compatible with wizards

Bpm’online developer guide 830

Specifying an object schema for a client schema
In the client schema, you must fill in the entitySchemaName property in which the object (model) schema name
must be specified. It is sufficient to specify it in one of the inheritance hierarchy schemas.

An example of the entitySchemaName property declaration:

define("ClientSchemaName", [], function () {
 return {
 // Object schema (model).
 entitySchemaName: "EntityName",
 //...
 };
});

Handling a data context loss

Introduction
The mechanism that tracks data context loss on a record edit page enables you to detect changes (for example, when
you go from a page to another section) automatically. If any changes were made on the page, the user will be notified
about the unsaved changes and will be able to return to editing or leave the page without saving (Fig. 1).

Fig. 1. Potential changes loss warning

Bpm’online developer guide 831

The structure of the context data loss tracking mechanism on
a page
The structure of the context data loss tracking mechanism on a page includes:

New methods and events of the Terrasoft.Component base component
The CheckModuleDestroyMixin mixin.
New and modified methods of the BasePageV2 base editing page.

New methods and events of the Terrasoft.Component base component.

The “canExecute()” method

The canExecute() method calls the canExecute event, and adds the callback function to its parameters – a link to the
onClick() method, in which the canExecute() method was called. The canExecute event connects to the view model
and calls the canBeDestroyed() method of the CheckModuleDestroyMixin mixin. This method may return false if
there are any unsaved changes on the editing page. If all changes are saved, the method always returns true, and the
execution of onСlick() is not interrupted. The canExecute() method implementation:

// Generates the canExecute event.
// Returns true, if the onClick() method execution can continue.
canExecute: function(config) {
 var args = config.args;
 var event = args[args.length - 1];
 // If the onClick() method was called from the CheckModuleDestroyMixin mixin as a
callback function,
 // then the last parameter signaling the interruption is passed to the event.
 if (event && event.isComeBack) {
 return true;
 }
 // Adding the event of method interruption to the arguments.
 // Required for stopping the execution of the method when onClick is called from
the callback function.
 Array.prototype.push.call(config.args, {
 isComeBack: true
 });
 // Applying the current context.
 Ext.apply(config, { scope: this });
 // Generating the canExecute event.
 var canExecute = this.fireEvent("canExecute", config);
 return canExecute;
},

The process of calling the canExecute() method occurs in the onClick() method of certain control elements (or in all
other elements, called in the onClick() method). These control elements include the Terrasoft.Button base button,
the Terrasoft.Grid list, the Terrasoft.BaseMenuItem menu elements, etc. If necessary, the process of calling this

Bpm’online developer guide 832

method can be added to other components as well. An example of the canExecute() method calling process in the
Terrasoft.Grid component:

// The method that indicates the active list record.
setActiveRow: function(newId) {
 var oldId = this.activeRow;
 if (!oldId && !newId) {
 return;
 }
 if (newId !== oldId) {
 var canExecute = oldId && this.canExecute({
 method: this.setActiveRow,
 args: arguments
 });
 // If CheckModuleDestroyMixin returns false, the method execution is
interrupted.
 if (canExecute === false) {
 return;
 }
 ...
 }
},

The OnGridClick() method handler is called upon clicking the Terrasoft.Grid class instance. OnGridClick() calls the
setActiveRow() method in its turn. If there’s an existing active string, the canExecute() method is called in the
setActiveRow() method. The configuration object is passed to the canExecute() method as an argument. The link to
the setActiveRow() method and the arguments of setActiveRow() (which were used to call the method) are added to
the properties of the configuration object. If the called event canExecute returns false, the work of the
setActiveRow() method will be interrupted. However, the calling process of the setActiveRow() method can be
restored since it was passed as a callback function.

The “canExecute” event

The canExecute event is called in the Terrasoft.Component base component constructor, and its generation occurs
in the canExecute() method.

// Class constructor.
constructor: function(config) {
 this.addEvents(
 ...
 "canExecute"
);
 ...
}

In order to control component behavior in the configuration schema, you must associate the view model with the
canExecute event. To do this, in the diff modification array of the BaseSectionV2 base section schema, define the
binding of the canExecute event to the canBeDestroyed method in the DataGrid element. The canBeDestroyed
method is defined in the CheckModuleDestroyMixin mixin.

// Modifications array of the basic list schema.
diff: [
 // Adding a list element.
 {
 "operation": "insert",
 "name": "DataGrid",
 "parentName": "DataGridContainer",
 "propertyName": "items",
 "values": {
 ...
 "canExecute": {"bindTo": "canBeDestroyed"},
 ...

Bpm’online developer guide 833

 }
 }...

The “CheckModuleDestroyMixin” mixin

The CheckModuleDestroyMixin mixin provides message exchange with open edit pages (including those that are
open in a chain). Additionally, it is used to interrupt the execution of the method that called canExecute() (for
example, the onClick() button method). This mixin is "mixed" into the view model of the configuration schema.

The message exchange with short editing pages is established by the updateCanBeDestroyedConfig() method:

// Updates the information about the ability to delete editing page context.
updateCanBeDestroyedConfig: function() {
 // Creating a key.
 var cacheKey = this.Ext.String.format("{0}-cache", this.sandbox.id);
 // Saving to client cache by object key, used by the cards.
 this.Terrasoft.ClientPageSessionCache.setItem(cacheKey, { canBeDestroyed: true
});
 // Publishing a system broadcast message.
 this.sandbox.publish("CanBeDestroyed", cacheKey);
 // Updating work results of message subscribers.
 this.canBeDestroyedConfig =
this.Terrasoft.ClientPageSessionCache.getItem(cacheKey);
}

The display of the edit page message dialog and the result processing of user selection are both implemented in the
showCanBeDestroyed() method:

// Displays a message in a dialog.
showCanBeDestroyed: function(resumeConfig) {
 // A message from the page, displayed in the confirmation dialog.
 var message = this.getDestroyedMessage();
 // Display the confirmation dialog.
 this.Terrasoft.showConfirmation(message, function(returnCode) {
 // If the user selects "Yes", the callback function is called.
 // This will continue execution of the interrupted handler for the component
click event.
 if (returnCode === this.Terrasoft.MessageBoxButtons.YES.returnCode) {
 this.Ext.callback(resumeConfig.method, resumeConfig.scope || this,
resumeConfig.args);
 }
 }, ["yes", "no"], this);
}

New and modified methods of the BasePageV2 base editing page

The subscription to the CanBeDestroyed message (sent out by the CheckModuleDestroyMixin mixin) is
implemented in the subscribeSandboxEvents() method:

// Message subscription.
subscribeSandboxEvents: function() {
 ...
 this.sandbox.subscribe("CanBeDestroyed", this.onCanBeDestroyed, this);
 ...
}

The onCanBeDestroyed() and the setNotBeDestroyedConfig() methods check if unsaved data exists:

// Checking unsaved data.
onCanBeDestroyed: function(cacheKey) {
 // Receiving and checking the cache object.
 var config = this.Terrasoft.ClientPageSessionCache.getItem(cacheKey);
 if (!this.Ext.isObject(config)) {

Bpm’online developer guide 834

 return;
 }
 var isChanged = this.isChanged();
 // If the edit page has unsaved data, a message is generated and the object is
changed in the cache.
 if (isChanged) {
 this.setNotBeDestroyedConfig(config);
 }
}, ...
// Forms a configuration object for displaying the message to the user.
setNotBeDestroyedConfig: function(config) {
 // Determining the message shown to the user.
 var message = this.get("Resources.Strings.PageContainsUnsavedChanges");
 Ext.apply(config, {
 // Unsaved data attribute.
 canBeDestroyed: false,
 // The message shown to the user.
 errorInfo: {
 message: message
 }
 });
}

Properties. The "properties" property

Introduction
The “properties” property of the configuration object of the view model schema contains a JavaScript object that
describes the properties of the view model.

An example of using the “properties” property in the SectionTabsSchema schema of the NUI package:

define("SectionTabsSchema", [],
 function() {
 return {
 ...
 // Declaring the "properties" property.
 properties: {
 // The "parameters" property. Array.
 parameters: [],
 // The "modulesContainer" property. Object.
 modulesContainer: {}
 },
 methods: {
 ...
 // Initialization method. Always executed first.
 init: function(callback, scope) {
 ...
 // Calling a method that uses the properties of the view
model.
 this.initContainers();
 ...
 },
 ...
 // A method that uses the properties.
 initContainers: function() {

Bpm’online developer guide 835

 // Using the "modulesContainer" propery.
 this.modulesContainer.items = [];
 ...
 // Usting the "parameters" property.
 this.Terrasoft.each(this.parameters, function(config) {
 config = this.applyConfigs(config);
 var moduleConfig = this.getModuleContainerConfig(config);
 var initConfig = this.getInitConfig();
 var container =
viewGenerator.generatePartial(moduleConfig, initConfig)[0];
 this.modulesContainer.items.push(container);
 }, this);
 },
 ...
 },
 ...
 }
 });

Automatically generated view model properties

Introduction
In the bpm'online version 7.11.3 or higher for all attributes of the view model the properties are automatically
generated with the “$” as prefix. Example:

//Traditional approach
var value = this.get("Attribute1"); /// Getting the value of the attribute.
this.set("Attribute1", 1) //Assigning the value to the attribute.

//Use of automatically generated properties.
this.$Attribute1; // Getting the value of the attribute.
this.$Attribute1 = 1 // Assigning the value to the attribute.

ATTENTION

In the bpm'online version 7.11.3 such properties are not generated for the attributes that contain points in
their names. For example, for the "Resources.Strings.TracingSaveException” attribute the automatically
generated property will not be created.

Advantages of using automatically generated properties:

1. Reducing the amount of source code. No need to store attribute values in the variables, you can work with
properties directly. For example, in the ContactPageV2 view model schema, you can rewrite the jobChanged()
method as follows:

//Traditional approach.
jobChanged: function() {
 var job = this.get("Job");
 var jobTitle = this.get("JobTitle");
 if (this.isNotEmpty(job) && this.isEmpty(jobTitle)) {
 this.set("JobTitle", job.displayValue);
 }

Bpm’online developer guide 836

}

//Using auto-generated properties.
jobChanged: function() {
 if (this.isNotEmpty(this.$Job) && this.isEmpty(this.$JobTitle)) {
 this.$JobTitle = this.$Job.displayValue;
 }
}

2. Using the features of auto-tip (IntelliSense) in the browser console (Fig. 1).

Fig. 1. Using auto-tip for automatically generated properties

Sandbox. Module message exchange

Introduction
A bpm’online module is an isolated software unit. It has no information about other bpm’online modules apart from
the module name list from which is depends. See “Modular development principles in bpm'online” for more
information about bpm’online modules.

Sandbox object is used for interaction between the isolated modules. One of the key sandbox mechanisms is module
message exchange.

Modules can only communicate via messages. A module shall publish a message to communicate its status change to
other bpm’online modules. If the module needs to receive messages about status change in other modules, it must
be subscribed to these messages.

To interact with other bpm’online modules, the module must import the sandbox module as a dependency.

NOTE

It is not necessary to specify ["ext-base", "terrasoft", "sandbox"] base modules in dependencies if the module
exports class constructor. Ext, Terrasoft and sandbox objects will be available as object properties after

Bpm’online developer guide 837

creating module class object: this.Ext, this.Terrasoft, this.sandbox.

Message registration
You need to register messages to implement module message exchange.

NOTE

Message registration is executed automatically if messages are declared in the messages module property.

sandbox.registerMessages(messageConfig) method is used to register module messages, where messageConfig is a
module message configuration object.

Configuration object is a “key-value” collection, where every element is as follows:

"MessageName": {
 mode: [Message operation mode],
 direction: [Message direction]
}

“MessageName” is a collection element key that contains the message name. The value is a configuration object that
contains the following properties:

mode – message operation mode. Must contain Terrasoft.MessageMode
(Terrasoft.core.enums.MessageMode) enumeration value.
direction – message direction. Must contain Terrasoft.MessageDirectionType
(Terrasoft.core.enums.MessageDirectionType) enumeration value.

Message exchange modes (mode property):

Broadcast – message operation mode with a predefined number of subscribers. Corresponds to
Terrasoft.MessageMode.BROADCAST enumeration value.
Address – message operation mode when a message can only be processed by one subscriber. Corresponds
to Terrasoft.MessageMode.PTP. enumeration value.

ATTENTION

There can be several subscribers in the address mode, but only one can process messages, usually it is the last
registered subscriber.

Message direction (direction property):

Publication (publish) – the module can only publish a message in sandbox. Corresponds to
Terrasoft.MessageDirectionType.PUBLISH. enumeration value.
Subscription (follow) – the module can only subscribe to a message, published from another module.
Corresponds to Terrasoft.MessageDirectionType.SUBSCRIBE. enumeration value.
Bidirectional – allows to publish and subscribe to the same message in different instances of the same
class or within the same schema inheritance hierarchy. Corresponds to
Terrasoft.MessageDirectionType.BIDIRECTIONAL. enumeration value.

Module message registration:

// Message configuration object collection.
var messages = {
 "MessageToSubscribe": {
 mode: Terrasoft.MessageMode.PTP,
 direction: Terrasoft.MessageDirectionType.SUBSCRIBE
 },
 "MessageToPublish": {
 mode: Terrasoft.MessageMode.BROADCAST,
 direction: Terrasoft.MessageDirectionType.PUBLISH
 }
};

Bpm’online developer guide 838

// Message registration.
this.sandbox.registerMessages(messages);

ATTENTION

It is not necessary to register messages via the sandbox.registerMessages() method in the view model
schemas. Declare the message configuration object in messages property (see "Messages. The "messages"
property").

To reject message registration in a module, use sandbox.unRegisterMessages(messages) method, where messages
– is a message name or a message name array. Message registration rejection:

// Single message registration rejection.
this.sandbox.unRegisterMessages("MessageToSubscribe");
// Message array registration rejection.
this.sandbox.unRegisterMessages(["MessageToSubscribe", "MessageToPublish"]);

Adding messages to module schema

You can also register messages by adding them to a module schema or via a designer (see “Module designer”).

To add messages to module schema:

1. On the [Structure] tab of the module schema designer select the [Messages] node, right-click and execute the
[Add] command (Fig.1).

Fig. 1. Adding messages to the module schema structure

2. Set the necessary properties for the added message (Fig.2):

[Name] – the message name that corresponds to the module configuration object key.
[Direction] – message direction. Possible values: “Follow” (subscribe) and “Publish” (publish).
[Mode] – message operation mode. Possible values: “Broadcast” and “Address”.

Fig. 2. Message properties

Bpm’online developer guide 839

ATTENTION

It is not necessary to add messages to schema structure in view model schemas .

Message publication
sandbox.publish(messageName , messageArgs, tags) method is used to publish messages.

Method parameters:

messageName – the string that contains the message name, for instance, "MessageToSubscribe".
messageArgs – the object, passed as an argument to the message handler method in the subscription
module. If there are no input parameters in the handler method, assign null value to messageArgs
parameter.
tags – tag array that allows to uniquely identify the message sending module. Usually, the
[this.sandbox.id] value is used. Sandbox defines the message subscribers and publishers according to the
tag array.

NOTE

Only the handlers that meet at least one tag will be run for the message published with the tag array.
Messages, published without tags, will only be processed by subscribers without tags.

Message publication method:

// Message publication without tags or argument.
this.sandbox.publish("MessageWithoutArgsAndTags");
// Message publication without a handler method argument.
this.sandbox.publish("MessageWithoutArgs", null, [this.sandbox.id]);
// Message publication with a handler method argument.
this.sandbox.publish("MessageWithArgs", {arg1: 5, arg2: "arg2"}, ["moduleName"]);
// Message publication with an arbitrary tag array.
this.sandbox.publish("MessageWithCustomIds", null, ["moduleName","otherTag"]);

When you publish a message in the address mode, you can receive the result of its processing by the subscriber. To
do this, the message handler method in the subscription module must return the corresponding result (see “Message
subscription”). Message publication:

// Message declaring and registration.
var messages = {
 "MessageWithResult": {
 mode: Terrasoft.MessageMode.PTP,
 direction: Terrasoft.MessageDirectionType.PUBLISH
 }
};
this.sandbox.registerMessages(messages);
// Message publication and receipt of the result of its processing by the
subscription module.
var result = this.sandbox.publish("MessageWithResult", {arg1:5, arg2:"arg2"},
["resultTag"]);
// Result display on the browser console.
console.log(result);

When you publish a message in the broadcast mode, you can receive the result of its processing via the object,
passed as an argument to the handler method.

// Message declaring and registration.
var messages = {
 "MessageWithResult": {
 mode: Terrasoft.MessageMode.BROADCAST,
 direction: Terrasoft.MessageDirectionType.PUBLISH
 }

Bpm’online developer guide 840

};
this.sandbox.registerMessages(messages);
var arg = {};
// Message publication and receipt of the result of its processing by the
subscription module.
// Add result property into the object of the subscription module handler method and
populate it with the processing result.
this.sandbox.publish("MessageWithResult", arg, ["resultTag"]);
// Result display on the browser console.
console.log(arg.result);

Message subscription
You can subscribe to a message using the sandbox.subscribe(messageName, messageHandler, scope, tags) method.

Method parameters:

messageName – the string that contains the message name, for instance, "MessageToSubscribe".
messageHandler – the handler method, run upon the message receipt. It can be either an anonymous
function or a module method. A parameter, whose value must be passed upon the message publishing via
the sandbox.publish() method can be indicated in the method definition.
Scope – messageHandler handler method execution context.
tags – tag array that allows to uniquely identify the message sending module. Sandbox defines the
message subscribers and publishers according to the tag array.

Message subscription method:

// Message subscription without handler method arguments.
// Handler method is an anonymous function. Execution context is the current module.
//The getsandboxid() method must return the tag that corresponds to the published
message tag.
this.sandbox.subscribe("MessageWithoutArgs", function(){console.log("Message without
arguments")}, this, [this.getSandBoxId()]);
// Message subscription with a handler method argument.
this.sandbox.subscribe("MessageWithArgs", function(args){console.log(args)}, this,
["moduleName"]);
// Message subscription with an arbitrary tag.
// It can be any tag out of the published message tag array.
// The myMsgHandler handler method must be implemented separately.
this.sandbox.subscribe("MessageWithCustomIds", this.myMsgHandler, this,
["otherTag"]);

The message handler method must return the corresponding result for a message in the address mode. Message
subscription:

// Message declaring and registration.
var messages = {
 "MessageWithResult": {
 mode: Terrasoft.MessageMode.PTP,
 direction: Terrasoft.MessageDirectionType.SUBSCRIBE
 }
};
this.sandbox.registerMessages(messages);
// Message subscription.
this.sandbox.subscribe("MessageWithResult", this.onMessageSubscribe, this,
["resultTag"]);
...
// The handler method is implemented in the subscription module.
// args — object, passed upon message publication.
onMessageSubscribe: function(args) {
 // Parameter change.
 args.arg1 = 15;

Bpm’online developer guide 841

 args.arg2 = "new arg2";
 // Obligatory return of result.
 return args;
},

Asynchronous message exchange
Use callback function approach if the message handler method in subscription module generates the result
asynchronously.

Message publication and result:

// Message publication without tags or argument.
this.sandbox.publish("MessageWithoutArgsAndTags");
// Message publication without a handler method argument.
this.sandbox.publish("MessageWithoutArgs", null, [this.sandbox.id]);
// Message publication with a handler method argument.
this.sandbox.publish("MessageWithArgs", {arg1: 5, arg2: "arg2"}, ["moduleName"]);
// Message publication with an arbitrary tag array.
this.sandbox.publish("MessageWithCustomIds", null, ["moduleName","otherTag"]);

Message subscription:

// Message subscription without handler method arguments.
// Handler method is an anonymous function. Execution context is the current module.
//The getsandboxid() method must return the tag that corresponds to the published
message tag.
this.sandbox.subscribe("MessageWithoutArgs", function(){console.log("Message without
arguments")}, this, [this.getSandBoxId()]);
// Message subscription with a handler method argument.
this.sandbox.subscribe("MessageWithArgs", function(args){console.log(args)}, this,
["moduleName"]);
// Message subscription with an arbitrary tag.
// It can be any tag out of the published message tag array.
// The myMsgHandler handler method must be implemented separately.
this.sandbox.subscribe("MessageWithCustomIds", this.myMsgHandler, this,
["otherTag"]);

Module with a message:
Below is a module with message publication and subscription:

define("UsrSomeModule", [], function() {
 Ext.define("Terrasoft.configuration.UsrSomeModule", {
 alternateClassName: "Terrasoft.UsrSomeModule",
 extend: "Terrasoft.BaseModule",
 Ext: null,
 sandbox: null,
 Terrasoft: null,
 messages: {
 "MessageToSubscribe": {
 mode: Terrasoft.MessageMode.PTP,
 direction: Terrasoft.MessageDirectionType.SUBSCRIBE
 },
 "MessageToPublish": {
 mode: Terrasoft.MessageMode.BROADCAST,
 direction: Terrasoft.MessageDirectionType.PUBLISH
 }
 },
 init: function() {
 this.callParent(arguments);
 this.sandbox.registerMessages(this.messages);

Bpm’online developer guide 842

 this.processMessages();
 },
 processMessages: function() {
 this.sandbox.subscribe("MessageToSubscribe", this.onMessageSubscribe,
this);
 this.sandbox.publish("MessageToPublish", null, [this.sandbox.id]);
 },
 onMessageSubscribe: function() {
 console.log("'MessageToSubscribe' received");
 },
 destroy: function() {
 if (this.messages) {
 var messages = this.Terrasoft.keys(this.messages);
 this.sandbox.unRegisterMessages(messages);
 }
 this.callParent(arguments);
 }
 });
 return Terrasoft.UsrSomeModule;
});

For more information
Modular development principles in bpm'online
Client Modules
Client view model schemas
Messages. The "messages" property
Sandbox. Bidirectional messages

Sandbox. Bidirectional messages

Introduction
One of the key sandbox mechanisms is module message exchange (see “Sandbox. Module message exchange”).

It often becomes necessary to publish and subscribe to the same message in different instances of the same class
(module) or within the same schema inheritance hierarchy. To perform thisб the sandbox object has bidirectional
messages that correspond to the value of the Terrasoft.MessageDirectionType.BIDIRECTIONAL enumeration.

Registration of bidirectional messages
To register bidirectional messages in the messages property of the schema, use the following confrontation object:

messages: {
 "MessageName": {
 mode: [Режим работы сообщения],
 direction: Terrasoft.MessageDirectionType.BIDIRECTIONAL
 }
}

The purpose and possible values of the elements of configuration object used in message registration are described
in the "Sandbox. Module message exchange” article.

Bpm’online developer guide 843

Use case
The following case demonstrates how bidirectional messages work.

The CardModuleResponse message is registered in the BaseEntityPage schema, which is a base schema for all view
model schemas of the record edit pages.

define("BaseEntityPage", [...], function(...) {
 return {
 messages: {
 ...
 "CardModuleResponse": {
 "mode": this.Terrasoft.MessageMode.PTP,
 "direction": this.Terrasoft.MessageDirectionType.BIDIRECTIONAL
 },
 ...
 },
 ...
 };
});

For example, the message is published after saving the modified record.

define("BasePageV2", [..., "LookupQuickAddMixin", ...],
 function(...) {
 return {
 ...
 methods: {
 ...
 onSaved: function(response, config) {
 ...
 this.sendSaveCardModuleResponse(response.success);
 ...
 },
 ...
 sendSaveCardModuleResponse: function(success) {
 var primaryColumnValue = this.getPrimaryColumnValue();
 var infoObject = {
 action: this.get("Operation"),
 success: success,
 primaryColumnValue: primaryColumnValue,
 uId: primaryColumnValue,
 primaryDisplayColumnValue:
this.get(this.primaryDisplayColumnName),
 primaryDisplayColumnName: this.primaryDisplayColumnName,
 isInChain: this.get("IsInChain")
 };
 return this.sandbox.publish("CardModuleResponse", infoObject,
[this.sandbox.id]);
 },
 ...
 },
 ...
 };
 });

This functionality is implemented in the BasePageV2 child schema (i.e. the BaseEntityPage schema is parental for
the BasePageV2 schema). Also, the LookupQuickAddMixin mixin is specified as a dependency in the BasePageV2.
The subscription for the CardModuleResponse message is performed in this mixin.

NOTE

A mixin is a class designed to extend the functions of other classes. Mixins expand the functionality of

Bpm’online developer guide 844

schemas, allowing to avoid duplication of commonly used logic in schema methods. Mixins are different from
other modules added to the dependency list in a way that their methods can be addressed directly, much like
those of a schema (see “Mixins. The "mixins" property”).

define("LookupQuickAddMixin", [...],
 function(...) {
 Ext.define("Terrasoft.configuration.mixins.LookupQuickAddMixin", {
 alternateClassName: "Terrasoft.LookupQuickAddMixin",
 ...
 // Declaration of the message.
 _defaultMessages: {
 "CardModuleResponse": {
 "mode": this.Terrasoft.MessageMode.PTP,
 "direction":
this.Terrasoft.MessageDirectionType.BIDIRECTIONAL
 }
 },
 ...
 // Message registration method.
 _registerMessages: function() {
 this.sandbox.registerMessages(this._defaultMessages);
 },
 ...
 // Initializing an instance of a class.
 init: function(callback, scope) {
 ...
 this._registerMessages();
 ...
 },
 ...
 // Performed after adding a new record to the lookup.
 onLookupChange: function(newValue, columnName) {
 ...
 // Here, the method call chain is executed.
 // As a result, the _subscribeNewEntityCardModuleResponse ()
method will be called.
 ...
 },
 ...
 // The method in which the subscription to the "CardModuleResponse"
message is performed.
 // In the reference field, the adding of the value sent when the
message was published
 // is executed in the callback function.
 _subscribeNewEntityCardModuleResponse:
function(columnName, config) {
 this.sandbox.subscribe("CardModuleResponse", function(createdObj)
{
 var rows = this._getResponseRowsConfig(createdObj);
 this.onLookupResult({
 columnName: columnName,
 selectedRows: rows
 });
 }, this, [config.moduleId]);
 },
 ...
 });
 return Terrasoft.LookupQuickAddMixin;
 });

Adding a new address on the contact edit page is a good example of how bidirectional messages work.

Bpm’online developer guide 845

1. After executing the command of adding a new record on the [Addresses] detail (Fig. When will the timeline be
finished? 1), the ContactAddressPageV2 module is loaded to the module chain and the edit page of the contact
address opens (Fig. 2).

Fig. 1. Adding a new record on the [Addresses] detail

Fig. 2. Contact address edit page

The CardModuleResponse message has been already registered in the ContactAddressPageV2 schema as it has the
BaseEntityPage and the BasePageV2 schemas in the inheritance hierarchy. This message is also registered in
the_registerMessages() method of the LookupQuickAddMixin mixin at its initialization as the dependency module
of the BasePageV2.

2. When adding the new value to the lookup fields of the ContactAddressPageV2 page (for example, a new city
(Fig.2)) the onLookupChange() method of the LookupQuickAddMixin mixin is called. In this method, in addition to
loading the CityPageV2 module to the module chain, the_subscribeNewEntityCardModuleResponse() methodis
called, in which the subscription for the CardModuleResponse message is performed. After this, the city edit page is
opened (the CityPageV2, Fig. 3).

Fig. 3. City edit page

Bpm’online developer guide 846

3. As the CityPageV2 schema also has the BasePageV2 schema in the inheritance hierarchy, the onSaved() method
implemented in the base schema will be executed after saving the record (the [Save] button, Fig. 3). This method
calls the sendSaveCardModuleResponse() method where the message (CardModuleResponse) is published. At the
same time, the object with the necessary saving results is passed.

4. The execution of the callback subscriber function that process results of saving a new city in the lookup starts
after publication of the message (see the _subscribeNewEntityCardModuleResponse() method of the
LookupQuickAddMixin mixin).

The publication and subscription for the bidirectional message was performed in one inheritance hierarchy of the
schemas with the BasePageV2 base schema that contains all necessary functions.

See also
Sandbox. Module message exchange
Messages. The "messages" property

Sandbox. Loading and unloading modules

Introduction
A bpm’online module is an isolated software unit. It has no information about other bpm’online modules apart from
the module name list from which is depends. See “Modular development principles in bpm'online” for more
information about bpm’online modules.

In certain situations, you might need to load modules that were not declared as dependencies when working with
bpm’onlie interface. To load and unload such modules, sandbox.loadModule() and sandbox.unloadModule()
methods are designed.

Loading modules
Use the sandbox.loadModule(moduleName, config) method to load undeclared modules. Method parameters:

moduleName – module name.
config – configuration object that contains module parameters. This is a required parameter for visual
modules.

Bpm’online developer guide 847

Method sandbox.loadModule() call parameters:

// Loading a module without additional parameters.
this.sandbox.loadModule("ProcessListenerV2");
// Loading a module with additional parameters.
this.sandbox.loadModule("CardModuleV2", {
 renderTo: "centerPanel",
 keepAlive: true,
 id: moduleId
});

Module parameters

Additional module loading parameters are aggregated in the config configuration object. Most common properties
of this object are as follows:

id – module Id. If the Id is not specified, it will be generated automatically. Data type – string.
renderTo – name of the container where visual module view will be displayed. Passed as an argument to
the render() method of the loaded module. Required for visual modules. Data type – string.
keepAlive – indicates whether the module is added to a module thread. Used for navigation between the
module views. Data type – Boolean.
isAsync – indicates asynchronous initialization of the module (see “Modular development principles
in bpm'online”). Data type – Boolean.

Module class constructor parameters. The instanceConfig property.

There is an option to pass arguments to the class constructor of the instantiated module. To do this, add the
instanceConfig property to the config configuration object and assign an object with the needed values to it.

NOTE

The instantiated module is the one returning the a constructor function.

For example, the following module is declared:

// A module that returns a class instance.
define("CardModuleV2", [...], function(...) {
 // A class used for creating an edit page module.
 Ext.define("Terrasoft.configuration.CardModule", {
 // Class alias.
 alternateClassName: "Terrasoft.CardModule",
 // Parent class.
 extend: "Terrasoft.BaseSchemaModule",
 // Indicates that schema parameters have been set from without.
 isSchemaConfigInitialized: false,
 // Indicates that history state is used on module loading.
 useHistoryState: true,
 // Schema name of the displayed entity.
 schemaName: "",
 // Indicates that the common display mode (with the section list) is used.
 // If the value is false, SectionModule is present on the page.
 isSeparateMode: true,
 // Object schema name.
 entitySchemaName: "",
 // Primary column value.
 primaryColumnValue: Terrasoft.GUID_EMPTY,
 // Edit page mode. Possible values
 // ConfigurationEnums.CardStateV2.ADD|EDIT|COPY
 operation: ""
 });
 // Return class instance.
 return Terrasoft.CardModule;

Bpm’online developer guide 848

}

Use the following code to pass the needed values to the module constructor on its loading:

// Object, whose properties contain values
// passed as constructor parameters
var configObj = {
 isSchemaConfigInitialized: true,
 useHistoryState: false,
 isSeparateMode: true,
 schemaName: "QueueItemEditPage",
 entitySchemaName: "QueueItem",
 operation: ConfigurationEnums.CardStateV2.EDIT,
 primaryColumnValue: "{3B58C589-28C1-4937-B681-2D40B312FBB6}"
};

// Loading module.
this.sandbox.loadModule("CardModuleV2", {
 renderTo: "DelayExecutionModuleContainer",
 id: this.getQueueItemEditModuleId(),
 keepAlive: true,
 // Specifying values passed to module constructor.
 instanceConfig: configObj
 }
});

As a result, the module will be loaded with pre-set property values and no additional messages will be needed to set
them.

ATTENTION

The following types of properties can be passed to module instance:

string;
boolean;
number;
date (the value will be copied);
object (Literal objects only. You cannot pass class instances, HTMLElement inheritors, etc.).

ATTENTION

When passing parameters to module constructor of a Terrasoft.BaseObject inheritor, the following limitations
apply: if a parameter is not described in the module class or one of parent classes, it cannot be passed.

Additional module parameters. The “parameters” property.

The parameters property is designed to pass additional parameters to a module on its loading in the config
configuration object. Same property must be defined in the module class (or one of its parent classes) as well.

NOTE

The parameters property is already defined in the Terrasoft.BaseModule class.

Thus, when instantiating the module, its parameters property will be initialized with values passed in the
parameters property of the config object.

For example, the “parameters” property is defined in the MiniPageModule module:

define("MiniPageModule", ["BusinessRulesApplierV2", "BaseSchemaModuleV2",
"MiniPageViewGenerator"],
 function(BusinessRulesApplier) {
 Ext.define("Terrasoft.configuration.MiniPageModule", {

Bpm’online developer guide 849

 extend: "Terrasoft.BaseSchemaModule",
 alternateClassName: "Terrasoft.MiniPageModule",
 ...
 parameters: null,
 ...
 });

 return Terrasoft.MiniPageModule;
 });

In this case, the pop-up summary module can be instantiated with additional parameters. Example:

define("MiniPageContainerViewModel", ["ConfigurationEnumsV2"], function() {
 Ext.define("Terrasoft.configuration.MiniPageContainerViewModel", {
 extend: "Terrasoft.BaseModel",
 alternateClassName: "Terrasoft.MiniPageContainerViewModel",
 ...
 loadModule: function() {
 // The "parameters" property is defined in the parent class
Terrasoft.BaseModel
 var parameters = this.get("parameters");
 ...
 this.sandbox.loadModule("MiniPageModule", {
 renderTo: Ext.get("MiniPageContainer"),
 id: moduleId,
 // Passing parameters to configuration object.
 parameters: parameters
 });
 }
 ...
 });
});

Unloading modules
Use the sandbox.unloadModule(id, renderTo, keepAlive) method to unload module. Method parameters:

id – module Id. Data type – string.
renderTo – name of the container where visual module view will be deleted. Required for visual modules.
Data type – string.
keepAlive – indicates if the module model is saved. On unloading the module, the core can save its model
for using its properties, methods an messages. Data type – Boolean. Not recommended.

Method sandbox.unloadModule() call parameters:

...
// Method that obtains Id of unloaded module.
getModuleId: function() {
 return this.sandbox.id + "_ModuleName";
},
...
// Unloading a non-visual module.
this.sandbox.unloadModule(this.getModuleId());
...
// Unloading a visual module, previously loaded to the "ModuleContainer" container.
this.sandbox.unloadModule(this.getModuleId(), "ModuleContainer");

Module thread
Sometimes a model view must be shown in place of other model. For example, to set a field value on the current
page, a SelectData lookup selection page must be displayed. In such cases, the current page module must not be
unloaded, but the module view of the lookup selection page must be displayed in place of its container. For this, use

Bpm’online developer guide 850

module threads:

To begin a new module thread, add the keepAlive property to the configuration object of the loaded module. For
example, you need to display lookup selection module (selectDataModule) in the current page module
(CardModule). To do this, execute the following code:

sandbox.loadModule("selectDataModule", {
 // Id of the loaded module view.
 id: "selectDataModule_id",
 // The view will be added to the current page container.
 renderTo: "cardModuleContainer",
 // Denies unloading of the current module.
 keepAlive: true
});

After the code is executed, a module thread consisting of the current page module and lookup selection module will
be created. Clicking the [Add new record] button in the current page module (selectData) will open a new page and
add another element to the thread. Thus, unlimited number of modules can be added to the module thread. Active
module (the one displayed on the page) will always be the last element in the thread. If an element in a thread is set
as active, all elements after it will be destroyed. To activate a chain element, call the loadModule function and pass
module Id to its parameter:

sandbox.loadModule("someModule", {
 id: "someModuleId"
});

The core will destroy all elements in the thread after the specified one and execute standard module loading logic,
calling the init() and render() methods. The container where the previous active module was placed will be passed to
the render() method. All modules in the thread can work as before, receiving and sending messages, saving data, etc.

If the keepAlive property is not added to the configuration object when the loadModule() method is called, or if this
property is added as keepAlive: false, the module thread will be destroyed.

New bindTo format at setting connection between view and viewModel

Introduction
You can use the bindTo property of the Ext.create() construction function configuration object to indicate the
connection between a view model attribute and a view value when creating the Terrasoft namespace components.
Example:

Ext.create("Terrasoft.BaseEdit", {
 value: {
 bindTo: "Value"
 }
});

Starting from version 7.12.0 you already have an opportunity to indicate this connection in a new format.

Ext.create("Terrasoft.BaseEdit", {
 value: "$Value"
});

ATTENTION

The previous format also remains available for usage.

Bpm’online developer guide 851

NOTE

The new format became possible due to usage of automatically generated properties (see "Automatically
generated view model properties").

Usage of the new bindTo format in the diff array
In the diff array configuration object values property of the view model schemas the new bindTo format is
implemented for tab titles (for objects, whose “propertyName” is populated with the “tabs” value).

...
{
 "operation": "insert",
 "name": "GeneralInfoTab",
 "parentName": "Tabs",
 "propertyName": "tabs",
 "index": 0,
 "values": {
 "caption": "$Resources.Strings.GeneralInfoTabCaption",
 "items": []
 }
},
...

For the rest of elements the previous format is valid.

...
{
 "operation": "insert",
 "parentName": "ProfileContainer",
 "propertyName": "items",
 "name": "JobTitleProfile",
 "values": {
 "bindTo": "JobTitle",
 "layout": {...}
 }
},
...

Controls

Contents
Controls. Introduction
Details
The [Connected entity profile] control
SourceCodeEditMixin class description and work examples.
Blocking edit page fields

Controls. Introduction

Controls are objects used to create an interface between the user and a bpm’online application. They are displayed in
navigation panels, dialog boxes and toolbars. Controls include buttons, checkboxes, radio buttons, input fields etc.

Bpm’online developer guide 852

All controls are inherited from the Terrasoft.Component class (Terrasoft.controls.Component in full), which in turn
is inherited from Terrasoft.BaseObject. Because the Bindable mixin is declared in the (Component) parent class, it
is possible to bind control properties to desired view model properties, methods, or attributes.

For correct operation, the necessary events are declared in the control element. Each element contains events
inherited from the Terrasoft.Component class:

added – triggered after the component is added to the container.
afterrender – triggered after the component has been rendered and its HTML representation gets in the
DOM.
afterrerender – triggered after the component has been rendered and its HTML representation is updated
in the DOM.
beforererender – triggered before the component has been rendered and its HTML representation gets in
the DOM.
destroy – triggered before the control is deleted.
destroyed – triggered after the control is deleted.
init – triggered when component initialization is complete.

Learn more about Terrasoft.Component class events in the "('JavaScript API for platform core' in the on-
line documentation)” article.

Controls may subscribe to browser events and determine their own events.

The control is defined in the diff modification array of the module where it must be located.

// The diff modification array of the module
diff: [{
 // Insert operation.
 "operation": "insert",
 // Control parent element.
 "parentName": "CardContentContainer",
 // Name of the parent element property with which the operation is performed.
 "propertyName": "items",
 // Control name.
 "name": "ExampleButton",
 // Control value.
 "values": {
 // Control type.
 "itemType": "Terrasoft.ViewItemType.BUTTON",
 // Control caption.
 "caption": "ExampleButton",
 // Binding the control event to a function.
 "click": {"bindTo": "onExampleButtonClick"},
 // Control style.
 "style": Terrasoft.controls.ButtonEnums.style.GREEN
 }
}]

The appearance of the control is determined by the (template <tpl>) template. Element view is generated according
to a specified template during the rendering of the control in the page view.

Controls do not have any business logic. The logic is determined in the module where the control is added.

The control has the styles and selectors attributes, which are determined in the Terrasoft.Component parent
class. These attributes provide style customization flexibility.

Details

Bpm’online developer guide 853

Introduction
Details are used to display supplemental data for a primary section object. The section details are displayed on the
section edit page tabs in the tabs area.

Depending on the method of entering and displaying data, there are following types of details.

Details with edit fields.
Details with adding page.
Details with editable list.
Details with selection from lookup.

More information about details of different types can be found in the "Details” article.

The detail creation
A custom detail must be registered so that the detail wizard could work with it. To register a detail, add a record with
detail caption, detail schema identifier DetailSchemaUid (from the UId column in the SysSchema table) and detail
object schema identifier EntitySchemaUId (from the UId column in the SysSchema table) to the SysDetail table.

More information about creating details of different types can be found in the "Adding details” article.

The base schema of the BaseDetailV2 detail
All detail schemas must be inherited from the BaseDetailV2 base schema. The base logic of data initialization and
communication with the edit page are implemented in the schema.

The base schema class has the following properties:

BaseDetailV2 messages

The massages are used for communication between the detail and the edit page. A full list of messages, their
broadcast mode and direction are given in the table 1.

Table 1. The messages of the base detail

Name Mode Direction Description
GetCardState Address Publication Returns a state of the edit page.

SaveRecord Address Publication Tells the edit page to save the data.

DetailChanged Address Publication Tells the edit page about the changes of the detail data.

UpdateDetail Address Subscription A subscription to the edit page update.

OpenCard Address Publication Opens edit page.

The message modes are defined in the Terrasoft.core.enums.MessageMode enumeration and message direction is
defined in the Terrasoft.core.enums.MessageDirectionType. More information about them can be found in the
“('JavaScript API for platform core' in the on-line documentation)” article.

BaseDetailV2 attributes

The attributes property contains the attributes of detail view model. The attributes that are defined in base detail
class are given in the table 2.

Table 2. The attributes of the base detail

Name Type Description
CanAdd BOOLEAN Indicates the possibility to add data.

CanEdit BOOLEAN Indicates the possibility to edit data.

CanDelete BOOLEAN Indicates the possibility to delete data.

Bpm’online developer guide 854

Collection COLLECTION Detail data collection.

Filter CUSTOM_OBJECT Detail filter. Used for filtering detail data.

DetailColumnName STRING The column name where the filtering is performed.

MasterRecordId GUID The key value of the parent record.

IsDetailCollapsed BOOLEAN Indicates if the detail is collapsed.

DefaultValues CUSTOM_OBJECT The default value of the model columns.

Caption STRING The detail caption.

The available attribute data types are represented by the Terrasoft.DataValueType enumeration. More information
about them can be found in the “('JavaScript API for platform core' in the on-line documentation)”
article.

BaseDetailV2 methods

The methods defined in base detail class are given in the table 3.

Table 3. The methods of the base detail

Name Parameters Description
init {Function} callback

– callback function.

{Object} scope – the
context of the
method execution.

Initializes the detail page.

initProfile No Initializes the schema profile. Default value is
Terrasoft.emptyFn

initDefaultCaption No Sets the default caption of the detail.

initDetailOptions No Initializes the list view data collection.

subscribeSandboxEvents No It is subscribed to the messages necessary for the work of
the detail.

getUpdateDetailSandboxTags No Generates the array of tags for the UpdateDetail message.

UpdateDetail {Object} config –
configuration object
that contains the
properties of the
detail.

Updates the detail according to the parameters passed.
Default value is Terrasoft.emptyFn

initData {Function} callback
– callback function.

{Object} scope – the
context of the
method execution.

Initializes the list view data collection.

getEditPageName No Returns the name of the edit page depending on the
record type at editing or on selected record type for
adding.

onDetailCollapsedChanged {Boolean}
isCollapsed – the
attribute of the
collapsed/expanded
detail.

The handler of collapsing or expanding of the detail.

getToolsVisible No Returns the collapse value of the detail.

getDetailInfo No Publishes a message to get information about the detail.

Bpm’online developer guide 855

BaseDetailV2 array of modifications

In the diff modifications array of the base detail, only a base container for detail view is defined:

diff: /**SCHEMA_DIFF*/[
 // Base container for detail view.
 {
 "operation": "insert",
 "name": "Detail",
 "values": {...}
 }
]/**SCHEMA_DIFF*/

The “BaseGridDetailV2” base “detail with list” class
The class is a BaseDetailV2 inheritor. All details with lists must be the BaseGridDetailV2 inheritors. The list base
logic (import, filtering, adding, deleting and editing the detail records) is implemented in the BaseGridDetailV2
schema.

More information about creating custom details can be found in the" Adding a detail with an editable list”
article.

BaseGridDetailV2 messages

Main BaseGridDetailV2 messages are given in table 4.

Table 4. The messages of the detail with a list

Name Mode Direction Description
getCardInfo Address Subscription Returns information about the edit page: its default

values, type column name and type column value.

CardSaved Broadcasting Subscription Handles a message of saving the edit page.

UpdateFilter Broadcasting Subscription Refreshes filters in the detail.

GetColumnsValues Address Publication Receives the column values of the edit page model.

The message modes are defined in the “Terrasoft.core.enums.MessageMode” enumeration and message direction in
the “Terrasoft.core.enums.MessageDirectionType” enumeration. More information about them can be found in the
“('JavaScript API for platform core' in the on-line documentation)” article.

BaseGridDetailV2 attributes

Main BaseGridDetailV2 attributes are given in table 5.

Table 5. The attributes of the detail with a list

Name Type Description
ActiveRow GUID The value of the primary column of the active record in the

list.

IsGridEmpty BOOLEAN Indicates that the list is empty.

MultiSelect BOOLEAN Indicates if multiple selection is permitted.

SelectedRows COLLECTION An array of selected values.

RowCount INTEGER Number of rows in the list.

IsPageable BOOLEAN Indicates if the page-by-page loading is enabled.

SortColumnIndex INTEGER Index of the sorting column.

CardState TEXT Opening mode for the record edit page.

Bpm’online developer guide 856

EditPageUId GUID A unique identifier of the edit page.

ToolsButtonMenu COLLECTION The collection of the functional button’s drop-down list.

DetailFilters COLLECTION Collection of the detail filters.

IsDetailWizardAvailable BOOLEAN Indicates if the detail wizard is available.

The available attribute data types are represented by the Terrasoft.DataValueType enumeration. More information
about them can be found in the “('JavaScript API for platform core' in the on-line documentation)”
article.

BaseGridDetailV2 mixins

Main BaseGridDetailV2 mixins are given in the table 6.

Table 6. The attributes of the detail with a list

Name Class Description
GridUtilities Terrasoft.GridUtilities Mixin for the list.

WizardUtilities Terrasoft.WizardUtilities Mixin for the detail wizard.

More information about the GridUtilities mixin is given below.

BaseGridDetailV2 methods

Main BaseGridDetailV2 methods are given in table 7.

Table 7. The methods of the base detail with a list

Name Parameters Description
init {Function} callback – callback

function.

{Object} scope – the context of the
method execution.

Overrides the BaseDetailV2 method. Calls
the parent’s init method logic, registers the
messages, initializes the filters.

initData {Function} callback – callback
function.

{Object} scope – the context of the
method execution.

The override of the BaseDetailV2 method.
Calls the parent’s initData method logic,
initializes the data collection of the list
view.

loadGridData No Executes the load of the list data.

initGridData No Executes the initialization of the default
values for working with the list.

getGridData No Returns list collection.

getFilters No Returns the detail filter collection.

getActiveRow No Returns the identifier of the selected
record in the list.

addRecord {String} editPageUId – identifier of
typed edit page.

Adds the new record to the list. Saves the
edit page, if needed.

copyRecord {String} editPageUId – identifier of
typed edit page.

Copies the record and opens the edit page.

editRecord {Object} record – record model for
editing.

Opens edit page of the selected record.

subscribeSandboxEvents No It is subscribed to the messages necessary
for the detail operation.

UpdateDetail {Object} config – configuration object The override of the BaseDetailV2 method.

Bpm’online developer guide 857

that contains the properties of the
detail.

Calls the parent’s updateDetail method
logic, updates the detail.

OpenCard {String} operation – operation type
(creating/modifying)

{String} typeColumnValue – the
value of record typing column.

{String} recordId – record identifier.

Opens edit page.

onCardSaved No Handles the save event of the edit page
where the detail is located.

addToolsButtonMenuItems {Terrasoft.BaseViewModelCollection}
toolsButtonMenu – The collection of
the functional button drop-down list.

Adds elements to the collection of the
functional button drop-down list.

initDetailFilterCollection No Initializes the detail filter.

setFilter {String} key – filter type.

{Object} value – filter value.

Sets the detail filter value.

loadQuickFilter {Object} config – parameters of the
filters module load.

Loads the quick filter.

destroy No Clears the data, exports the detail.

BaseGridDetailV2 array of modifications

In the diff modifications array of the base detail, only a base container for detail view is defined:

diff: /**SCHEMA_DIFF*/ [
 {
 // Element for displaying the list.
 "operation": "insert",
 "name": "DataGrid",
 "parentName": "Detail",
 "propertyName": "items",
 "values": {
 "itemType": Terrasoft.ViewItemType.GRID,
 …
 }
 },
 {
 // List reloading button.
 "operation": "insert",
 "parentName": "Detail",
 "propertyName": "items",
 "name": "loadMore",
 "values": {
 "itemType": Terrasoft.ViewItemType.BUTTON,
 …
 }
 },
 {
 // Record adding button.
 "operation": "insert",
 "name": "AddRecordButton",
 "parentName": "Detail",
 "propertyName": "tools",
 "values": {
 "itemType": Terrasoft.ViewItemType.BUTTON,
 …

Bpm’online developer guide 858

 }
 },
 {
 // Typed record adding button.
 "operation": "insert",
 "name": "AddTypedRecordButton",
 "parentName": "Detail",
 "propertyName": "tools",
 "values": {
 "itemType": Terrasoft.ViewItemType.BUTTON,
 …
 }
 },
 {
 // Detail menu.
 "operation": "insert",
 "name": "ToolsButton",
 "parentName": "Detail",
 "propertyName": "tools",
 "values": {
 "itemType": Terrasoft.ViewItemType.BUTTON,
 …
 }
 }
] /**SCHEMA_DIFF*/

The GridUtilitiesV2 mixin
GridUtilitiesV2 is a mixin that implements the logic of the “list” control. Features that are implemented in the
Terrasoft.configuration.mixins.GridUtilities class:

1. Message subscription
2. Data load.
3. Working with the list:

selection of the records (the search of the active records)
adding, deleting and modifying the records
setting up the filters
sorting
exporting to the file
checking the access permissions to the list records

GridUtilitiesV2 methods

Main GridUtilitiesV2 methods are given in table 8.

Table 8. The methods of the base detail with a list

Name Parameters Description
init No Subscribes to the events.

destroy No Deletes event subscriptions.

loadGridData No Executes the load of the list data.

beforeLoadGridData No Prepares the view model to the data load.

afterLoadGridData No Prepares the view model after the data load.

onGridDataLoaded {Object} response – the result of
fetching the data from the
database.

A handler of the data load event. Executes when
the server returns the data.

addItemsToGridData {Object} dataCollection – Adds a collection of new elements to the list

Bpm’online developer guide 859

collection of new elements.

{Object} options – adding
parameters.

collection.

reloadGridData No Reloads the list.

initQueryOptions {Terrasoft.EntitySchemaQuery}
esq – in this query the necessary
settings will be initialized.

Initializes the settings of the query instance, such
as pagination and hierarchy.

initQuerySorting {Terrasoft.EntitySchemaQuery}
esq – in this query the necessary
settings will be initialized.

Initializes the sorting column.

prepareResponseCollection {Object} collection – list
elements collection.

Modifies the data collection before loading it to
the list.

getFilters No Returns filters that are applied to current
schema. It is overridden in the inheritors.

exportToFile No Exports the contents of the list into a file.

sortGrid {String} tag – a key that shows
how to sort the list.

Performs list sorting.

deleteRecords No Initiates the deletion of the selected records.

checkCanDelete {Array} items – the identifiers
of the selected records.

{Function} callback – callback
function.

{Object} scope – the context of
the method execution.

Checks the ability to delete a record.

onDeleteAccept No Performs the deletion after the confirmation of
the user.

getSelectedItems No Returns the selected records in the list.

removeGridRecords {Array} records – deleted
records.

Removes the deleted records from the list.

A detail with editable list
A detail with editable list enables editing records directly in the list without going to the record editing page. To
make a detail list editable, you need to modify its schema the following way:

1. Add the dependencies from the ConfigurationGrid, ConfigurationGridGenerator and
ConfigurationGridUtilities modules.

2. Connect the ConfigurationGridUtilites and OrderUtilities mixins.
3. Set the IsEditable attribute to “true”.
4. Add a configuration object in the modification array where the properties will be set and the methods that

handle the detail list events will be bound.

The development case of creating a detail with an editable list can be found in the "Adding a detail with an
editable list” article.

The “ConfigurationGrid” module

The ConfigurationGrid module contains the implementation of the “Configuration Grid” control. The
Terrasoft.ConfigurationGrid class is the inheritor of the Terrasoft.Grid class. Main Terrasoft.ConfigurationGrid
methods are given in table 9.

Table 9. Configuration grid methods

Bpm’online developer guide 860

Name Parameters Description
init No Initializes a component. Subscribes to the events.

activateRow {String|Number} id – the
identifier of the list string.

Selects the string and adds edit elements.

deactivateRow {String|Number} id – the
identifier of the list string.

Removes selection of a string and removes edit
elements.

formatCellContent {Object} cell – the cell.

{Object} data – the data.

{Object} column – the cell
configuration.

Formats the data of a string cell.

onUpdateItem {Terrasoft.BaseViewModel}
item – collection element.

The handler of the record update event.

onDestroy No Destroys the list and its components.

ConfigurationGridGenerator module

The Terrasoft.ConfigurationGridGenerator generates list configuration and is an inheritor of the
Terrasoft.ViewGenerator class. The methods that are implemented in the Terrasoft.ConfigurationGridGenerator
class are given in table 10.

Table 10. The methods of the configuration grid generator

Name Parameters Description
addLinks No Overridden method of the Terrasoft.ViewGenerator

class. No links will be added to the editable list.

generateGridCellValue {Object} config – column
configuration.

Overridden method of the Terrasoft.ViewGenerator
class. Generates a value configuration in the cell.

The ConfigurationGridUtilities module

The Terrasoft.ConfigurationGridUtilities class contains methods that initialize a view model of the list string,
process the active record actions and handle “hotkeys”.

The main properties of the Terrasoft.ConfigurationGridUtilities class are given in table 11 and its methods are
provided in table 12.

Table 11. The Terrasoft.ConfigurationGridUtilities class properties

Name Type Description
currentActiveColumnName String The name of the currently selected column.

columnsConfig Object Column configuration.

systemColumns Array Collection of the system column names.

Table 12. The Terrasoft.ConfigurationGridUtilities class methods

Name Parameters Description
onActiveRowAction {String} buttonTag – a tag of the

selected action.

{String} primaryColumnValue –
active record identifier.

Handles clicking an action of the active
record.

saveRowChanges {Object} row – list string. Saves the record.

Bpm’online developer guide 861

{Function} callback – callback
function.

{Object} scope – the callback
function context.

activeRowSaved {Object} row – list string.

{Function} callback – callback
function.

{Object} scope – the callback
function context.

Handles the result of saving the record.

initActiveRowKeyMap {Array} keyMap – events
description.

Initializes the subscription to the button
events in the active string.

getCellControlsConfig {Terrasoft.EntitySchemaColumn}
entitySchemaColumn – the
column of the list cell.

Returns the configuration of the list cell
edit items.

copyRow {String} recordId – the identifier
of a copying record

Copies and adds a record to the list.

initEditableGridRowViewModel {Function} callback – callback
function.

{Object} scope – the callback
function context.

Initializes the classes of the collection
elements of the edited list.

The [Connected entity profile] control

General Information
The [Connected entity profile] control (the Profile class) is a configuration module (information block) which is
populated with information about the connected entity when the page is loading. This element is used in the system
as a connected record profile on the section entry editing page. For example, if you open the [Contact] editing page
in the [Profile] element (Fig. 1), the contact profile and the associated account information will be displayed
(communication via the [Account] column of the [Contact] object, Fig. 2). Learn more about record profiles and
connected records in the “Record pages”.

The parent class for Profile is BaseProfileSchema – a basic schema for creating any related record profiles in the
system.

(Fig. 1). [Contact] object profile

Bpm’online developer guide 862

https://academy.bpmonline.com/documents/sales-enterprise/7-9/record-pages

(Fig. 2). Connected contact profile of the related [Account] entity

Bpm’online developer guide 863

The parent class for Profile is BaseProfileSchema – a basic schema for creating any related record profiles in the
system.

ATTENTION

All profiles are inherited from BaseProfileSchema.

The BaseProfileSchema schema implements the ability to display any set of fields of a related entity, as well as any
number of different modules.

A view is described by the diff property (similar to the editing page description process). While embedding a module
to the editing page, specify the parameter masterColumnName in the module attributes. The parameter stores the
name of the column used to connect the profile to the main editing page diagram. Profile will download the data
based on this column value.

At the initialization stage, the profile object sends a message to GetColumnInfo to obtain additional information
about its connected column (filters, header, etc.). Then it requests the connected column value, and if it is full, the
data for this record is initialized. When you clear the field or change the value, the data in the profile object is
reinitialized.

If the profile is empty, i.e. the entry in the link field is not selected, then the name of the field through which the
connection is made and the two actions are displayed in it (Fig. 3).

[Add account] – create a new entry in the link field lookup.
[Select] – select an existing entry from the list.

(Fig. 3). An empty connected entity profile

NOTE

When you select an existing related entity, all business logic (defined on the editing page and connected to the
referring entity attribute) is superimposed on the lookup. Filtering, query column settings, etc. are retained.

If the attribute is removed from the layout of the editing page, all logic will be lost along with it.

The BaseProfileSchema
The interaction interface is implemented by the standard messages mechanism. The following messages are used:

OpenCard – opens a page for adding an entry using the standard mechanism.
UpdateCardProperty – updates the value of the editing page attribute.
GetColumnInfo – returns communication field information.
GetColumnsValues – returns the values of the requested editing page columns.
GetEntityColumnChanges – subscription to edit the editing page data.
CardModuleResponse – the result of adding a new record through the profile.

The visual content of a profile (buttons, links, modules) is defined in the diff modification array.

Profile configuration case

define("ContactProfileSchema", ["ProfileSchemaMixin"],
function () {
 return {

Bpm’online developer guide 864

 // Name of object schema.
 entitySchemaName: "Contact",
 // Mixins.
 mixins: {
 // Mixin with functions for obtaining icons and profile pictures.
 ProfileSchemaMixin: "Terrasoft.ProfileSchemaMixin"
 },
 // The diff modification array.
 diff: /**SCHEMA_DIFF*/[
 {
 // Insterting.
 "operation": "insert",
 // Entity name.
 "name": "Account",
 // The name of the parent element in which to insert.
 "parentName": "ProfileContentContainer",
 // The property of the parent element with which the operation is
performed.
 "propertyName": "items",
 // The values of the inserted item.
 "values": {
 // Binding the Account property to the Contact object value.
 "bindTo": "Account",
 // Layout configuration. Element positioning.
 "layout": {
 "column": 5,
 "row": 1,
 "colSpan": 19
 }
 }
 }
 // ...Other modification array configuration objects.
]/**SCHEMA_DIFF*/
 };
});

An example of embedding a profile to an editing page.

//Defining the editing page schema and its dependencies.
define("ContactPageV2", ["BaseFiltersGenerateModule", "BusinessRuleModule",
"ContactPageV2Resources",
 "ConfigurationConstants", "ContactCareer",
"DuplicatesSearchUtilitiesV2"],
function (BaseFiltersGenerateModule, BusinessRuleModule, resources,
ConfigurationConstants, ContactCareer) {
 return {
 entitySchemaName: "Contact",
 // Modules used .
 modules: /**SCHEMA_MODULES*/{
 // Account profile module.
 "AccountProfile": {
 // Profile configuration.
 "config": {
 // Shema name.
 "schemaName": "AccountProfileSchema",
 // A characteristic indicating that circuit configuration is
initialized.
 "isSchemaConfigInitialized": true,
 // A characteristic indicating that HistoryState is not used.
 "useHistoryState": false,
 // Profile parameters.
 "parameters": {

Bpm’online developer guide 865

 // View model configuration.
 "viewModelConfig": {
 // The name of the connected entity column.
 masterColumnName: "Account"
 }
 }
 }
 }
 }/**SCHEMA_MODULES*/,
 // Modification array.
 diff: /**SCHEMA_DIFF*/[
 {
 "operation": "insert",
 "parentName": "LeftModulesContainer",
 "propertyName": "items",
 // Profile name.
 "name": "AccountProfile",
 // Values.
 "values": {
 // Element type - module.
 "itemType": Terrasoft.ViewItemType.MODULE
 }
 }
]/**SCHEMA_DIFF*/
 };
});

The BaseMultipleProfileSchema profile schema
In addition to the BaseProfileSchema base profile schema, there are additional schemas that implement specific
functionality of user profiles.

The profile described by the BaseMultipleProfileSchema schema can contain any number of profiles and switch
between them by using the logic of selected values from several directories. The main difference from the base
profile is the ability to embed other profiles to the current profile. In this case, the built-in profiles can communicate
with each other via messages. Otherwise, the way it works with the editing page is similar to that of the base profile.

ATTENTION

The BaseMultipleProfileSchema profiles must be inherited from the BaseRelatedProfileSchema base profile
schema, which can be dependent or embedded to other profiles.

Example of the BaseMultipleProfileSchema client profile module.

// Defining a profile.
define("ClientProfileSchema", ["ProfileSchemaMixin"],
function () {
 return {
 // Mixins.
 mixins: {
 ProfileSchemaMixin: "Terrasoft.ProfileSchemaMixin"
 },
 // Attributes.
 attributes: {
 // Contact profile visibility.
 "IsVisibleContactProfile": {
 dataValueType: this.Terrasoft.DataValueType.BOOLEAN,
 value: true
 }
 },
 // Methods.

Bpm’online developer guide 866

 methods: {
 // Date-marker. Needed for automatic tests.
 getProfileModuleContainerDataMarker: function () {
 return "client-profile-module-container";
 },
 // Returns the header.
 getBlankSlateHeaderCaption: function () {
 return this.get("Resources.Strings.Client");
 },
 // Returns the warning icon.
 getWarningIcon: function () {
 return this.getImageUrlByResourceKey("Resources.Images.WarningIcon");
 },
 // Checks a warning display.
 getIsVisibleWarning: function () {
 var masterColumnNames = this.get("MasterColumnNames");
 if (!masterColumnNames) {
 return false;
 }
 var masterColumnValues = masterColumnNames.filter(function
(columnName) {
 var value = this.get(columnName);
 return !this.Ext.isEmpty(value);
 }, this);
 return masterColumnValues.length > 1;
 },
 // The event handler of the profile column change.
 onProfileColumnChanged: function () {
 this.set("IsVisibleContactProfile", !this.getIsVisibleWarning());
 return this.callParent(arguments);
 },
 // The column change event handler.
 onColumnChanged: function () {
 this.callParent(arguments);
 this.set("IsVisibleContactProfile", !this.getIsVisibleWarning());
 },
 // The [Clear] button hint.
 getClearButtonHint: function () {
 var clearActionCaption =
this.get("Resources.Strings.ClearButtonCaption");
 var masterColumnCaption = this.get("Resources.Strings.Client");
 return this.Ext.String.format("{0} {1}", clearActionCaption,
masterColumnCaption);
 }
 },
 // Schema modules.
 modules: /**SCHEMA_MODULES*/{
 // Built-in client profile of the account.
 "AccountClientProfile": {
 // Profile configuration.
 "config": {
 "schemaName": "ClientAccountProfileSchema",
 "isSchemaConfigInitialized": true,
 "useHistoryState": false,
 "parameters": {
 "viewModelConfig": {
 masterColumnName: "Account"
 }
 }
 }
 },
 // Client contact embedded profile.

Bpm’online developer guide 867

 "ContactClientProfile": {
 "config": {
 "schemaName": "ClientContactProfileSchema",
 "isSchemaConfigInitialized": true,
 "useHistoryState": false,
 "parameters": {
 "viewModelConfig": {
 masterColumnName: "Contact"
 }
 }
 }
 }
 }/**SCHEMA_MODULES*/,
 // Profile view modifications.
 diff: /**SCHEMA_DIFF*/[
 {
 "operation": "remove",
 "name": "ProfileIcon"
 },
 {
 "operation": "remove",
 "name": "ProfileHeaderContainer"
 },
 {
 "operation": "insert",
 "name": "ClientProfilesContainer",
 "parentName": "ProfileContentContainer",
 "propertyName": "items",
 "values": {
 "itemType": this.Terrasoft.ViewItemType.CONTAINER,
 "items": [],
 "layout": {
 "column": 0,
 "row": 0,
 "colSpan": 24,
 "rowSpan": 24
 }
 }
 },
 {
 "operation": "insert",
 "name": "WarningIcon",
 "parentName": "ClientProfilesContainer",
 "propertyName": "items",
 index: 0,
 "values": {
 "getSrcMethod": "getWarningIcon",
 "readonly": true,
 "generator": "ImageCustomGeneratorV2.generateSimpleCustomImage",
 "visible": { "bindTo": "getIsVisibleWarning" },
 "classes": {
 "wrapClass": ["warning-icon"]
 },
 "hint": { "bindTo": "Resources.Strings.WarningMessage" }
 }
 },
 {
 "operation": "insert",
 "parentName": "ClientProfilesContainer",
 "propertyName": "items",
 "name": "AccountClientProfile",
 "values": {

Bpm’online developer guide 868

 "itemType": this.Terrasoft.ViewItemType.MODULE
 }
 },
 {
 "operation": "insert",
 "parentName": "ClientProfilesContainer",
 "propertyName": "items",
 "name": "ContactClientProfile",
 "values": {
 "itemType": this.Terrasoft.ViewItemType.MODULE,
 "visible": { "bindTo": "IsVisibleContactProfile" }
 }
 }
]/**SCHEMA_DIFF*/
 };
}
);

Example of a built-in BaseRelatedProfileSchema client profile

define("ClientContactProfileSchema", ["ProfileSchemaMixin"],
function () {
 return {
 // Schema object name.
 entitySchemaName: "Contact",
 // Mixins.
 mixins: {
 ProfileSchemaMixin: "Terrasoft.ProfileSchemaMixin"
 },
 // Methods.
 methods: {
 getProfileHeaderCaption: function () {
 return this.get("Resources.Strings.ProfileHeaderCaption");
 }
 },
 // Modifications array.
 diff: /**SCHEMA_DIFF*/[
 {
 "operation": "insert",
 "name": "Account",
 "parentName": "ProfileContentContainer",
 "propertyName": "items",
 "values": {
 "bindTo": "Account",
 "enabled": false,
 "layout": {
 "column": 5,
 "row": 1,
 "colSpan": 19
 }
 }
 },
 {
 "operation": "insert",
 "name": "Job",
 "parentName": "ProfileContentContainer",
 "propertyName": "items",
 "values": {
 "bindTo": "Job",
 "enabled": false,
 "layout": {
 "column": 5,

Bpm’online developer guide 869

 "row": 2,
 "colSpan": 19
 }
 }
 },
 {
 "operation": "insert",
 "name": "Type",
 "parentName": "ProfileContentContainer",
 "propertyName": "items",
 "values": {
 "bindTo": "Type",
 "enabled": false,
 "layout": {
 "column": 5,
 "row": 3,
 "colSpan": 19
 }
 }
 },
 {
 "operation": "insert",
 "name": "MobilePhone",
 "parentName": "ProfileContentContainer",
 "propertyName": "items",
 "values": {
 "bindTo": "MobilePhone",
 "enabled": false,
 "layout": {
 "column": 5,
 "row": 4,
 "colSpan": 19
 }
 }
 },
 {
 "operation": "insert",
 "name": "Phone",
 "parentName": "ProfileContentContainer",
 "propertyName": "items",
 "values": {
 "bindTo": "Phone",
 "enabled": false,
 "layout": {
 "column": 5,
 "row": 5,
 "colSpan": 19
 }
 }
 },
 {
 "operation": "insert",
 "name": "Email",
 "parentName": "ProfileContentContainer",
 "propertyName": "items",
 "values": {
 "bindTo": "Email",
 "enabled": false,
 "layout": {
 "column": 5,
 "row": 6,
 "colSpan": 19

Bpm’online developer guide 870

 }
 }
 }
]/**SCHEMA_DIFF*/
 };
});

An example of embedding a client profile module to the editing page.

// Editing page modules.
modules: /**SCHEMA_MODULES*/{
 // Module name.
 "ClientProfile": {
 // Configuration.
 "config": {
 // A characteristic indicating that circuit configuration is
initialized.
 "isSchemaConfigInitialized": true,
 // A characteristic indicating that HistoryState is not used.
 "useHistoryState": false,
 // Schema name.
 "schemaName": "ClientProfileSchema",
 // Parameters.
 "parameters": {
 // View Model Configuration.
 "viewModelConfig": {
 // Connected entity column name.
 "masterColumnName": "Client"
 }
 }
 }
 }
}/**SCHEMA_MODULES*/,
// The diff modification array.
diff: /**SCHEMA_DIFF*/[
 {
 "operation": "insert",
 // Profile name.
 "name": "ClientProfile",
 "parentName": "LeftModulesContainer",
 "propertyName": "items",
 // Values.
 "values": {
 // Element type - module.
 "itemType": Terrasoft.ViewItemType.MODULE
 }
 }
]/**SCHEMA_DIFF*/

SourceCodeEditMixin class description and work examples.

Introduction
When developing controls, it may be necessary to implement the string value editing functionality with the HTML,
JavaScript, or LESS code. The SourceCodeEditMixin class was created for that.

Bpm’online developer guide 871

SourceCodeEditMixin is a mixin, which provides a user-friendly string editing interface for class enrichment. Its
concept resembles that of multiple inheritance.

SourceCodeEditMixin properties and methods.
The main SourceCodeEditMixin class properties are listed in table 1, and its methods are listed in table 2.

Table 1. SourceCodeEditMixin mixin proiperties

Name Type Details
sourceCodeEdit Terrasoft.SourceCodeEdit An instance of the source code editor control.

sourceCodeEditContainer Terrasoft.Container An instance of the container with the source code
editor.

Table 2. Main SourceCodeEditMixin mixin methods

Name Parameters Details
openSourceCodeEditModalBox No A method that implements the opening

of a window for editing source code.

loadSourceCodeValue No Abstract method. Must be implemented
in the main class. Implements the logic
of obtaining the value to edit.

saveSourceCodeValue value {String} Abstract method. Must be implemented
in the main class. Implements the logic
of saving editing results in the main class
object.

destroySourceCodeEdit No A method that implements the
purification of mixin resources.

getSourceCodeEditModalBoxStyleConfig No Returns a key-value object that describes
styles in the modal window for editing
source code.

getSourceCodeEditStyleConfig No Returns a key-value object that describes
styles applied to source editor controls.

getSourceCodeEditConfig No Returns a key-value object that describes
the properties that the created instance
of the source code editor controls will
have.

Main properties of the created instance of source code editor controls (see getSourceCodeEditConfig method) are
listed in еable 3.

Table 3. Created source editor properties

Name Type Details
showWhitespaces Boolean Displaying invisible strings Default value: false.

language SourceCodeEditEnums.Language Language syntax. Selected from the
SourceCodeEditEnums.Language enumeration
(Table 4).

Default value:
SourceCodeEditEnums.Language.JAVASCRIPT.

theme SourceCodeEditEnums.Theme Editor theme Selected from the
SourceCodeEditEnums.Theme enumeration (Table
5).

Default value:

Bpm’online developer guide 872

SourceCodeEditEnums.Theme.CRIMSON_EDITOR.

showLineNumbers Boolean Display string numbers. Default value: true.

showGutter Boolean Set the gap between columns. Default value: true.

highlightActiveLine Boolean Highlighting the active line.

Default value: true.

highlightGutterLine Boolean Highlighting of the inter-column space line.

Default value: true.

 Table 4. Language syntax of the source code editor (SourceCodeEditEnums.Language)

Enumeration member Programming language
JAVASCRIPT JavaScript

CSHARP C#

LESS LESS

CSS CSS

SQL SQL

HTML HTML

 Table 5. - Source code editor themes (SourceCodeEditEnums.Theme)

Enumeration member Subject
SQLSERVER SQL editor subject

CRIMSON_EDITOR Crimson editor subject

Use case
Add a mixin to the mixins property to use it in a control:

// Connecting a mixin.
mixins: {
 SourceCodeEditMixin: "Terrasoft.SourceCodeEditMixin"
},

Mixin functionality gets a value by calling the getSourceCodeValue() abstract getter method. It returns the string for
editing. The getter method should be implemented each time a mixin is used:

// Implementing a field string value.
getSourceCodeValue: function () {
 // The "getValue()" method is implemented in the "Terrasoft.BaseEdit" base class.
 return this.getValue();
},

After the editing is completed, the mixin will call the setSourceCodeValue() abstract setter method to save the result.
The setter method should be implemented each time a mixin is used:

// Method implementation for setting up a result string.
setSourceCodeValue: function (value) {
 // The "setValue()" method is implemented in the "Terrasoft.BaseEdit" base class.
 this.setValue(value);
},

Bpm’online developer guide 873

Call the openSourceCodeBox() method to open the source code editing window. The method is called in the main
class instance context. For example, when the onSourceButtonClick method of the component is called.

// Implementing the process of calling a source editor window method.
onSourceButtonClick: function () {
 this.mixins.SourceCodeEditMixin
 .openSourceCodeBox.call(this);
},

After the work with the primary class instance is finished, it is deleted from the memory. The SourceCodeEditMixin
requires freeing certain resources. To do this, the destroySourceCode method is called in the main class instance
context.

onDestroy: function () {
 this.mixins.SourceCodeEditMixin
 .destroySourceCode.apply(this, arguments);
 this.callParent(arguments);
}

Below is the complete source code:

// Adding a mixin module to dependencies.
define("SomeControl", ["SomeControlResources", "SourceCodeEditMixin"],
 function (resources) {
 Ext.define("Terrasoft.controls.SomeControl", {
 extend: "Terrasoft.BaseEdit",
 alternateClassName: "Terrasoft.SomeControl",

 // Connecting a mixin.
 mixins: {
 SourceCodeEditMixin: "Terrasoft.SourceCodeEditMixin"
 },

 // Method implementation for obtaining a string value.
 getSourceCodeValue: function () {
 // The "getValue()" method is implemented in the "Terrasoft.BaseEdit"
base class.
 return this.getValue();
 },

 // Method implementation for setting up the result string.
 setSourceCodeValue: function (value) {
 // The "setValue()" method is implemented in the "Terrasoft.BaseEdit"
base class.
 this.setValue(value);
 },

 // Implementing the process of calling a source editor window method.
 onSourceButtonClick: function () {
 this.mixins.SourceCodeEditMixin
 .openSourceCodeBox.call(this);
 },

 // Implementing a call to clear mixin resources.
 onDestroy: function () {
 this.mixins.SourceCodeEditMixin
 .destroySourceCode.apply(this, arguments);
 this.callParent(arguments);
 }
 });
 });

Bpm’online developer guide 874

Blocking edit page fields

Introduction
During the development of the bpm’online custom functions you may need to block all fields and details on the page
when specific condition is met. Mechanism of blocking of the edit page fields can simplify the process without
creating a number of business rules.

ATTENTION

Blocking mechanism is implemented in the bpm'online version 7.11.1 or higher.

ATTENTION

You can disable the function for blocking edit page fields using the "CompleteCardLockout" option on the
feature toggle page (see. "Feature Toggle. Mechanism of enabling and disabling functions"). Use the
following URL to open the feature toggle page:
../0/Nui/ViewModule.aspx#BaseSchemaModuleV2/FeaturesPage. For
example, https://mycompany.bpmonline.com/0/Nui/ViewModule.aspx#BaseSchemaModuleV2/FeaturesPage.

As a result of applying the clocking mechanism on the edit page, all fields and details will be blocked. If the field has
binding for the enabled property in the diff array element or in the business rule, the mechanism will not block this
field. Details hide buttons and menu items for performing operations with the record. A detail with an editable list
still features an ability to access the object page, however all fields will be block in accordance with the business
rules.

ATTENTION

The blocking mechanism is intended for blocking details with a list and an editable list. To ensure the correct
operation of the mechanism for details with editable fields, create a replacement schema for this detail and
control the availability of fields using the IsEnabled attribute.

To enable the blocking mechanism, set the source code of the edit page to false for the IsModelItemsEnabled model
attribute:

this.set(“IsModelItemsEnabled”, false);

Or set the default value for the attribute:

"IsModelItemsEnabled": {
 dataValueType: Terrasoft.DataValueType.BOOLEAN,
 value: true,
 dependencies: [{
 columns: ["PaymentStatus"],
 methodName: "setCardLockoutStatus"
 }]
}

Additionally, to operate the locking mechanism on a specific edit page in the diff array of this page, specify the
DisableControlsGenerator generator for the containers in which you want to block fields. Therefore, to block all

Bpm’online developer guide 875

https://mycompany.bpmonline.com/0/Nui/ViewModule.aspx#BaseSchemaModuleV2/FeaturesPage

fields of the edit page, specify the global CardContentWrapper container:

diff: /**SCHEMA_DIFF*/[
 {
 "operation": "merge",
 "name": "CardContentWrapper",
 "values": {
 "generator": "DisableControlsGenerator.generatePartial"
 }
 }
]/**SCHEMA_DIFF*/

Blocking exceptions
It is possible to exclude blocking for some fields and details. To do this, override the
getDisableExclusionsDetailSchemaNames() and getDisableExclusionsColumnTags() methods. These methods
return lists of fields and details that should not be blocked by the mechanism. The implementation of methods is
available below:

getDisableExclusionsColumnTags: function() {
 return ["SomeField"];
}
getDisableExclusionsDetailSchemaNames: function() {
 return ["SomeDetailV2"]
}

More complex exception logic can be implemented by overriding the isModelItemEnabled() method for edit fields
and the isDetailEnabled() method for details. These methods are called for each field and detail. They receive the
name and return the availability signal of the field or detail. The implementation of methods is available below:

isModelItemEnabled: function(fieldName) {
 var сondition = this.get("SomeConditionAttribute");
 if (fieldName === "ExampleField" || сondition)) {
 return true;
 }
 return this.callParent(arguments);
}

isDetailEnabled: function(detailName) {
 if (detailName === "ExampleDetail") {
 var exampleDate = this.get("Date");
 var dateNow = new Date(this.Ext.Date.now());
 var condition = this.Ext.Date.isDate(exampleDate) && exampleDate >= dateNow;
 return condition;
 }
 return this.callParent(arguments);
}

Dashboard widgets

General information
Dashboard widgets (analytic elements) are used for data analysis of sections. Go to the “Dashboards” view of the
required section to work with its analytics. Use the [Dashboards] section to work with the entirety of bpm’online
section data analytics.

Bpm’online developer guide 876

To learn more about bpm’online dashboard widgets, please refer to the “Section analytics” article.

Data storage structure of dashboards
The dashboards section is a user-defined set of tab elements. The mechanism for working with dashboards is
implemented with the help of the DashboardManager dashboard client manager and the DashboardManagerItem
element client manager, which represents the tabs. The SysDashboard object is responsible for dashboards in the
system. The SysDashboard object properties are described in table 1.

Table 1. SysDashboard object properties

Name Header Type Details
Caption Header String This information is displayed in the tab header.

Position Position Number If a position is not specified, the elements are displayed
in alphabetical order.

Section Section Lookup System section.

ViewConfig Element (widget)
view configuration

Array [{

 // Element type (Terrasoft.ViewItemType).

 itemType: "4",

 // Element name.

 name: "SomeInvoiceChart",

 // View configuration.

 layout: {

 columns: 4,

 rows: 4,

 colspan: 4,

 rowspan: 4

 }

 },

{...}]

Items Element (widget)
module
configuration

JSON Object {

 // The name of the element for which the module
settings are defined.

 "SomeInvoiceChart": {

 // Name of the “DashboardItem” view element.

 “widgetType”: "Chart",

 // Parameters required to display data for a
particular “DashboardItem” element.

 "parameters": {

 “caption”: "some caption",

 ...

 },

 },

 {...}

}

Bpm’online developer guide 877

Implementing functionality in the dashboards view mode
The hierarchy of classes that implement functionality in the dashboards view mode is displayed on Fig. 1.

Fig. 1. The hierarchy of classes that implement functionality in the dashboards view mode

The SectionDashboardModule: module:

The SectionDashboardBuilder encapsulates the view generation logic and view model class for the
[Dashboards] section module.
SectionDashboardsViewModel – the model class of the [Dashboards] section view model.
SectionDashboardsModule – [Dashboards] section class module.

The DashboardModule module:

DashboardViewConfig – a class that generates the view configuration for the dashboards page view
module.
BaseDashboardViewModel – a base class for the dashboards page view model.
DashboardModule – a class that contains functionality for working with dashboard modules.

The DashboardBuilder module:

DashboardsViewConfig – a class that generates a dashboards module view configuration.
BaseDashboardsViewModel – a base class of the dashboards section view model.
DashboardBuilder – a class for dashboards module construction.

Implementing functionality in the dashboards view mode
The hierarchy of classes that implement the functionality in the dashboards view mode is displayed in Fig. 2.

Fig. 2. The hierarchy of classes that implement the functionality in the dashboards view mode

Bpm’online developer guide 878

The DashboardDesigner module:

DashboardDesignerViewConfig – a class that generates the view configuration for the dashboards
designer module.
DashboardDesignerViewModel – a class of the dashboards designer view model.
DashboardDesigner – dashboard visual module class.

Base classes that implement widget functionality
BaseDashboardsViewModel – a base class of the dashboards section view model. To use this class, register the
following messages in the module:

GetHistoryState (publish; ptp);
ReplaceHistoryState (publish; broadcast);
HistoryStateChanged (subscribe; broadcast);
GetWidgetParameters (subscribe; ptp);
PushWidgetParameters (subscribe; ptp) – if the parameters are drawn from modules
(useCustomParameterMethods = true).

BaseWidgetDesigner – base widget settings view schema. Main methods:

GetWidgetConfig() – returns the current widget settings object.
GetWidgetConfigMessage() – returns the name of the message used for getting widget module settings.
GetWidgetModuleName() – returns the name of the widget module.
GetWidgetRefreshMessage() – returns the name of the widget update message.
getWidgetModulePropertiesTranslator() – returns the connecting object of widget module properties and
widget module settings.

BaseAggregationWidgetDesigner – contains methods for working with aggregate columns and aggregation types.

DashboardEnums – contains an enumeration of widget properties.

Terrasoft.DashboardEnums.WidgetType – contains the widget view mode and design mode configuration of the
dashboards. The configuration is defined by the following properties:

moduleName – widget module name.
ConfigurationMessage – the name of the module settings receiving message.
ResultMessage – the name of the message that returns widget designer module settings.
StateConfig (stateObj) – widget designer schema name.

Charts

Bpm’online developer guide 879

General information
Charts display multiple system records in the form of diagrams of different types. For example, you can display a pie
chart of accounts distributed by type. Charts display information in the form of different diagram types or in a data
list form. Learn more about charts in the “The “Chart” dashboard component” article. Chart settings are described in
the How to set up a “Chart” dashboard component article.

The “Charts” dashboard

Charts functionality implementation classes
ChartViewModel – chart view model.

ChartViewConfig – generates the chart view model.

ChartModule – a module designed to work with charts.

ChartDesigner – view model schema of a chart.

ChartModuleHelper – generates a query using the Terrasoft.EntitySchemaQuery object.

ChartDrillDownProvider – contains methods for working with the “Show data” function (used for working with
chart series).

Chart setup parameters
To configure a chart, you need to add the JSON configuration object with the chart properties to the widget module
configuration. The widget module configuration is defined by the Items property of the SysDashboard object. Learn
more about the SysDashboard object and its properties in the “Dashboard widgets” article.

Bpm’online developer guide 880

https://academy.bpmonline.com/documents/sales-enterprise/7-9/chart-dashboard-component
https://academy.bpmonline.com/documents/sales-enterprise/7-9/how-set-chart-dashboard-component

Set the “Chart” value to the widgetType property in the JSON configuration object with widget settings. In addition,
assign the parameters property to the object with necessary parameters. Possible chart parameters are listed in
table 1.

Table 1. Chart setup parameters

Name Type Details
seriesConfig object The settings of an embedded chart in a series.

orderBy string Sorting field.

orderDirection string Sorting direction.

caption string Chart header.

sectionId string Section id.

xAxisDefaultCaption string Default X-axis header.

yAxisDefaultCaption string Default Y-axis header.

primaryColumnName string Name of initial column. The “id” column is the default
one.

yAxisConfig object Array of the Y-axis name settings.

schemaName string Chart object.

sectionBindingColumn string Section link column.

func string Aggregate function.

type string Chart type.

XAxisCaption string X-axis caption.

YAxisCaption string Y-axis caption.

xAxisColumn string The X-axis grouping column.

yAxisColumn string The Y-axis grouping column.

styleColor string Chart color.

filterData object Filter settings.

Metrics

The “Metric” dashboard (Fig. 1) displays the number (or date) received by inquiring system data, for example, a total
number of company’s employees. Learn more about analytics in the “The “Metric” dashboard component” article.
Analytics settings are described in the “Setting up the “Metric” dashboard component” article.

(Fig. 1). A “metric” dashboard

Bpm’online developer guide 881

https://academy.bpmonline.com/documents/sales-enterprise/7-9/metric-dashboard-component
https://academy.bpmonline.com/documents/sales-enterprise/7-9/setting-metric-dashboard-component

Functionality implementation classes of the “Metric”
dashboard
IndicatorViewModel – metric view model.

IndicatorViewConfig – generates the configuration of the metric view model.

IndicatorModule – a module designed to work with metrics.

IndicatorDesigner – view model schema of the metric edit page.

Metric settings
To configure a metric, you need to add the JSON configuration object with Metric properties to the widget module
configuration. The widget module configuration is defined by the Items property of the SysDashboard object. Learn
more about the SysDashboard object and its properties in the “Dashboard widgets” article.

Set the “Metric” value to the widgetType property in the JSON configuration object with widget settings. In
addition, assign the parameters property to the object with necessary parameters. Possible metric parameters are
listed in table 1.

Table 1. Metric settings

Name Type Details
caption string Metric header

sectionId string Section id.

entitySchemaName: string Metric object.

sectionBindingColumn string Section link column.

columnName string Name of aggregating column.

format object Metric format.

filterData object Filter settings.

aggregationType number Type of aggregating function.

style string Metric color.

Gauge

Bpm’online developer guide 882

General information
A “gauge" dashboard element displays aggregate data from multiple system records in the form of a dial with green,
yellow and red areas on its scale. For example, you may use this dashboard to display a number of performed
activities and compare it to a desired rate.

(Fig. 1). A gauge dashboard

Gauge functionality implementation classes
GaugeViewModel – gauge view model.

GaugeViewConfig – generates the gauge view model.

GaugeModule – module designed to work with gauges.

GaugeChart – implements a gauge chart component.

GaugeDesigner – view model schema of a gauge.

Gauge settings
To configure a gauge, you need to add the JSON configuration object with the gauge properties to the widget module
configuration. The widget module configuration is defined by the Items property of the SysDashboard object. Learn
more about the SysDashboard object and its properties in the “Dashboard widgets” article.

Set the “Gauge” value to the widgetType property in the JSON configuration object with widget settings. In addition,
assign the parameters property to the object with necessary parameters. Possible gauge parameters are listed in
table 1.

Table 1. Gauge settings

Name Type Details
caption string Gauge header.

sectionId string Section id.

entitySchemaName: string Gauge object.

Bpm’online developer guide 883

sectionBindingColumn string Section link column.

Lists

Introduction
A list displays multiple system records in a unified visual form. Lists enable you to limit the number of records
displayed to create such dashboards as the “Top ten most productive managers by the number of closed deals”, for
example. Learn more about the lists in the The “List” dashboard component article. List settings are described in the
How to set up the “List” dashboard component article.

Fig. 1. A “list” dashboard

List functional classes
DashboardGridViewModel – list view model.

DashboardGridViewConfig – generates list view configuration.

DashboardGridModule – module designed to work with lists.

DashboardGridDesigner – list editing page schema.

List settings
To configure a list, you need to add the JSON configuration object with list properties to the widget module
configuration. The widget module configuration is defined by the Items property of the SysDashboard object. Learn
more about the SysDashboard object and its properties in the “Dashboard widgets” article.

Set the “DashboardGrid” value of to the widgetType property in the JSON configuration object with widget settings.
In addition, assign the parameters property to the object with necessary parameters. Possible list parameters are
listed in table 1.

Table 1. List settings

Name Type Details
caption string List header.

sectionBindingColumn string Section link column.

filterData object Filter settings.

sectionId string Section id.

entitySchemaName: string List object.

Bpm’online developer guide 884

https://academy.bpmonline.com/documents/sales-enterprise/7-9/list-dashboard-component
https://academy.bpmonline.com/documents/sales-enterprise/7-9/how-set-list-dashboard-component

style string List color.

orderDirection number Sorting options (1 - ascending, 2 - descending).

orderColumn string List sorting column.

rowCount number The number of rows to display.

gridConfig object List configuration.

Web-page

The “web-page” dashboard is used to display web-pages on the dashboard panel. It may be an online currency
calculator, your corporate website, etc. Web-page dashboards are described in the “Setting up the “Web-page”
dashboard” article.

Web-page functionality implementation classes
WebPageViewModel – web-page view model.

WebPageViewConfig – generates the web-page view model configuration.

WebPageModule – module used to work with web-pages.

WebPageDesigner – web-page widget view schema.

Web-page settings parameters
To configure a web-page, you need to add the JSON configuration object with web-page properties to the widget
module configuration. Widget module configuration is defined by the Items property of the SysDashboard object.
Learn more about the SysDashboard object and its properties in the “Dashboard widgets” article.

Set the “WebPage” value to the widgetType property in the JSON configuration object with widget settings. In
addition, assign the parameters property to the object with necessary parameters. Possible web-page parameters are
listed in table 1.

Table 1. Web-page settings

Name Type Details
caption string Web-page widget title.

sectionId string Section id.

url string Web-page link.

style string Web-page widget CSS-styles

Sales pipeline

The “Sales pipeline” dashboard is used to analyze sales dynamics by stages. Learn more about the sales pipeline
dashboard settings in the “Setting up the “Sales pipeline” dashboard component” article.

Bpm’online developer guide 885

https://academy.bpmonline.com/documents/sales-enterprise/7-11/setting-web-page-dashboard-component
https://academy.bpmonline.com/documents/sales-enterprise/7-11/setting-web-page-dashboard-component
https://academy.bpmonline.com/documents/sales-enterprise/7-9/setting-sales-pipeline-dashboard-component

Sales pipeline functionality implementation classes
OpportunityFunnelChart – a class inherited from Chart.

Sales pipeline settings
To configure a sales pipeline, you need to add the JSON configuration object with sales pipeline properties to the
widget module configuration. Widget module configuration is defined by the Items property of the SysDashboard
object. Learn more about the SysDashboard object and its properties in the “Dashboard widgets” article.

Set the “OpportunityFunnel” value to the widgetType property in the JSON configuration object with widget
settings. In addition, assign the parameters property to the object with necessary parameters. Possible sales pipeline
parameters are listed in table 1.

Table 1. Sales pipeline settings

Name Type Details
caption string Sales pipeline header.

sectionId string Section id.

defPeriod string Pipeline period (last week by default).

sectionBindingColumn string Section link column.

type string Chart type (“funnel”).

filterData object Filter settings.

Scheduler setup

Contents
Recommendations on scheduler setup
Quartz policies for the processing of overdue tasks

Recommendations on scheduler setup

Selecting the Quartz policies for the processing of overdue
tasks
All Quartz policies for the processing of overdue tasks can be divided into three groups: Ignore misfire policy, Run
immediately and continue and Discard and wait for next. Recommendations about using each specific policy are
given below.

Ignore misfire policy

This policy is represented by the MisfireInstruction.IgnoreMisfirePolicy = -1 constant. It is recommended to use it
when it is necessary to ensure that all trigger firings will be executed even with overdue tasks. For example, the task
A with 2 minutes execution periodicity. Due to lack of Quartz threads or the scheduler shutdown, the next fire time
of task A (NEXT_FIRE_TIME) lags 10 minutes from the current time. If execution of all 5 overdue tasks is required,
use the IgnoreMisfirePolicy utility.

Bpm’online developer guide 886

This policy is recommended to use for triggers that operate with a unique data at each fire and it is important to
perform all trigger fires. For example, the task B that is executed once per 1 hour and generates the report for the
time period from PREV_FIRE_TIME till PREV_FIRE_TIME + 1 hour. The scheduler was turned off for 8 hours. In
this case, all 8 fires of the task B should be performed after launch of the scheduler and all reports should be
generated.

Applying this policy to triggers that do not operate with unique data may cause to unnecessary clogging of the
scheduler queue and application performance decrease. For example, the Exchange email synchronization is
configured with the 1 minute interval for each bpm’online user. An update was performed for 1.5 hours. After the
update, the Quartz will synchronize user mailboxes 90 times before proceeding with tasks scheduled for the current
time. Although it is enough to perform the delayed synchronization of mailboxes once, and then proceed the task
according to the schedule.

Run immediately and continue

This group includes:

SimpleTrigger.FireNow;
SimpleTrigger.RescheduleNowWithExistingRepeatCount;
SimpleTrigger.RescheduleNowWithRemainingRepeatCount;
CronTrigger.FireOnceNow;
CalendarIntervalTrigger.FireOnceNow.

More information about these policies can be found in the “Quartz policies for the processing of overdue
tasks” article.

This policies should be used if the overdue task should be executed one time and as a priority and then execute
scheduled tasks. For example, the email synchronization
(<user>@<server>_LoadExchangeEmailsProcess_<userId>, SyncImap_<user>@<server>_<userId>) or the
RemindingCountersJob and SyncWithLDAPProcess tasks.

For example, email synchronization is configured with the 5 minutes interval for all users and is fired by the
<user>@<server>_LoadExchengeEmailProcess_<userId>Trigger triggers. The update was performed since 1:30
AM till 2:43 AM. After update, the next fire time for the
<user>@<server>_LoadExchengeEmailsProcess_<userId>Trigger triggers will be changed to 2:43 AM. All overdue
tasks will be fired once at 2:43 AM and further will be fired according to the schedule (2,48 AM, 2:53 AM, 2:58 Am,
etc.).

Discard and wait for next

This group includes:

SimpleTrigger.RescheduleNextWithRemainingCount;
SimpleTrigger.RescheduleNextWithExistingCount;
CronTrigger.DoNothing;
CalendarIntervalTrigger.DoNothing.

More information about these policies can be found in the “Quartz policies for the processing of overdue
tasks” article.

These policies should be applied to the tasks that should be fired strictly at a specific time. For example the statistics
collection launched daily at 3:00 AM when there is no active users on the website (the CronTrigger is used). This
task is resource intensive and time consuming, and it can not be run during working hours, because this can slow
down the work of users. In this case, use the CronTrigger.DoNothing policy. As a result, if the task was not fired, the
next fire will be at 3:00 AM of the next day.

Quartz configuration
thread count

If the scheduler delays the tasks or if some tasks have not been executed, increase the number of Quartz threads. For
this, set necessary number of threads in the Web.config of the application loader:

<add key="quartz.threadPool.threadCount" value="5" />

Bpm’online developer guide 887

Note

The Web.config file of the application loader located in the root folder of the installed bpm’online application.

misfireThreshold

If the increase in the number of Quartz threads is undesirable (for example, due to limited resources), the change in
the misfireThreshold setting in the Web.config file of the application loader can optimize the task execution.

For example, an application with a number of tasks much bigger than a number of threads. The most of tasks are
executed with a small interval (1 minute). The value of the misfireThreshold setting is 1 minute and the number of
threads is 3:

<add key="quartz.jobStore.misfireThreshold" value="60000" />
<add key="quartz.threadPool.threadCount" value="3" />

For the most of the tasks used the policies from the Run immediately and continue group. This means following. For
the most tasks that have the MISFIRE_INSTR not equal “-1” and the NEXT_FIRE_TIME less than the current time
for 1 minute (60000 ms) the Quartz will periodically set the time of the next fire for the current time. This means
that the initial order of the scheduled tasks will be lost because all tasks will have the current time as the fire time.
The probability that Quartz will often process the same tasks and ignore the other tasks will increase.

The scheduler queue after 15 minutes of working is displayed on the Fig. 1. Tasks that have the
PREV_FIRE_TIME = NULL never have been executed. There is a big number of these tasks.

Fig. 1. Scheduler queue with the misfireThreshold, = 1 minute

Increase the misfireThreshold value to 10 minutes (and clear the PREV_FIRE_TIME в QRTZ_TRIGGERS):

<add key="quartz.jobStore.misfireThreshold" value="600000" />

The scheduler queue after 15 minutes of working is displayed on the Fig. 2.

Fig. 2. Scheduler queue with the misfireThreshold, = 10 minutes

Bpm’online developer guide 888

The number of non-executed tasks is decreased.

Increasing of the value of the misfireThreshold will lead to more equal tasks execution. Almost all jobs from the
queue will be executed. Due to lack of threads, the scheduler does not have time to fire each of the tasks in a minute.
This is displayed in the [Last repeat interval] column that has the value NEXT_FIRE_TIME -
PREV_FIRE_TIME, min. However, the scheduler fires each of the tasks.

batchTriggerAcquisitionMaxCount

Increase the batchTriggerAcquisitionMaxCount to optimize the scheduler performance if you do not use the
clustered Quartz configuration (one scheduler node is used).

Quartz policies for the processing of overdue tasks

Introduction
The Quartz has policies common to all types of triggers, and policies that are specific to a specific type of trigger. All policies used for the SimpleTrigger, CronTrigger or CalendarIntervalTrigger triggers are listed
in the Table 1.

Table 1. Trigger policies

Quartz policy The
MISFIRE_INSTR
value

The
Terrasoft.Core.Scheduler.AppSchedulerMisfireInstruction
value

Trigger type

IgnoreMisfirePolicy -1 IgnoreMisfirePolicy for all types

IgnoreMisfirePolicy behavior description

Triggers with the IgnoreMisfirePolicy always will be fired in time. For such triggers, the Quartz will not update the next fire time (NEXT_FIRE_TIME).

The Quartz will fire all overdue tasks as priority, and then return to the initial trigger schedule. For example, the task with the Simple Trigger was planned for 10 iterations. Initial conditions:

START_TIME = 9:00
REPEAT_COUNT = 9 (first fire + 9 iterations)
REPEAT_INTERVAL = 0:15.

If the scheduler was disabled from 8:50 till 9:20, then after launch the Quartz will try to fire 2 overdue tasks as priority (in 9:00 and 9:15). After that the Quartz fires the 8 remaining tasks according to the

Bpm’online developer guide 889

schedule (at 9:30, 9:45, etc.).

SmartPolicy 0 SmartPolicy for all types

SmartPolicy behavior description

By default is used by Quartz for all types of triggers. According to the type and configuration of the trigger, the Quartz will select corresponding policy. The selection algorithm for the Quartz version 2.3.2 is
shown in the pseudo-code below.

if (TRIGGER_TYPE == 'SIMPLE') // Simple trigger.
 if (REPEAT_COUNT == 0) // Without repeats.
 MISFIRE_INSTR = 1 // SimpleTrigger.FireNow
 else if (REPEAT_COUNT == -1) // COntinious repeating.
 MISFIRE_INSTR = 4 // SimpleTrigger.RescheduleNextWithRemainingCount
 else // The number of repetitions is indicated.
 MISFIRE_INSTR = 2 // SimpleTrigger.RescheduleNowWithExistingRepeatCount
else if (TRIGGER_TYPE == 'CAL_INT') // СalendarInterval trigger.
 MISFIRE_INSTR = 1 // CalendarIntervalTrigger.FireOnceNow
else if (TRIGGER_TYPE == 'CRON') // Cron trigger.
 MISFIRE_INSTR = 1 // CronTrigger.FireOnceNow

SimpleTrigger.FireNow 1 FireNow SimpleTrigger

SimpleTrigger.FireNow behavior description

Applied for the SimpleTrigger triggers that have the REPEAT_COUNT=0 (triggers fired for one time). If the REPEAT_COUNT value is not “0”, then the
SimpleTrigger.RescheduleNowWithRemainingRepeatCount policy will be applied.

For example, the task planned with the SimpleTrigger. Initial conditions:

START_TIME = 9:00;
REPEAT_COUNT = 0.

If the scheduler was disabled from 8:50 till 9:20, then after launch the Quartz will try to fire the task as priority. As a result, the task will be fired at 9:20 or later.

SimpleTrigger.RescheduleNowWithExistingRepeatCount 2 RescheduleNowWithExistingRepeatCount SimpleTrigger

SimpleTrigger.RescheduleNowWithExistingRepeatCount behavior description

Scheduler will try to fire the first overdue task as a priority, All other triggers will be fired with the REPEAT_INTERVAL interval.

For example, the task with the Simple Trigger was planned for 10 iterations. Initial conditions:

START_TIME = 9:00
REPEAT_COUNT = 9
REPEAT_INTERVAL = 0:15.

If the scheduler was disabled from 8:50 till 9:20, then after launch the Quartz will try to fire first overdue task scheduled for 9:00 (from tasks scheduled on 9:00 and 9:15) at 9:20. The remained 9 tasks will be
fired at 9:35, 9:50, etc.

NOTE

For the AppScheduler.ScheduleMinutelyJob methods the behavior of the RescheduleNowWithExistingRepeatCount is similar to the RescheduleNowWithRemainingRepeatCount, and the behavior of the
RescheduleNextWithRemainingCount is similar to the RescheduleNextWithExistingCount, because the triggers with the REPEAT_COUNT = -1 are used.

SimpleTrigger.RescheduleNowWithRemainingRepeatCount 3 RescheduleNowWithRemainingRepeatCount SimpleTrigger

SimpleTrigger.RescheduleNowWithRemainingRepeatCount behavior description

Scheduler will try to fire the first overdue task as a priority, Other overdue tasks are ignored. The scheduler fires remained tasks that are not overdue with the REPEAT_INTERVAL interval.

For example, the task with the Simple Trigger was planned for 10 iterations. Initial conditions:

START_TIME = 9:00
REPEAT_COUNT = 9
REPEAT_INTERVAL = 0:15.

If the scheduler was disabled from 8:50 till 9:20, then after launch the Quartz will try to fire first overdue task (from tasks scheduled on 9:00 and 9:15) at 9:20. The second overdue task will be ignored and other 8
tasks will be fired at 9:35, 9:50, etc.

SimpleTrigger.RescheduleNextWithRemainingCount 4 RescheduleNextWithRemainingCount SimpleTrigger

SimpleTrigger.RescheduleNextWithRemainingCount behavior description

The scheduler ignores overdue tasks and waits for the next planned fire of the task. At the next fire time, the remaining non-overdue tasks will be executed with the REPEAT_INTERVAL interval.

For example, the task with the Simple Trigger was planned for 10 iterations. Initial conditions:

START_TIME = 9:00
REPEAT_COUNT = 9
REPEAT_INTERVAL = 0:15.

If the scheduler was disabled from 8:50 till 9:20, then after launch the Quartz will fire the rest of 8 non-overdue tasks at 9:30, 9:45, etc.

SimpleTrigger.RescheduleNextWithExistingCount 5 RescheduleNextWithExistingCount SimpleTrigger

SimpleTrigger.RescheduleNextWithExistingCount behavior description

The scheduler will wait for the next launch time and will fire all remained tasks with the REPEAT_INTERVAL interval.

For example, the task with the Simple Trigger was planned for 10 iterations. Initial conditions:

START_TIME = 9:00
REPEAT_COUNT = 9
REPEAT_INTERVAL = 0:15.

If the scheduler was disabled from 8:50 till 9:20, then after launch the Quartz will fire all 10 tasks at 9:30, 9:45, etc.

CronTrigger.FireOnceNow 1 - CronTrigger

CronTrigger.FireOnceNow behavior description

Scheduler will try to fire the first overdue task as a priority. Other overdue tasks are ignored. Remained non-overdue tasks are fired by the scheduler according to the schedule.

For example, the task planned with the CronTrigger: CRON_EXPRESSION = '0 0 9-17 ? * MON-FRI' (from Monday to Friday 9:00 AM – 17:00 PM). If the scheduler was disabled from 8:50 till 10:20, then after
launch at 10:20 the Quartz will try to fire first overdue task from two (at 9:00 and 10:00). After that, tasks will be fired at 11:00, 12:00, etc.

CronTrigger.DoNothing 2 - CronTrigger

CronTrigger.DoNothing behavior description

Scheduler ignores all overdue tasks. Remained non-overdue tasks will be fired according to the schedule.

For example, the task planned with the CronTrigger: CRON_EXPRESSION = '0 0 9-17 ? * MON-FRI' (from Monday to Friday 9:00 AM – 17:00 PM). If the scheduler was disabled from 8:50 till 10:20, then after
launch the Quartz will start to fire tasks since 11:00 (at 11:00, 12:00, etc).

CalendarIntervalTrigger.FireOnceNow 1 - CalendarIntervalTrigger

CalendarIntervalTrigger behavior description

The behavior is similar to the CronTrigger.FireOnceNow.

CalendarIntervalTrigger.DoNothing 2 - CalendarIntervalTrigger

CalendarIntervalTrigger.DoNothing behavior description

Bpm’online developer guide 890

The behavior is similar to the CronTrigger.DoNothing.

Integration

Contents
Phone integration
Email integration

Phone integration

General provisions
Bpm'online can be integrated with a number of automatic telephone exchanges (Private Branch Exchange, PBX),
which enables users to manage calls directly in bpm'online UI. Phone integration functions are available in the form
of a CTI (Computer Telephony Integration) panel, as well as the [Calls] section. Standard CTI panel functions:

Displaying incoming calls with contact/account identification by the subscriber's phone number
One-click calls initiated from bpm'online UI
Call management (reply, place on hold, end or transfer call)
Displaying call history for managing connections of calls to various system records and call follow-up.

All calls made or received are stored in the [Calls] section. In this section, you can view when a call was started,
when it ended and how long the call was; as well as the list of system records connected to the call.

By default, bpm'online cloud has a function for making calls between system users without using any additional
software.

Depending on the integrated phone system and specifics of its API (Application Programming Interface), different
architectural mechanisms are used. The API also affects available phone integration functions. For example, the call
playback function is not available for all phone systems, the web phone is available when integrating with Webitel,
etc. Regardless of the phone integration mechanism being used, the CTI panel interface remains the same for all
bpm'online users.

Phone integration methods in bpm'online
There are two types of integration methods: first party and third party integrations.

In a first party integration each user has a separate integration connection. Phone system events are handled as part
of that connection.

For a third party integration, a single connection to the prone system server is used for handling phone system
events for all users. In a third party integration an intermediate Messaging Service link is used for distributing
information streams for all users.

JavaScript adapter on the client side

When integrating with JavaScript adapter on the client side (Fig. 1), the work with the prone system is done directly
from a web browser. Interactions with the phone system and JavaScript-library, usually supplied by the prone
system manufacturer, is done through the phone system API. The library broadcasts events and accepts execution
commands using JavaScript. In the context of this integration, the bpm'online page interacts with the application
server for authentication using the HTTP(S) protocol.

Bpm’online developer guide 891

https://en.wikipedia.org/wiki/Telephone_exchange#Early_automatic_exchanges
https://en.wikipedia.org/wiki/Business_telephone_system#Private_branch_exchange
https://en.wikipedia.org/wiki/Computer_telephony_integration
https://en.wikipedia.org/wiki/Application_programming_interface

Fig. 1. First party phone system API integration with a javascript adapter on the client side

This integration method can be used with a first party phone system API, such as Webitel, Oktell, Finesse. Webitel
and Oktell connectors use WebSocket as connection protocol, while the Finesse connector uses long-polling http
queries.

The advantage of the first party integration method is that it does not require any additional nodes, such as
Messaging Service. Using an integration library, the CTI panel connects directly to the phone system server API
from a browser on the user's PC (Fig. 1).

For incoming calls the phone server passes the new call start event and call parameters through WebSocket to the
client integration library. When receiving a new call command, the library generates the RingStarted event that is
passed to the application page.

For incoming calls, client part generates the call start command that is passed through WebSocket to the phone
integration server.

Terrasoft Messaging Service on the server side

If integrating with Terrasoft Messaging Service (TMS) on the server side (Fig. 2), all phone integration events pass
through TMS, which interacts with the phone system through the manufacturer's library. The library interacts with
the phone system through the API. TMS also interacts with the bpm'online application server for executing query for
saving call information in the database using HTTP(S). Interaction with a client application, such as passing events
and receiving commands, is done via WebSocket. In case of integration with JavaScript adapter on the client side,
bpm'online page interacts with the application server for authentication, using HTTP(S).

Fig. 2. Third party API integration with TMS on server side

Bpm’online developer guide 892

https://en.wikipedia.org/wiki/WebSocket
https://www.pubnub.com/blog/2014-12-01-http-long-polling/

This integration method applies to third party phone system API (TAPI, TSAPI, New Infinity protocol, WebSocket
Oktell). This integration type requires Messaging Service – a Windows proxy service that works with the phone
system adapter library. The Messaging Service is a universal phone system library hoster, such as Asterisk, Avaya,
Callway, Ctios, Infinity, Infra, Tapi. When receiving client messages, the Messaging Service automatically connects
used bpm'online library and initiates connection to phone system. The Messaging Service is essentially a functional
wrapper for those phone integration connectors that do not support client integration for interacting with phone
functions in browsers (event generation and handling, data transfer). A user's PC conducts two types of
communication:

HTTP connection with bpm'online application server for authentication with host on which the Messaging
Service is installed
WebSocket connection for working directly with phone integration (Fig. 2).

For incoming calls the phone system passes the new call start event and call parameters through the adapter library.
When receiving a new call command, the Messaging Service generates the RingStarted event that is passed to the
client.

For an outgoing calls, the client generates a call start command, which is passed via WebSocket to the Messaging
Service, which generates an outgoing call message for the phone system.

Interaction between the phone connectors and bpm'online
All connectors interact with configuration through the CtiModel class. It handles the events received from the
connector.

Fig. 3. Phone system component interaction with bpm'online

The list of supported class events is provided in table 1.

Bpm’online developer guide 893

Table 1. Supported events of the CtiModel class

Event Description
initialized Triggered on completion of provider initialization.

disconnected Triggered on provider disconnection.

callStarted Triggered at the start of a new call.

callFinished Triggered after call completion.

commutationStarted Triggered after establishing call connection.

callBusy Triggered on changing call status to "busy" (TAPI only).

hold Triggered after placing call on hold.

unhold Triggered after resuming a call.

error is triggered on errors.

lineStateChanged Triggered after changing available operations for a line or a call.

agentStateChanged Triggered on changing the agent status.

activeCallSnapshot Triggered on updating the list of active calls.

callSaved Triggered after creating or updating a call in the database.

rawMessage Generic provider event. Triggered on any provider event.

currentCallChanged Triggered on changing the main call. For example, primary call ends during a
consultation.

callCentreStateChanged Triggered if an agent enters or exits Call center mode.

callInfoChanged Triggered on modifying a call data by database Id.

dtmfEntered Triggered if Dtmf signals were sent to the phone line.

webRtcStarted Triggered on a webRtc session start.

webRtcVideoStarted Triggered on a webRtc video stream session start.

webRtcDestroyed Triggered on a webRtc session end.

Oktell

General information
Oktell integration with bpm'online is implemented on the client level using the oktell.js library. The oktell.js source
code is located in the OktellModule configuration schema of the CTIBase package.

The Oktell server communicates with phones and with the end clients (browsers). With this integration method
bpm'online does not requires its own WebSocket server. Each client connects via the WebSocket Protocol directly to
the Oktell server. The bpm'online application server creates pages and provides data from the application database.
There is no direct relationship between bpm'online and Oktell server. Access is not required, so customers process
and combine the data of the two systems independently. The Oktell web client and the oktell.js plugin, embedded in
other projects, are implemented according to this principle (Fig. 1).

Fig. 1. Oktell integration with bpm'online schema

Bpm’online developer guide 894

 Oktell.js
Oktell.js is a javascript library for embedding the functionality of the call control in a CRM system. Oktell.js uses the
Oktell WebSocket Protocol to connect to the Oktell server. The advantage of this Protocol is the establishing of a
permanent asynchronous connection to the server, which enables you to receive events from the server Oktell and
execute certain commands. Because the Oktell WebSocket protocol is quite complicated to implement, the Oktell.js
wraps the WebSocket Protocol methods inside itself thus providing simple management functionality.

Voice transmission between subscribers

In a conversation between the oktell and bpm'online operators, voice is transmitted via the Session Initiation
Protocol (SIP). This requires that either the VoIP phone or the Softphone operator be installed on your computer
(Fig. 1).

Interaction of components

The interaction with the oktell.js library is executed via the OktellCtiProvider class, which is a link between CtiModel
and OktellModule that contains the oktell.js code. The OktellCtiProvider class implements the BaseCtiProvider
interface class (Fig. 2).

Fig. 2. The components interaction schema in the process of Oktell integration with bpm'online

Bpm’online developer guide 895

https://en.wikipedia.org/wiki/Session_Initiation_Protocol
https://en.wikipedia.org/wiki/Session_Initiation_Protocol
https://en.wikipedia.org/wiki/VoIP_phone
https://en.wikipedia.org/wiki/Softphone

Examples of interaction between CtiModel, OktellCtiProvider and OktlellModule are displayed on Fig. 3 and Fig. 4.

Fig. 3. Operator outgoing call to a subscriber: putting a call on hold, putting off hold by a subscriber and finishing
the call by the operator.

('scr_oktell_events_01.png' in the on-line documentation)

Fig. 4. Incoming call of a subscriber 1 to an operator with a consultation call to subscriber 2 with the subsequent
connection of the subscriber 1 and subscriber 2 by the operator.

('scr_oktell_events_02.png' in the on-line documentation)

The list of supported oktell.js class library events is listed in table 1.

Table 1. The list of supported oktell.js class library events

Event Description
connect Successful connection to server event

connectError Connection to server error in the 'connect' method event. Error codes are the same
as for the callback function of the 'connect' method

disconnect Server connection closing event. The object describing the reason of the
disconnection is passed to the callback function.

statusChange Agent status change event. Two string parameters are passed to the callback function
— the new and previous state

ringStart Incoming call start event

ringStop Incoming call stop event

backRingStart Returning call start event

backRingStop Returning call stop event

callStart Outgoing call start event

callStop Call UUID change event

talkStart Conversation start event.

talkStop Conversation stop event.

holdAbonentLeave Caller hold leave event The abonent object is passed to the callback function with
information on the caller.

holdAbonentEnter Caller hold enter event The abonent object is passed to the callback function with
information on the caller.

holdStateChange Hold status change event. The information on the hold is passed to the hold
function.

stateChange Line status change event.

Bpm’online developer guide 896

abonentsChange Current abonents list change event

flashstatechanged Hold status change low-level event

userstatechanged User status change low-level event

Webitel

General information
Webitel integration is implemented in the form of separate bpm'online modules. Modules in the integration include:

The WebitelCore package — modules that contain low-level interactions with Webitel using the Verto module and
the CTI panel on the bpm'online application page.

The WebitelCollaborations package implements basic interfaces for working with Webitel in bpm'online. The
package contains the WebitelCtiProvider module, the WebitelCtiProvider class, Webitel connector, the connection
parameters settings page, the lookup to edit Webitel users directly in bpm'online.

Detailed information about Webitel architecture can be found in the documentation.

Interaction of components
The WebitelCtiProvider class (the heir of the Terrasoft.BaseCtiProvider class) implements the required interaction
between CtiModel and the Webitel low-level global object (the WebitelCore.WebitelModule.js module) (Fig. 1).

Fig. 1. The components interaction schema in the process of Webitel integration with bpm'online

The integration is as follows. If a user has set the system setting of the Webitel integration library,
CtiProviderInitializer loads the WebitelCtiProvider module. Next, it calls the init method in WebitelCtiProvider,
which carries out the user login in the telephony session (the LogInMsgServer of the MsgUtilService.svc service). If
the login was successful, the connect method is invoked, which verifies that you don't have an existing connection
(the this.isConnected property is set to false and this.webitel — to empty). After that, the connect method requests
the connection settings to Webitel that are stored in the system settings of the webitelConnectionString and
webitelWebrtcConnectionString (Fig. 2).

Fig. 2. Loading the WebitelCtiProvider provider and connecting the CTI panel

('scr_webitel_events_01.png' in the on-line documentation)

After receiving the system settings, the user settings are received from the [Webitel users] lookup by using the
GetUserConnection method of the WUserConnectionService customer service. After receiving the user settings, the

Bpm’online developer guide 897

http://webitel.com/
https://docs.webitel.com/pages/viewpage.action?pageId=9961512

WebitelModule and WebitelVerto are loaded if the [Use web phone] checkbox is selected in the user settings. Next,
the onConnected method is called that creates the Webitel global object, in which properties are populated with the
connection settings. The subscription to Webitel object events occurs and the connect method is invoked, which
performs connection via WebSocket, authorization of Webitel and other low-level connection operations. When the
onConnect event occurs, the connection is considered successful and the user can work with calls. During the
connector operation, WebitelCtiProvider reacts to Webitel object events, processes them, and optionally generates
connector events described in the Terrasoft.BaseCtiProvider class. To manage calls, WebitelCtiProvider
implements abstract methods of the Terrasoft.BaseCtiProvider class by using the Webitel object methods.

Examples of CtiPanel, CtiModel and WebitelCtiProvider
interaction
Outgoing call to a subscriber: putting a call on hold, taking a call off hold by a subscriber and finishing a call.

Fig. 3. Sequence of events during a call

('scr_webitel_events_02.png' in the on-line documentation)

Webitel list of ports
871 — the WebSocket port for the Webitel server and receiving events.
5060 and 5080 — signal ports for SIP phones and telephony providers.
5066 — the port for the Web phone and WebRTC signal port.
4004 — the port for receiving call records.

Webitel events
Table 1. WebitelCtiProvider events

Event Description
onNewCall New call start event.

onAcceptCall Accept call event.

onHoldCall Call hold event.

onUnholdCall Call Unhold event.

onDtmfCall Tone dialing event.

onBridgeCall Connection to channel event.

onUuidCall Call UUID change event

onHangupCall Call stop event.

onNewWebRTCCall New WebRTC session event.

Asterisk

General information
Use AMI (Asterisk Manager Interface) to interact with the Asterisk server. The API enables client programs to
connect to Asterisk server by using TCP/IP protocol. The Application Programming Interface enables you to process
events in the digital multiplex system (DMS), and send commands to control calls.

Bpm’online developer guide 898

https://wiki.asterisk.org/wiki/pages/viewpage.action?pageId=4817239
http://www.asterisk.org/
https://en.wikipedia.org/wiki/Application_programming_interface

NOTE

Currently the integration of bpm'online with Asterisk is supported up to version 11.

A client uses a simple text protocol for communication between the Asterisk and the connected Manager API:
"parameter: value". The end of a string is determined by the sequence of Carriage Return and Line Feed (CRLF).

NOTE

In the future, for a set of strings like "parameter: value", followed by a blank line containing only a CRLF, for
simplicity the term "package" will be used.

How to set up the configuration file of the Messaging Service
to integrate Asterisk to bpm'online
For integration to work with bpm'online, you need to install Terrasoft Messaging Service (TMS) on a dedicated
computer that will be used as the integration server. You must set the following parameters for Asterisk in the
Terrasoft.Messaging.Service.exe.config configuration file:

<asterisk filePath="" url="Name_or_address_of_Asterisk_server"
port="Asterisk_server_port" userName="Asterisk login" secret="Asterisk password"
originateContext="Originate context" parkingLotContext="Parking lot context"
autoPauseOnCommutationStart="true" queueExtensionFormat="Local/{0}@from-queue/n"
asyncOriginate="true" sendRingStartedOnRingingState="true" traceQueuesState="false"
packetInfoConfig="Additional package parameters to be processed in configuration" />

Ports for Asterisk integration with bpm'online
TMS accepts WebSocket connection to the 2013 port via TCP.
TMS connects to the Asterisk server by default via the 5038 port.

The Terrasoft Messaging Service for Asterisk integration with
bpm'online
The integration part of the Messaging Service is implemented in the main bpm'online solution kernel in the
Terrasoft.Messaging.Asterisk library.

Library main classes:

AsteriskAdapter — an Asterisk class that transforms events to the top-level call model events used in
bpm'online integration.
AsteriskManager — a class that creates and deletes user connections to the Asterisk server.
AsteriskConnection — a class that represents the user connection for integration with Asterisk.
AsteriskClient — a class used to send commands to the Asterisk server.

Example of CtiModel, Terrasoft Messaging Service and
Asterisk Manager API interaction
Operator outgoing call to a subscriber: putting a call on hold, putting off hold by a subscriber and finishing the call
by the operator.

Fig. 1 shows the occurrence of events for this example While table 1 shows an example of processing of events — how
these events are interpreted by the TMS, which values from these events are used in processing an incoming call.

Fig. 3. Sequence of events during a call

('scr_asterisk_events.png' in the on-line documentation)

Table 1. Asterisk events

Bpm’online developer guide 899

https://en.wikipedia.org/wiki/Carriage_return

Asterisk log TMS Action Client
{

Event: newchannel

Channel:
<channel_name>

UniqueID: <unique_id>

}

A channel is created and
added to a collection

new AsteriskChannel({

Name: <channel_name>,

UniqueId: <unique_id>

});

{

Event: Hold

UniqueID: <unique_id>

Status: "On"

}

Search for the channel by
<unique_id> and generate
an event by using the
fireEvent method.

PutHoldAction Processing the
PutHoldAction and
displaying the call on hold.

{

Event: Hold

UniqueID: <unique_id>

Status: "Off"

}

Search for the channel by
<unique_id> and generate
an event by using the
fireEvent method.

EndHoldAction Processing the
EndHoldAction and
displaying the call on hold.

{

Event: Hangup

UniqueID: <unique_id>

}

Search for the channel by
<unique_id> and generate
an event by using the
fireEvent method.

RingFinished Processing event and
displaying the call end.

{

Event: Dial

SubEvent: Begin

UniqueID: <unique_id>

}

Search for the channel by
<unique_id>, fill in the
data and generate an event
by using the fireEvent
method.

RingStarted Processing the
RingStarted event and
displaying it on the
outgoing call panel.

{

Event: Bridge

UniqueID: <unique_id>

}

Search for the channel by
<unique_id> and generate
an event by using the
fireEvent method.

CommutationStarted Processing the
CommunicationStarted
event and displaying the
communication.

Clicking the "Answer"
button initiates a new
event in Asterisk.

Asterisk events
A detail list of events and information about their parameters is described in the Asterisk documentation.

Email integration

Bpm’online developer guide 900

https://wiki.asterisk.org/wiki/display/AST/Asterisk 11 AMI Events

Contents
Working with email threads

Working with email threads

Introduction
The mechanism for creating email threads is available in bpm’online since version 7.10.0. The main purpose of this
mechanism is to improve the email interface. Use this mechanism to easily find email connections, e.g. by copying
the connections of the previous email.

The thread construction mechanism is based on the In-Reply-To email header data. According to generally accepted
agreements, this header should contain the Message-ID email identifier. The bpm'online application retrieves these
headers from the synchronized Email service (IMAP / Exchange).

The mechanism can be divided into two logical parts – creating threads and populating activity connection fields.

Creating email threads
The EmailMessageData detail contains 3 fields:

MessageId – a string of 500 characters in length;
InReplyTo – a string of 500 characters in length;
ParentMessageId – a lookup field that references the EmailMessageData detail.

The MessageId and InReplyTo fields are populated with the corresponding message header values during
synchronization.

The ParentMessageId field is populated with the following values:

1. The EmailMessageData table searches for records where MessageId is identical to InReplyTo. The first
found record is set as the current ParentMessageId.

2. The ParentMessageId field is populated with the current Id value in all EmailMessageData records if the
InReplyTo field of these records is identical to the MessageId field.

Email thread connections are updated for every email.

Copying previous email connections in a thread
Spreading activity connections across the thread upon adding an email. The [Case] field is used in this case.

A parent record with the activity that includes the populated [Contact] field is searched for the current
EmailMessageData record. The [Case] field values from this activity will be spread across the thread. Starting with
the found EmailMessageData record, all child EmailMessageData records are found and their [Case] field value is
updated.

A thread with 3 emails:

ActivityId Title CaseId EmailMessageId EmailMessageParentId

28BD6D59-B9D7-
4FF9-89F5-
FEE1DD003912

Re:
relation

NULL 66812FBF-411B-4FE0-
94C9-1E70FBBEB2D3

F05B529D-C98C-4E26-BE00-
21F8721AEF58

DC0A40D4-700A-
40EB-B394-
90E0376C3B5D

Re:
relation

1C6E18E3-48B1-
495E-8EF9-
ACA35DB9DE0B

F05B529D-C98C-
4E26-BE00-
21F8721AEF58

E1A0120E-B7C0-4261-9DE0-
C63341BF1E0B

Bpm’online developer guide 901

D7A9B82C-ED46-
437C-980A-
B2650D4FF3DA

relation 906909E8-4D64-
47FD-AF92-
B65B0826AEC3

E1A0120E-B7C0-4261-
9DE0-C63341BF1E0B

NULL

Another email is received in the thread:

ActivityId Title CaseId EmailMessageId EmailMessageParentId

6623B052-73AD-
4AE5-AE61-
A6F9BCD930A0

Re:
relation

NULL 60C00B01-D0BF-
40F6-923E-
1830E433AEA1

66812FBF-411B-4FE0-94C9-
1E70FBBEB2D3

28BD6D59-B9D7-
4FF9-89F5-
FEE1DD003912

Re:
relation

NULL 66812FBF-411B-4FE0-
94C9-1E70FBBEB2D3

F05B529D-C98C-4E26-BE00-
21F8721AEF58

DC0A40D4-700A-
40EB-B394-
90E0376C3B5D

Re:
relation

1C6E18E3-48B1-
495E-8EF9-
ACA35DB9DE0B

F05B529D-C98C-
4E26-BE00-
21F8721AEF58

E1A0120E-B7C0-4261-9DE0-
C63341BF1E0B

D7A9B82C-ED46-
437C-980A-
B2650D4FF3DA

relation 906909E8-4D64-
47FD-AF92-
B65B0826AEC3

E1A0120E-B7C0-4261-
9DE0-C63341BF1E0B

NULL

Starting with the record in which EmailMessageId is "60C00B01-D0BF-40F6-923E-1830E433AEA1", a record with
the populated CaseId column is searched (does not contain NULL). This is a record where EmailMessageId =
"F05B529D-C98C-4E26-BE00-21F8721AEF58", and CaseId = "1C6E18E3-48B1-495E-8EF9-ACA35DB9DE0B".

Now, starting with the record in which EmailMessageId is "F05B529D-C98C-4E26-BE00-21F8721AEF58",
bpm’online updates the value of the CaseId field for the connected records throughout the thread.

ActivityId Title CaseId EmailMessageId EmailMessageParentId

6623B052-73AD-
4AE5-AE61-
A6F9BCD930A0

Re:
relation

1C6E18E3-48B1-
495E-8EF9-
ACA35DB9DE0B

60C00B01-D0BF-
40F6-923E-
1830E433AEA1

66812FBF-411B-4FE0-94C9-
1E70FBBEB2D3

28BD6D59-B9D7-
4FF9-89F5-
FEE1DD003912

Re:
relation

1C6E18E3-48B1-
495E-8EF9-
ACA35DB9DE0B

66812FBF-411B-4FE0-
94C9-1E70FBBEB2D3

F05B529D-C98C-4E26-BE00-
21F8721AEF58

DC0A40D4-700A-
40EB-B394-
90E0376C3B5D

Re:
relation

1C6E18E3-48B1-
495E-8EF9-
ACA35DB9DE0B

F05B529D-C98C-
4E26-BE00-
21F8721AEF58

E1A0120E-B7C0-4261-9DE0-
C63341BF1E0B

D7A9B82C-ED46-
437C-980A-
B2650D4FF3DA

relation 906909E8-4D64-
47FD-AF92-
B65B0826AEC3

E1A0120E-B7C0-4261-
9DE0-C63341BF1E0B

NULL

NOTE

Mail servers sometimes send out letters in the wrong sequence, disregarding the way they were written in the
thread

(e.g. during synchronization, emails are received first from the inbox and then from the outbox). This
complicates the mechanism. Building a thread for the emails that were not received consistently is impossible
during synchronization. In that case, a thread can be built once the synchronization is complete. If certain
mailbox folders are not loaded, or if the conversation was interrupted by other participants, the thread search
logic may not work. However, the thread can be built when all emails are downloaded from the inbox in most
cases.

Recommendations for adding a custom search process for all
thread connections after downloading an email

ActivityId Title CaseId EmailMessageId EmailMessageParentId

Bpm’online developer guide 902

Use the following guidelines to start working on a new email after thread formation:

1. The Id field of the synchronization session appears in the EmailMessageData table (the values are unique for
all synchronization processes). This field is populated only for synchronized emails.

2. A record is added to the new FinishedSyncSession table if at least one email was received during
synchronization.

3. Certain processes that responded to the signal of saving activities now respond to the (Inserted) insertion
signal of the FinishedSyncSession object. Emails from EmailMessageData are selected based on the
synchronization session Id. The MailboxSyncSettings field of the EmailMessageData object can be used to
select Email messages from the service box.

Self-service Portal

Introduction
The Self-service Portal (SSP) is an integral part of the bpm’online service enterprise and bpm’online customer center
products, as well as all bundles that these products are part of.

The SSP is a workplace where portal users are automatically redirected after login.

Portal users have access to the [Cases] and [Knowledge base] sections and to the [Self-service portal main page],
which contains general summary information and works as a single workplace for a portal user.

The [Cases] section is used for registration of cases by the customers, viewing the status of their cases, entering
additional case information and for obtaining information about case resolution process. By default, a portal user
has access to those cases where this user is specified as a contact. The user can enter additional information, publish
messages and interact with the service staff on the case page. The case history is displayed on the case page at the
[Processing] tab.

The portal’s [Knowledge base] section is used for searching for reference information or a solution. This section can
be filled only by the helpdesk staff from the main interface of the system.

Portal interface
From the development point of view, the portal is a preconfigured separate workplace. By default, this workplace is
not available for the ordinary portal users. A system user with the “portal user” type automatically enters this
workplace (the portal main page) after authorization.

Portal sections and pages are the same as sections and system edit pages from the main system interface and
they work with the same Entities. The case edit page on the portal is simpler compared to the regular case page and
does not contain the majority of fields. These edit pages are different objects in configuration (CasePage and
PortalCasePage).

The system of portal access permissions slightly differs. To grant access to the specific entities (EntitySchema) for
the portal users, you need to specify these entities in the [List of objects available for portal users] lookup. Self-
service portal licenses limit the number of records that can be added to this lookup. By default, the number is limited
to 70 records.

Working with the page wizard on the portal
The portal user cannot access the functions of the page-, detail- and section wizards These functions can be accessed
from the main system interface with administrator permissions in the following way:

1. Enter the [Workplace setup] section in the system designer.
2. Select the [Portal] workplace and click the [Open] button.
3. Select the required section and click the [Section wizard] button.

Bpm’online developer guide 903

https://academy.bpmonline.com/documents/service-enterprise/7-10/bpmonline-service-enterprise-overview
https://academy.bpmonline.com/documents/customer-center/7-10/bpmonline-customer-center-overview

The standard section wizard will open.

Configuring the portal and portal users
To start using the portal:

1. Ensure that the /configuration/terrasoft/auth option in the web.config file of the application loader (the
“external” web.config) has the following in it:

<terrasoft>
 <auth providerNames="InternalUserPassword,SSPUserPassword" …>
...
</terrasoft>

This setting is responsible for the authorization in the portal users in the system.

2. Create a contact for the user.

3. Create a user with the “Portal user” type. Fill out the required fields.

4. Provide all necessary licenses for the user.

A portal user is required to have a valid time zone specified in the profile. The time zone is not specified for new
users by default. Portal users must edit their profiles and select the proper time zone The system will display all
dates and times in the portal user’s local time.

ClientMessageBridge

Contents
ClientMessageBridge. Message history save mechanism
ClientMessageBridge. API description
ClientMessageBridge. The client-side WebSocket message handler

ClientMessageBridge. Message history save mechanism

General information
In a best-case scenario a handler is located within the system at the time of publication of the message (Fig. 1).

Fig. 1. Perfect interaction mechanism

Bpm’online developer guide 904

However, there may be situations when a handler is not yet loaded (Fig. 2).

Fig. 2. The process of interaction with an absent handler

In order to not lose unprocessed messages, you can wait for a listener before publication. If a listener is absent, the
messages are saved in history. Before publication, each message is checked for a listener. When the listener is
loaded, all stored messages are published in the order they were received. After the messages have been published,
the history is cleared.

Configuring the processing of messages stored in the history
example
To implement the described feature, you have to set the isSaveHistory checkbox to true.

init: function() {
 // Calling the init() parent method.
 this.callParent(arguments);
 // Adding a new configuration object to the configuration object collection.
 this.addMessageConfig({
 // sender — name of the message received via WebSocket.
 sender: "OrderStepCalculated",
 // Name of the message sent within the system.

Bpm’online developer guide 905

 messageName: "OrderStepCalculated",
 // isSaveHistory — checkbox indicating that the history must be saved.
 isSaveHistory: true
 });
},

History saving mechanism
The ClientMessageBridge class is the heir of the BaseMessageBridge abstract class, which contains abstract
methods (saveMessageToHistory, getMessagesFromHistory, deleteSavedMessages). In ClientMessageBridge
message history saving is implemented with the use of the localStorage of the browser, and the implementation of
abstract methods enables you to manipulate data in storage. To work with the localStorage class, use the
Terrasoft.LocalStore class.

Methods:

saveMessageToHistory — ensures that new messages are saved in the message collection
getMessagesFromHistory — provides an array of messages based on the transferred name
deleteSavedMessages — deletes all messages based on the transferred name

If there is a need to implement another type of storage, you must create an heir class of the BaseMessageBridge
class and implement all abstract methods (saveMessageToHistory, getMessagesFromHistory,
deleteSavedMessages).

ClientMessageBridge. API description

Properties

WebSocketMessageConfigs: Array

Collection of configuration objects.

LocalStoreName: String

Name of the repository, where the message history is stored.

LocalStore: Terrasoft.LocalStore

An instance of class that implements access to local repository.

Methods

init()

Initializes default values.

getSandboxMessageListenerExists(sandboxMessageName)

Checks for available listeners of message with passed name.

Parameters:

sandboxMessageName: String – message name that will be used when sending the message within the system.

Returned value:

Bpm’online developer guide 906

Boolean – the result of checking for available message listeners

publishMessageResult(sandboxMessageName, webSocketMessage)

Publishes the message within the system.

Parameters:

sandboxMessageName: String – message name that will be used when sending the message within the system.

webSocketMessage: Object – message received by WebSocket.

Returned value:

* – result obtained from the message handler.

beforePublishMessage(sandboxMessageName, webSocketBody, publishConfig)

Handler that is called before publishing the message within the system.

Parameters:

sandboxMessageName: String – message name that will be used when sending the message within the system.

webSocketBody: Object – message received by WebSocket.

publishConfig: Object – configuration object of message broadcast.

afterPublishMessage(sandboxMessageName, webSocketBody, result, publishConfig)

Handler that is called after publishing the message within the system.

Parameters:

sandboxMessageName: String – message name that will be used when sending the message within the system.

webSocketBody: Object – message received by WebSocket. result: * – result of publishing the message within the
system.

publishConfig: Object – configuration object of message broadcast.

addMessageConfig(config)

Adds a new configuration object to a collection of configuration objects.

Parameters:

config: Object – configuration object.

Configuration object parameter:

{
 "sender": "webSocket sender key 1",
 "messageName": "sandbox message name 1",
 "isSaveHistory": true
}

Where:

sender: String – name of the message that is expected from WebSocket.
messageName: String – message name that will be used when sending the message within the system.
isSaveHistory: Boolean — determines whether message history must be saved.

saveMessageToHistory(sandboxMessageName, webSocketBody)

Saves message in the repository if there is no subscriber and the save checkbox is selected in the configuration
object.

Parameters:

sandboxMessageName: String – message name that will be used when sending the message within the system.

webSocketBody: Object – message received by WebSocket.

Bpm’online developer guide 907

getMessagesFromHistory(sandboxMessageName)

Gets an array of saved messages from the repository.

Parameters:

sandboxMessageName: String – message name that will be used when sending the message within the system.

deleteSavedMessages(sandboxMessageName)

Deletes saved messages from the repository.

Parameters:

sandboxMessageName: String – message name that will be used when sending the message within the system.

ClientMessageBridge. The client-side WebSocket message handler

General information
The ClientMessageBridge schema is used to broadcast messages received via WebSocket. If additional logic in the
extending ClientMessageBridge schemas wasn't specified for each message received via WebSocket, a broadcast is
used to send messages within the system through the SocketMessageReceived sandbox. After subscribing to a
message, you can easily process the data received through WebSocket.

For additional message handling, it is necessary to implement an extending schema before publishing and changing
the message name. Using the available API, you can configure specific message types in the extending schema.

Setting up a new subscriber example
Case description

When a contact is saved, you need to publish a message with the NewUserSet name that contains information about
the contact's birth date and name on the server side. On the client side, you must implement the NewUserSet
messaging within the system. Additionally, before messaging, you must process the birthday message property
received through WebSocket, and you must invoke the afterPublishUserBirthday utility class method after
messaging. Finally, you need to implement the subscription to a message sent on the client side, for example, in the
schema of the contact edit page.

Case implementation algorithm

1. Create the replacing [Contact] object

Before adding message publishing via WebSocket, you have to create a replacing object and set the [Contact] as a
parent (Fig. 1).

Fig. 1. Creating the replacing [Contact] object

Bpm’online developer guide 908

2. Create the "Record saved" event

Next, you need to add message publishing via WebSocket after the contact record has been saved. To do this, go to
the tab with the object events (Fig. 2, 1) and click the "Record saved" button (Fig. 2, 2).

Fig. 2. Creating the "Record saved" event

3. Implement event subprocess in the "Record saved" event

In the Record Saved event handler, implement the event subprocess which is run by the ContactSaved message. To
do this:

Add an event subprocess element (Fig. 3, 1);
Add a message element (Fig. 3, 2), setting ContactSaved as the message name (Fig. 4);
Add a script element (Fig. 3, 3);
Connect the message object and script (Fig. 3, 4).

Fig. 3. Creating message handler subprocess

Bpm’online developer guide 909

Fig. 4. Initial message properties

4. Add message publication logic through WebSocket

To do this, double-click to open the [Script-task] event subprocess and add the following source code:

// Receiving contact name
string userName = Entity.GetTypedColumnValue<string>("Name");
// Receiving contact birth date.
DateTime birthDate = Entity.GetTypedColumnValue<DateTime>("BirthDate");
// Forming message text.
string messageText = "{\"birthday\": \"" + birthDate.ToString("s") + "\", \"name\":
\"" + userName + "\"}";
// Setting message name.
string sender = "NewUserSet";
// Publishing message through WebSocket.
MsgChannelUtilities.PostMessageToAll(sender, messageText);
return true;

After that, save and close the tab containing the [Script-task] element source code, and then save and publish the
whole event subprocess.

5. Implement message sending inside the application

To do this, create a replacing client module in a custom package(Fig. 5) and set the ClientMessageBridge of the NUI
package as a parent object (Fig. 6).

Fig. 5. Creating a replacing client module

Bpm’online developer guide 910

Fig. 6. Client module properties.

Read more about replacing client modules in the "Creating a custom client module schema" article.

To implement the distribution of messages NewUserSet within the system, it is necessary to add the following
source code in the schema:

define("ClientMessageBridge", ["ConfigurationConstants"],
 function(ConfigurationConstants) {
 return {
 // Messages.
 messages: {
 // Message name.
 "NewUserSet": {
 // Message type — broadcasting, without a specific subscriber.
 "mode": Terrasoft.MessageMode.BROADCAST,
 // Message direction — publication.
 "direction": Terrasoft.MessageDirectionType.PUBLISH
 }
 },
 methods: {
 // Schema initialization.
 init: function() {
 // Parent method calling
 this.callParent(arguments);
 // Adding new configuration object to the configuration object
collection.
 this.addMessageConfig({
 // Name of the message received via WebSocket.
 sender: "NewUserSet",
 // Name of the message sent within the system.
 messageName: "NewUserSet"

Bpm’online developer guide 911

 });
 },
 // Method executes after the message publication.
 afterPublishMessage: function(
 // Name of the message sent within the system.
 sandboxMessageName,
 // Message contents.
 webSocketBody,
 // Message result
 result,
 // Message configuration object.
 publishConfig) {
 // Check whther the message matches the one added to the
configuration object.
 if (sandboxMessageName === "NewUserSet") {
 // Saving the content to local variables.
 var birthday = webSocketBody.birthday;
 var name = webSocketBody.name;
 // Displaying content in the console.
 window.console.info("Published message: " +
sandboxMessageName +
 ". Data: name: " + name +
 "; birthday: " + birthday);
 }
 }
 }
 };
 });

Go the messages section and bind the NewUserSet broadcast message, which can only be published within the
system. Go to the the methods section and restart the Init parent method to add the messages received via
WebSocket in the configurational schema message object. To track messaging launch time, reload the
afterPublishMessage parent method.

After the schema has been saved and the application page has been refreshed, the NewUserSet messages received
via WebSocket will be sent within the system. Read more about debugging in the browser in the "Client code
debugging" article.

6. Implement message subscription

To obtain an object transmitted via WebSocket, you must subscribe to NewUserSet messages in any scheme, for
example, "Page contact V2". To do this, you need to create a replacing client module (see section 5), specifying the
"Contact page display schema" as a parent object. To do this, add the following source code:

define("ContactPageV2", [],
 function(BusinessRuleModule, ConfigurationConstants) {
 return {
 //entitySchemaName: "Contact",
 messages: {
 // Message name.
 "NewUserSet": {
 // Message type — broadcasting, without a specific subscriber.
 "mode": Terrasoft.MessageMode.BROADCAST,
 // Message direction — subscription.
 "direction": Terrasoft.MessageDirectionType.SUBSCRIBE
 }
 },
 methods: {
 // Schema initialization.
 init: function() {
 // Init() parent method calling.
 this.callParent(arguments);

Bpm’online developer guide 912

 // Subscription to receiving the NewUserSet message.
 this.sandbox.subscribe("NewUserSet", this.onNewUserSet, this);
 },
 // Receiving NewUserSet message event handler.
 onNewUserSet: function(args) {
 // Saving the message content to local variables.
 var birthday = args.birthday;
 var name = args.name;
 // Displaying content in the console.
 window.console.info("Message received: NewUserSet. Data: name: "
+
 name + "; birthday: " + birthday);
 }

 }
 };
 });

Go the messages section and bind the NewUserSet broadcast message, which can only be published within the
system. Go to the methods section and restart the Init parent method to subscribe to the NewUserSet message and
indicate the onNewUserSet, method-handler that processes in the message and displays the result in the browser
console.

After you have added the source code, you must save the schema and refresh the application page in the browser.

The result of the case is two informational messages in the browser console after you save the contact (Fig. 7).

Fig. 7. Browser console

Sync Engine synchronization mechanism

Contents
Bpm'online synchronization with external storages
Synchronizing metadata in bpm'online
Synchronizing tasks with MS Exchange
Synchronizing email with MS Exchange
Synchronizing contacts with MS Exchange
Synchronizing appointments with MS Exchange

Bpm'online synchronization with external storages

General information
The mechanism in bpm'online for synchronization with external data storages is the Sync Engine. This mechanism
enables you to create, modify, and delete Entity in the system based on synchronization with external systems and

Bpm’online developer guide 913

export data to external systems.

Synchronization is performed by using the SyncAgent class implemented in the Terrasoft.Sync namespace of the
application kernel.

Classes used in the synchronization mechanism
Synchronization agent (SyncAgent) — a class with one public Synchronize method that triggers
synchronization between storages.
Synchronization context (SyncContext) — a class representing the aggregation of providers and metadata
for SyncAgent.
Storage — storage of synchronized data.

Local storage (LocalProvider) — enables you to work with LocalItem in bpm'online.
External storage (RemoteProvider) — an external service or application from which data is
synchronized with bpm'online.

Synchronization item (SyncItem) — a set of objects from external and local storage which are
synchronized.

External storage synchronization item (RemoteItem) — represents a set of data from external
storage that syncs automatically. It can consist of one or more entities (records) from the
external storage.
Synchronization item (SyncEntity) — a wrapper of a specific Entity. SyncEntity is required to
work with Entity as the synchronizing object (add, delete, change).
Synchronization item (LocalItem) — one or more objects from bpm'online that are synchronized
with the external storage as a unit. The synchronization item from the external storage,
converted in the LocalItem entity contains a set of instances of the SyncEntity class.

SysSyncMetadata metadata table — contains service information of the synchronized elements and is
essentially RemoteItem-LocalItem interchanges table. Metadata sync description can be found in the
"Synchronizing metadata in bpm'online" article.

General synchronization algorythm
Before starting synchronization, you must create an instance of SyncAgent and the SyncContext sync context, then
update records in the metadata table with data from bpm'online. For this, you need to call the
CollectChangesInSyncedEntities class method that implements the IReplicaMetadata interface.

The algorithm for updating metadata records is the following:

1. If any previously synchronized entity in bpm'online has been modified since the last synchronization, then
the corresponding record in the metadata changes its modification date, the LocalState property is set to
“Modified”, and the source of the modification is set to the LocalStore ID.

2. If a synchronized entity in bpm'online has been deleted since the last synchronization — the corresponding
record in the metadata LocalState is set to “Deleted".

3. If there is no corresponding record in the metadata for the entity in bpm'online — it is ignored.

The process of synchronizing storages then starts the following:

1. All changes from the external storage are requested alternately.
2. You need to obtain the metadata for each item in the external storage .

a. If the metadata can not be obtained — this is a new item which should be converted to a bpm'online
element. To fill in a synchronization object, a FillLocalItem method is called from the specific
RemoteItem instance. It is also recorded in the metadata (ID of the external storage, the element ID in
the external storage, date of creation and modification is set as current, the source of creation and
modification — external storage).

b. If the metadata is received, so this item has already been synchronized with bpm'online. You need to
go to the version conflict resolution. By default, the last change in the application or external storage
(RemoteProvider) has the priority.

c. The metadata for the current pair of synchronization items is actualized.

After looking through all the modified items from the external storage, the elements that were changed in
bpm'online, but was not changed in the external storage remain in the metadata (in the interval between the last and

Bpm’online developer guide 914

the current synchronization).

1. You need to get elements changed in bpm'online in the interval between the last synchronization and the
current synchronization.

2. Save the changes in the external storage.
3. You must update the modification date of the items in the metadata (bpm'online is the change source).

After that, you need to add new, not synchronized records to the external storage, and add metadata for new items.

The synchronization context
SyncContext class

A class representing the aggregation of providers and metadata for SyncAgent. The properties of the SyncContext
class are presented in Table 1.

Table 1. SyncContext class properties

Field Type Purpose
Logger ISyncLogger The object that enables messages to be saved into

the integration log.

LocalProvider LocalProvider Enables you to work with LocalItem.

RemoteProvider RemoteProvider External service or application, data from which
is synchronized with bpm'online.

ReplicaMetadata IReplicaMetadata Works with metadata.

LastSyncVersion DateTime The date and time of the last synchronization in
UTC.

CurrentSyncStartVersion DateTime The current date and time synchronization in
UTC. Set after the metadata update.

Requirements for synchronization with external storage
External storage

External storage (RemoteProvider) — encapsulates data from the external storage.

RemoteProvider — a basic class that enables you to work with an external storage. In fact, it is the only way to work
with external systems. Properties of the RemoteProvider class are presented in table 2 and the methods — in table 3.

Table 2. RemoteProvider class properties

Field Type Description
StoreId Guid ID of external storage that will be

synchronized.

Version DateTime Date and time of the last
synchronization in UTC.

SyncItemSchemaCollection List External storage element schema

RemoteChangesCount Int Number of items processed from
external storage.

LocalChangesCount Int Number of items processed from local
storage.

Table 3. RemoteProvider class methods

Method Returning value
type

Description

Bpm’online developer guide 915

KnownTypes() IEnumerable Returns a collection of all types
that implement the IRemoteItem
interface. SyncAgent builds the
SyncItemSchema instances that
describe the entities that
participate in synchronization.

ApplyChanges(SyncContext context,
IRemoteItem synItem)

Void Applies changes to external
storage element.

CommitChanges(SyncContext context) Void Called after processing changes
in external and local storage.
Intended for the implementation
of necessary additional steps for
the specific integration
implementation.

EnumerateChanges(SyncContext context) IEnumerable Returns an enumeration of new
and modified elements of
external storage.

LoadSyncItem(SyncItemSchema schema, string
id)

IRemoteItem Fills in the IRemoteItem
instance with data from external
storage.

CreateNewSyncItem(SyncItemSchema schema) IRemoteItem Creates a new instance of
IRemoteItem.

CollectNewItems(SyncContext context) IEnumerable Returns an enumeration of new
bpm'online entities that will be
synchronized with external
storage.

ResolveConflict(IRemoveItem syncItem,
ItemMetadata itemMetaData, Guid
localStoreId)

SyncConflictResolution Resolves conflicts between
changed elements of local and
external storages. By default,
(RemoteProvider) priority is
given to changes in bpm'online.

NeedMetaDataActualization() Boolean Returns the sign that checks
whether there is a need to
update the metadata before
starting synchronization.

GetLocallyModifiedItemsMetadata(SyncContext
context, EntitySchemaQuery modifiedItemsEsq)

IEnumerable Returns synchronization
elements changed in the local
store since the last
synchronization.

IRemoteItem interface

The class that implements the IRemoteItem interface is an indivisible unit of synchronization and represents one
element of the synchronization of the external data storage. This class is a container for data coming from an
external system, and it knows how to convert the data to the Entity entity, and vice versa. The interface contains two
methods: FillLocalItem and FillRemoteItem for converting external synchronization elements (RemoteItem) to
LocalItem, and vice versa. Interface methods are presented in Table 4.

Table 4. IRemoteItem interface methods

Method Returning
value type

Description

FillLocalItem(SyncContext context,
ref LocalItem localItem)

Void Fills in properties of an element of the LocalItem
local storage with values of external storage
element. Used to apply changes in local storage.

FillRemoteItem(SyncContext context, Void Fills in properties of an element of external

Bpm’online developer guide 916

ref LocalItem localItem) storage with element values from the LocalItem
local storage. Used to apply changes in external
storage.

Map attribute

The Map attribute decorates the iRemoteItem interface implementations. SchemaName is the main parameter. This
is the name of the EntitySchema that is included in the current synchronization element.

[Map("Activity", 0)]
[Map("ActivityParticipant", 1)]
public class GoogleTask: IRemoteItem {
. . .

This class declaration task from Google Calendar will sync with the activity and its participants from bpm'online.

The second parameter, Order, specifies in which order Entity will be stored in the local storage. Activity is indicated
first, because ActivityParticipant stores a link to the created activity.

In most cases, SyncAgent can automatically generate a request for a sample of the new elements of synchronization
with bpm'online. To do this, you must specify the basic entity and method of communication with the details:

[Map("Activity", 0, IsPrimarySchema = true)]
[Map("ActivityParticipant", 1, PrimarySchemaName = "Activity", ForeingKeyColumnName =
"Activity")]
public class GoogleTask: IRemoteItem {
. . .

In this case, a request for new activities will be sent to the database along with a request for each selected activity to
receive their participants. The attribute properties list is presented in Table 5.

Table 5. Map attribute properties

Parameter Type Description
SchemaName String Object schema name.

Order Int The entity processing order for the synchronization
element.

IsPrimarySchema Boolean A flag that indicates that this schema is a key element
of this synchronization element. It can be installed in
one schema only.

PrimarySchemaName String The schema name of the main object. It can not be set
in tandem with IsPrimarySchema.

ForeignKeyColumnName String The column name for the connection with the details of
the main object It can not be set in tandem with
IsPrimarySchema.

Direction SyncDirection It specifies the synchronization direction for the objects
of this type. By default - DownloadAndUpload.

If it contains the Download flag - the changes will not
apply to bpm'online.

If it does not contain the Upload flag - the new entities
will not be selected from bpm'online.

FetchColumnNames String[] The names of the columns that will be loaded from the
local storage.

Local storage

Local Storage (LocalProvider) - encapsulates the work with data in internal storage (bpm'online).

Bpm’online developer guide 917

LocalProvider - basic class that implements work with the local storage. Enables you to work with LocalItem.
Methods of this class are immutable and are listed in Table 6.

Table 6. LocalProvider class methods

Method Returning
value type

Description

AddItemSchemaColumns(EntitySchemaQuery
esqForFetching, EntityConfig entityConfig)

Void Adds EntitySchemaQuery
column specified in
EntityConfig.

ApplyChanges(SyncContext context, LocalItem entities) Void Applies changes to each
SyncEntity in LocalItem.

FetchItem(ItemMetadata itemMetaData, SyncItemSchema
itemSchema, bool loadAllColumns = false)

LocalItem Loads a collection of
entities associated with a
particular synchronization
element.

SyncEntity class

The class encapsulates SyncEntity Entity instance and all the necessary actions to perform the synchronization of
the instance properties. Class Properties are summarized in Table 7.

Table 7. SyncEntity class properties

Parameter Type Description
EntitySchemaName String The name of the schema for which the wrapper is created.

Entity Entity Entity for which the wrapper is created.

State SyncState The last action performed on the entity (0 - not changed, 1 -
new, 2 - changed 3 - deleted).

SystemSchema class

Synchronization element entity settings schema. Class properties are shown in Table 8 and methods in Table 9.

Table 8. SyncItemSchema class properties

Parameter Type Description
SyncValueName String Entity type name

SyncValueType Type Entity type

PrimaryEntityConfig EntityConfig Synchronization element entity settings.

Configs List Synchronization element entity settings list.

DetailConfigs List Synchronization element detail entity
settings list.

Direction SyncDirection It specifies the synchronization direction for
the objects of this type. By default -
DownloadAndUpload.

If it does not contain the Download flag,
changes will not be applied in bpm'online.

If it does not contain the Upload flag, new
entities will not be selected from
bpm'online.

Table 9. SyncItemSchema class methods

Bpm’online developer guide 918

Method Returning value
type

Description

CreateSyncItemSchema(Type
syncValueType)

SyncItemSchema It creates a configuration element
synchronization entity with all the settings
of the related entities.

Validate(UserConnection
userConnection)

Void The method checks that EntityConfig is
well-formed.

If authentication fails, an exception is
applied. If the EntityConfig schema name is
specified twice, DublicateDataException is
generated. If the name of the defunct
schema is specified,
InvalidSyncItemSchemaException is
generated).

FetchItem(ItemMetadata
itemMetaData, SyncItemSchema
itemSchema, bool loadAllColumns =
false)

LocalItem Loads a collection of entities associated with
a particular synchronization element.

EntityConfig Class

Synchronization element entity settings. Class Properties are summarized in Table 10.

Table 10. EntityConfig class properties

Parameter Type Description
SchemaName String Object schema name.

Order Int The order of processing entities for a synchronization
element. The lower the value, the sooner the entity will be
processed in the processing of the synchronization element.

Direction SyncDirection It specifies the synchronization direction for the objects of
this type. By default - DownloadAndUpload.

If it does not contain the Download flag, changes will not be
applied in bpm'online.

If it does not contain the Upload flag, new entities will not be
selected from bpm'online.

FetchColumnNames String[] The names of the columns that will be loaded from the local
storage. If the value is not specified, it will load all object
columns

DetailEntityConfig class

Synchronization element detail entities settings. Class properties are displayed on Table 11.

Table 11. DetailEntityConfig class properties

Parameter Type Description
PrimarySchemaName String Bpm'online main synchronized entity schema name.

ForeignKeyColumnName String The column name for the connection with the details of the
main object

LocalItem class

One or more objects from bpm'online that are synchronized with external storage as a unit. It contains a set of

Bpm’online developer guide 919

SyncEntity class instances. Class properties are shown in Table 12 and methods in Table 13.

Table 12. LocalItem class properties

Parameter Type Description
Entities Dictionary> The SyncEntity collection that is set in accordance with a

SyncItem. It contains a collection of "key-value" pairs, where the
key is the schema name, and the value is the SyncEntity collection
of the scheme.

Version DateTime The highest value of the date and time of the modification of all
Entities in LocalItem.

Schema SyncItemSchema Synchronization element entity settings schema.

Table 13. LocalItem class methods

Method Returning
value type

Description

AddOrReplace(string
schemaName, SyncEntity
syncEntity)

Void Adds new SyncEntity to the collection. If SyncEntity
with EntityId already exists, it replaces it.

Add(UserConnection
userConnection, string
schemaName)

SyncEntity Creates and adds a new SyncEntity collection.

Synchronization example

An activity and participants are synchronized into one Google-calendar task. An activity (Activity) and participants
(SyncEntity) are one element of the synchronization - LocalItem.

RemoteItem - Google task received outside bpm'online. LocalItem - a set of objects (SyncEntity), to which the
Google task is converted.

The synchronization schema is displayed on Fig. 1.

Fig. 1. Synchronization schema

Bpm’online developer guide 920

Synchronizing metadata in bpm'online

General information
The auxiliary SysSyncMetaData metadata table is used for synchronization, which is the junction between the outer
RemoteItem table (synchronizing element in external storage) and LocalItem (synchronization element in
bpm'online). Each table row is represented in the system as an instance of SysSyncMetaData. The
SysSyncMetaData class properties are shown in Table 1.

Table 1. SysSyncMetaData class properties.

Parameter Type Description
RemoteId String Element ID in external storage

SyncSchemaName String Synchronized element schema name.

LocalId Guid Element ID in local storage

IsLocalDeleted Boolean It indicates whether an item has been removed from
the local storage since the last synchronization. The
parameter is updated before the synchronization and
application of changes in the local storage. On the basis
of its value, when selecting modified elements from
local storage, the SyncEntity state is set. Obsolete, left
for compatibility. LocalState is currently used.

IsRemoteDeleted Boolean It indicates whether an item has been removed from
the external storage since the last

Bpm’online developer guide 921

synchronization. Obsolete, left for compatibility.
RemoteState is currently used.

Version Date Date of the last element modification.

ModifiedInStoreId Guid ID of storage in which the last modification was
performed.

CreatedInStoreId Guid ID of storage in which the synchronization element was
created.

RemoteStoreId Guid ID of external storage with which the element was
synchronized.

ExtraParameters String Additional element parameters.

LocalState Int Element state in local storage (0 - not modified, 1 - new,
2 - modified, 3 - deleted).

RemoteState Int Element state in external storage (0 - not modified, 1 -
new, 2 - modified, 3 - deleted).

Only information about synchronized elements is stored in the metadata.

There can be multiple metadata table records for a single synchronization element - one for each application object
included in a synchronization element.

Activity and participants — a single synchronization element. However, the metadata contains one record for each
activity and one record for each participant.

Currently, only one object from external storage is transformed into several bpm'online objects, as shown in Fig. 1.

Fig. 1. Schema of transformation of an external storage object into a local storage object.

The metadata system for a single synchronization element is represented as the ItemMetadata object class
(SysSyncMetaData element collection). Metadata management is carried out through the class that implements the
IReplicaMetadata interface. An instance of the class that implements the IReplicaMetadata interface is created via
the MetaDataStore factory class for a particular storage.

Bpm’online developer guide 922

MetaDataStore class

Creates the specific class instance that implements the IReplicaMetadata interface for a storage. The class methods
are shown in Table 2.

Table 2. MetaDataStore class methods

Method Returned value
type

Description

GetReplicaMetadata(Guid
localStoreId, Guid
remoteStoreId)

IreplicaMetadata Creates the class instance that implements the
IReplicaMetadata interface for the specific storage.

ItemMetadata class

This class is an indivisible object of metadata synchronization. It contains a set of metadata for each synchronization
element (SysSyncMetadata element collection). The class properties are shown in Table 3.

Table 3. SysSyncMetaData class properties.

Parameter Type Description
RemoteId String Element ID in external storage

RemoteItemName String Element name in external storage

IReplicaMetadata interface

This class implements the IReplicaMetadata interface, encapsulates the synchronization metadata and works with
ItemMetadata objects. The interface properties are shown in table 4 and methods in table 5.

Table 4. The IReplicaMetadata interface properties

Parameter Type Description
RemoteStoreId Guid External storage ID.

LocalStoreId Guid Local storage ID.

Table 5. The IReplicaMetadata interface methods

Method Returned value type Description
FindItemStore (string remoteItemId) ItemMetadata Finds and returns the ItemMetadata

synchronization metadata object by an
ID in the remoteItemnId external
storage.

UpdateItemMetadata
(ItemMetadata oldItemMetaDatas,
IRemoteItem remoteItem, LocalItem
localItem, bool changesToBpm)

Void Updates metadata after synchronization.

EnumerateItemsWithChangesInBpm
(SyncContext context)

IEnumerable<ItemMetadata> Returns a collection of ItemMetadata
objects that have been modified since
the last synchronization and not
processed during the current
synchronization session.

CollectChangesInSyncedEntities
(UserConnection userConnection,
string schemaName, DateTime
lastSyncVersion)

Void Updates metadata for synchronization
elements modified in bpm'online. If an
element has been modified since the last
SysMetadata synchronization, the
Version column will be filled in with the
date of element modification. The

Bpm’online developer guide 923

ActualizeSysSyncMetaData procedure
is used to update metadata.

CollectNewDetailsForSyncedEntities
(UserConnection userConnection,
DetailEntityConfig
detailEntityConfig, string
remoteItemName)

Void Creates new records in the
SysSyncMetaData table for the
synchronization element details.

TryResolveRemoteId (Guid localId,
out string remoteId)

Boolean Returns the element ID in the external
remoteId storage from metadata by a
unique localId synchronization element
in bpm'online. If an element is marked
as deleted, the remoteId wil not be
returned, and the method will return
false.

TryResolveExtraParameters (Guid
localId, out string extraParameters)

Boolean Returns additional extraParameters
parameters for the synchronization
element by localId. If extraParameters
are not found, the method returns false.

Synchronizing tasks with MS Exchange

General information
Integration with various entities of MS Exchange via EWS protocol (Exchange Web Services) is supported by the
Sync Engine synchronization mechanism. This article describes synchronization of tasks between bpm'online and
MS Exchange. The task synchronization algorithm is no different from that described in the "Bpm'online
synchronization with external storages" article. The process runs in three stages:

1. Retrieving changes from MS Exchange and applying them;
2. Retrieving changes from bpm'online and applying them
3. Creating new tasks from bpm'online in MS Exchange.

Integration classes
As described in the "Bpm'online synchronization with external storages" article, in order to implement an
integration using this mechanism, you need a class that implements the logic of the external storage (an heir of the
RemoteProvider class). The hierarchy of provider classes is shown in figure 1. You also need a class that implements
the IRemoteItem interface, which represents a single instance of a synchronization item (in this case — the MS
Exchange task). The RemoteItem hierarchy is shown in figure 2.

Fig. 1. RemoreProvider hierarchy schema

Bpm’online developer guide 924

The ExchangeTaskSyncProvider class is the service provider for the MS Exchange external storage. This class
implements the logic of selecting data and saving changes in bpm'online and MS Exchange. The ExchangeTask class
implements the IRemoteItem interface. The logic of filling in data in the corresponding systems is implemented in
it.

Fig. 2. RemoteItem hierarchy schema

Synchronized data
The correspondence of bpm'online objects to the ExchangeTask class fileds is shown on table 1.

Table 1. The correspondence of bpm'online objects to the ExchangeTask class fileds

Bpm'online
object

Object field ExchangeTask

Activity Title Subject

StartDate StartDate

DueDate CompleteDate or DueDate depending on whether
a task is finished or not.

Priority Importance

Status Status

RemindToOwner IsRemindSet

RemindToOwnerDate ReminderDueBy

Bpm’online developer guide 925

Notes Body.Text

Logic of selecting data for synchronization
To select changes to the list of tasks selected for MS Exchange folder synchronization, use the following terms: select
tasks for MS Exchange, which were modified after the last task synchronization or an MS Exchange task, which was
not marked as synced. The MS Exchange task which were modified have corresponding activities in bpm'online. The
updated changes are applied in the corresponding system.

When you select modified bpm'online activities, select the following:

activities that are recorded in the metadata synchronization as MS Exchange tasks
activities that have the current user as an author
activities with a date of the last modification that does not correspond to the date of the last
synchronization.

When selecting new bpm'online activities, configure a set of common and custom filters. The main filter conditions
are:

1. Activity type is not "email".
2. Activity does not have the [Display in calendar] checkbox selected.

A user can specify activity groups that will be exported from bpm'online.

Extra
Filling in the [Start Date] and [Due Date] fields

The ExchangeTask object has several features for working with start date and due date:

These fields are stored without time values. If you change a task in MS Exchange after synchronization,
bpm'online will apply the date from the MS Exchange task, and the time from the bpm'online activity.
The due date in ExchangeTask has two fields: due date and complete date.
The start date and due date are optional in MS Exchange. If either of them is not filled in, the current date
is set. Due to this, conflicts may arise, as both the start date and due date are required in bpm'online, and
the start date should be earlier than the due date.

Synchronizing email with MS Exchange

General information
Synchronization with various services of MS Exchange via EWS protocol (Exchange Web Services) is supported by
the Sync Engine synchronization mechanism. This article describes the synchronization of email in bpm'online with
MS Exchange. Email in bpm'online is synchronized only from MS Exchange. Since emails can no longer be modified
after they have been sent, only the emails that have not been synchronized previously are synchronized. The main
difference between the email synchronization mechanism and integration is the email search engine in bpm'online.
Since the same email can be synchronized on behalf of any of the recipients or even via IMAP protocol, metadata
synchronization can not be used for searching for previously synchronized emails. Use subject, send date and
message to search for emails . All markups and spaces are removed from the message. To speed up the search, use
the md5 hash that is stored in the MailHash column of the Activity object.

The second difference of this synchronization is that attachments are synchronized by a separate process, after all
emails are processed. This is done in order to make the attachment download time not affect the email save time.

Bpm’online developer guide 926

Integration classes
As described in the "Bpm'online synchronization with external storages" article, to implement integration
using this mechanism, a class is required that implements the logic of working with external storage
(RemoteProvider heir) and a class that implements the IRemoteItem interface, which is an instance of the
synchronization element (in our case — email MS Exchange).

Fig. 1. RemoreProvider hierarchy schema

The ExchangeEmailSyncProvider class is the service provider for the exchange external storage. This class
implements the logic of selecting data from MS Exchange.

The ExchangeEmailMessage class implements the IRemoteItem interface, in which the logic of filling in data in
bpm'online objects is implemented.

The ExchangeUtility class contains methods for the EWS API library and the methods used to download email
attachments.

The ExchangeEmailMessageUtility class contains methods for converting the lookup values of the email fields.

Fig. 2. RemoteItem hierarchy schema

Synchronized data
The correspondence of bpm'online objects to the EmailMessage class fields is shown on table 1.

Table 1. The correspondence of bpm'online objects to the EmailMessage class fields

Bpm'online object Object field EmailMessage corresponding field

Bpm’online developer guide 927

Activity Title Subject

Body Body.Text

Sender Sender

Recepient ToRecepients

CopyRecepient CcRecepients

BlindCopyRecepient BccRecepients

SendDate DateTimeSpent

Priority Importance

DueDate, StartDate DateTimeReceived

ActivityFile Name Name

Data Content

Size Content.Length

Logic of filling in email participants

For an email to be displayed correctly only for users who have synchronized it, the following mechanism of filling in
the [Activity participants] detail has been implemented. Conventionally, this logic can be divided into two parts:

1. Adding participants to a new email.
2. Updating the list of participants when an email changes (including re-synchronization).

Adding participants to a new email

The main value that affects who becomes the participants of an email is the [Communication] contact detail. If a
contact has an email address in the [Communication] detail, and this email is listed in one of the email address fields
([From], [To], [CС], [BCC]), the contact can be added to the participants. Additionally, a check is made whether
there is a system user for this contact who is not a portal user. A user is added to the participants only after they
have synchronized their email.

Updating the list of participants

For a user to become a participant after the synchronization of an existing email, the list of participants is updated -
all participants who are not bpm'online users are removed from the detail, and the algorithm of filling in detail for a
new email runs. Thus, the users who have previously synchronized the email remain as participants, a new user is
added, and the contact list is updated.

Logic of selecting data for synchronization
When selecting emails for synchronization with MS Exchange, use the following filter set: select emails that have
been modified since the last synchronization and are not drafts. There is a limit for synchronization folders:
"Deleted" and "Conflicting elements" folders do not participate in synchronization. When selecting emails the
synchronization metadata is not taken into account. Always "save changes in bpm'online". When processing each
email, the system first checks for emails in bpm'online. If an email already exists in bpm'online, the participants are
updated. If not, a new email is created. At the end of the synchronization, the system adds a task to synchronize
attachments.

Synchronizing contacts with MS Exchange

General information

Bpm’online developer guide 928

Integration with various entities of MS Exchange via EWS protocol (Exchange Web Service) is supported by the
Sync Engine synchronization mechanism. This article describes synchronization of contacts between bpm'online
and MS Exchange. The task synchronization algorithm is no different from that described in the article about Sync
Engine synchronization. The process runs in three stages:

1. Retrieving changes from MS Exchange and applying them
2. Retrieving changes from bpm'online and applying them
3. Creating new contacts from bpm'online in MS Exchange.

Integration classes
As described in the "Bpm'online synchronization with external storages" article, to implement integration
using this mechanism, a class is required that implements the logic of working with external storage
(RemoteProvider heir) and a class that implements the IRemoteItem interface, which is an instance of the
synchronization element (in our case — MS Exchange contact).

Fig. 1. RemoreProvider hierarchy schema

Fig. 2. RemoteItem hierarchy schema

The following classes are used for contact synchronization:

The ExchangeContactSyncProvider class is the service provider for the MS Exchange external storage.
This class implements the logic of selecting data and saving changes in bpm'online and MS Exchange.
The ExchangeContact class implements the IRemoteItem interface. The logic of filling in data in the
corresponding systems is implemented in it.
The ExchangeAddressDetailsSynchronizer class contains methods for converting contact addresses.
The ExchangeEmailAddressDetailsSynchronizer class contains methods for converting contact email

Bpm’online developer guide 929

addresses.
The ExchangePhoneNumbersDetailsSynchronizer class contains methods for convertingcontacts phones.

The logic of filling in details is located in separate classes, as there are significant differences in the formats of data
storage in bpm'online and MS Exchange. Additional conversion is required.

Synchronized data
The correspondence of bpm'online objects to the Contact MS Exchange class fields is shown on table 1.

Table 1. The correspondence of bpm'online objects to the Contact MS Exchange class fields

Bpm'online object Object field The Contact MS Exchange class
field

Contact Name DisplayName

Surname Surname

GivenName GivenName

MiddleName MiddleName

Account CompanyName

JobTitle JobTitle

Department Department

BirthDate Birthday

SalutationType TitleTag

Gender GenderTag

ContactCommunication Number The PhoneNumbers collection values

CommunitactionType The PhoneNumbers collection value key

ContactAddresses City The PhysicalAddresses collection element City
field

Country The PhysicalAddresses collection element
CountryOfOrigin field

Region The PhysicalAddresses collection element State
field

Address The PhysicalAddresses collection element Street
field

Zip The PhysicalAddresses collection element
PostalCode field

AddressType The PhysicalAddresses collection value key

The correspondence of communication types is shown in Table 2.

Table 2. The correspondence of communication types of bpm'online to MS Exchange

Bpm'online communication type MS Exchange communication type
Email EmailAddress1, EmailAddress2, EmailAddress3

WorkPhone BusinessPhone, BusinessPhone2

HomePhone HomePhone

MobilePhone MobilePhone

The correspondence of addresses is shown in Table 3.

Table 3. The correspondence of addresses of bpm'online to MS Exchange

Bpm’online developer guide 930

Bpm'online address type MS Exchange address type
HomeAddress Home

BusinessAddress Business

Logic of selecting data for synchronization
To select changes to the list of contacts selected for MS Exchange folder synchronization, use the following terms:
select contacts for MS Exchange, which were modified after the last contact synchronization or an MS Exchange
contact, which was not marked as synced. The contacts which were modified have corresponding contacts in
bpm'online. The updated changes are applied in the corresponding system.

When you select bpm'online contacts for synchronization, select the following:

contacts that have the current user as an author
contacts with a date of last modification that does not correspond to the date of the last synchronization.
contacts that were not used on the first step of synchronization

User settings also affect the rules for selecting new contacts in bpm'online. Three settings are available:

1. Synchronize employees contacts. When you select this setting, the "Contact type" filter will be added to the
request, and only the "Employee" type contacts will be synchronized.

2. Synchronize customers contacts. When you select this setting, the "Contact type" filter will be added to the
request, and only the "Customer" type contacts will be synchronized.

3. Sync contacts from certain groups. When you select this setting, the selected contact group filters will be
added to the request.

Additional features
Binding contact and account

If an MS Exchange contact has the CompanyName field filled in, then there are three possible options for filling in
the [Account] lookup field:

1. Always bind. If a nonexistent account is set, it will be created. This is the default option.
2. Bind, if an account exists. Same as above, but nonexistent accounts are not created.
3. Never bind. The [Account] field will not be filled in during synchronization.

Using the advanced contact keys in external storage

A situation may occur when there is a large number of MS Exchange contacts and of them will receive the same ID.
As a result, synchronization may not correctly identify the appropriate contact in bpm'online. To work around this
situation, there are advanced external keys, which can be enabled by the [Use composite IDs for MS Exchange
synchronized contacts] setting. Setting code - UseComplexExchangeContactId. After enabling it, you may need to
resynchronize.

Synchronizing appointments with MS Exchange

General information
Integration with various entities of Exchange via EWS protocol (Exchange Web Services) is supported by the Sync
Engine synchronization mechanism. This article describes synchronization of appointments between bpm'online
and MS Exchange.

Bpm'online appointment synchronization is performed only for new activities or when the Title, Location,

Bpm’online developer guide 931

https://msdn.microsoft.com/en-us/library/office/dd877045(v=exchg.140).aspx

StartDate, DueDate, Priority, Notes fields are modified. The hash stored in the additional metadata parameters (in
the ExtraParameters field) is formed according to these fields. If an appointment has been changed in bpm'online,
and the hash for ExtraParameters does not match the new hash, this appointment should be synchronized.

The appointment synchronization algorithm is no different from that described in the "Bpm'online
synchronization with external storages" article. The process runs in three stages:

1. Retrieving changes from MS Exchange and applying them
2. Retrieving changes from bpm'online and applying them
3. Creating new appointments from bpm'online in MS Exchange.

Integration classes
As described in the "Bpm'online synchronization with external storages" article, to implement integration
using this mechanism, a class is required that implements the logic of working with external storage
(RemoteProvider heir) and a class that implements the IRemoteItem interface, which is an instance of the
synchronization element (in our case — MS Exchange appointment).

Fig. 1. RemoreProvider hierarchy schema

The ExchangeAppointmentSyncProvider is the provider used to work with the Exchange external storage. It
contains the logic of selecting data and saving changes in bpm'online and Exchange.

The ExchangeAppointment class implements the IRemoteItem interface, in which the logic of filling in data in
bpm'online objects is implemented.

Fig. 2. RemoteItem hierarchy schema

Bpm’online developer guide 932

Synchronized data
The correspondence of bpm'online objects to the ExchangeAppointmrnt class fileds is shown on table 1.

Table 1. The correspondence of bpm'online objects to the ExchangeAppointment class fileds

Bpm'online object Object field MS Exchange Appointment
corresponding field

Activity Title Subject

Location Location

StartDate StartDate

DueDate CompleteDate or DueDate depending on whether an
appointment is finished or not.

Priority Importance

Status Filled in as follows:

If the status is not specified and the due date is later
than the current date — bpm'online sets the "New
Appointment" status.

If the due date is earlier than the current date, the
status is set as a closed appointment with the
"Information received" status.

RemindToOwner IsReminderSet

RemindToOwnerDate ReminderDueBy

Notes Body.Text

ActivityParticipant InviteResponse If the checkbox in MS Exchange is selected that
identifies that an appointment was received and the
user is its owner, and the "Appointment confirmed"
checkbox is selected. Otherwise, it the checkbox is
selected that identifies that the appointment was
canceled.

Logic of selecting data for synchronization
To select changes to the list of appointments selected for MS Exchange folder synchronization, use the following
terms: select appointments for MS Exchange, which were modified after the last contact synchronization or an MS
Exchange appointment, which was not marked as synced. The appointments which were modified have
corresponding contacts in bpm'online. The updated changes are applied in the corresponding system.

When you select modified bpm'online activities, select the following:

activities which are recorded in the synchronization metadata as MS Exchange appointments via
RemoteId (determined by a unique appointment ID in the ICalId calendar);
activities with a date of the last modification that does not correspond to the date of the last
synchronization.
one appointment in bpm'online corresponds to several appointments in MS Exchange for each
participant.

When selecting new bpm'online activities, configure a set of common and custom filters. The main filter conditions
are:

1. Activity type is not "Email".
2. Activity has the [Display in calendar] checkbox selected.

A user can specify activity groups that will be exported from bpm'online.

Bpm’online developer guide 933

Logic of selecting appointment participants
When you synchronize an activity from MS Exchange to bpm'online, only contacts that have email addresses from
the list of appointment participants in MS Exchange are added to the [Participants] detail.

When you synchronize activities from bpm'online to MS Exchange, the appointment participants for MS Exchange
are filled in with primary contact email addresses.

Data Enrichment and Prediction

Contents
Contact data enrichment from emails
Machine learning service
Creating data queries for the machine learning model

Contact data enrichment from emails

Introduction
Data enrichment from emails is available in bpm’online since version 7.10.0. The system scans emails and identifies
information that can be used to enrich contact data.

The enrichment process
The main data enrichment stages (Fig. 1):

Fig. 1. Receiving contact/account data from an email

1. The existing Sync Engine synchronization method connects to the mail server. The mail server sends new
emails to the Sync Engine.

2. Sync Engine saves the received emails in the database as activities with the Email type.

3. The bpm'online planner periodically performs a task that starts the Email Mining Job process. This process
selects some of the last (by creation date) activities with the Email type that were not previously processed by it.
From each activity record, the body of the email and its format (plain–text or html) are selected.

Bpm’online developer guide 934

4. The Email Mining Job process for each selected email sends an http request to the Enrichment Service cloud
service.

5. Enrichment Service performs the following actions:

selects a chain of individual emails (replies) from the email;
selects a signature for each email (signature);
separates the entity (entity extraction) from the signature – contact (name, position), telephones, emails
and web addresses, social networks, other means of communication, addresses, organization names.

Enrichment Service returns the gathered in the http–response as a specific structure in the JSON format.

6. The Email Mining Job process parses the structure received from the service and stores it in bpm'online tables
(see Figю 2).

Fig. 2. The data structure for storing entities selected from the email

The main purpose of the tables shown in Fig. 2:

EnrchTextEntity – stores information about one entity selected from an email. The Type field defines the
type of this entity (contact, communication, address, organization, etc.). The data itself is stored in the
JSON format in the JsonData field.
EnrchEmailData – defines a set of information for enrichment selected from a single email.
EnrchFoundContact – a contact in bpm'online, identified by the data selected from the email. Stores a link
to the bpm'online contact and EnrchTextEntity of the Contact type.
EnrchFoundAccount – stores information about the identified bpm'online account (similar to the
EnrchFoundContact table).

Bpm’online developer guide 935

Activity – the fields added to the existing activity table show the connection between the Email activity
and the EnrchEmailData objects with the current status of the information extraction process.
EnrchProcessedData – contains information about processed data, either accepted or rejected by the user
in the enrichment process.

7. The Email Mining Job process notifies the user about the extraction process being finished. Messages are sent via
the websocket channels to users who see the messages being processed in the communication panel. If the email
contains information that may be used to enrich an associated contact, (or used to create a new contact altogether),
the corresponding icon is displayed in the application interface in the upper right corner of the email (Fig. 3).

Fig. 3. Enrichment availability icon

An email like that will enable the user enrich or create a new contact of the system (Fig. 4).

Fig. 4. Enrichment action

System settings
Enrichment system settings:

TextParsingService – the address of the Enrichment Service cloud–service for data enrichment. Filled
automatically for on–demand users. Required field.
CloudServicesAPIKey – the key for accessing the cloud service API. Filled automatically for on–demand
users. Required field.
EmailMiningPackageSize – the number of emails processed at once. The Email Mining Job process will
process as many emails each time as it is specified in this system setting. Default value – 10.
EmailMiningPeriodMin – the frequency (in minutes) of running the Email Mining Job process.

ATTENTION

If the value of EmailMiningPeriodMin is less than or equal to zero, then the process will not be scheduled and
the functionality will be disabled. To re–enable the process, set the value of the setting >=1, restart the
application pool of the application, go to the login page and enter the application.

EmailMiningIdentificationActualPeriod – the period of relevance (in days) of contacts / accounts
identification. If the specified period has expired and a new email is processed for the previously identified
contact, the identification will be made again.

Identification sequence
Identifying contacts

1. Search by full name.
2. Search by name and last name.
3. Search by email addresses. Only those email addresses that do not belong to free or temporary email services

are taken into account.
4. Search by phone. The search takes place only for the last digits of the contact's phone numbers.

If at any of the identification stages a data duplicate is detected, the identification process will be stopped.

Bpm’online developer guide 936

Identifying accounts

1. Search by the [Name] or [Alternative name] columns (case– insensitive).
2. Search by web address.
3. Search by email addresses. Only those email addresses that do not belong to free or temporary email services

are taken into account. From the email address, the domain is allocated and the search for the
communication facilities of the account for the filter starts with one of the following domain variants:
http://<domain>, https://<domain>, http://www.<Domain>, https://www.<domain>, www.<domain>,
<domain>.

If at any of the identification stages a data duplicate is detected, the identification process will be stopped.

Hashing information
The information extracted from the email is hashed. As a result, in the EnrchTextEntity and EnrchEmailData
tables, a hash value is written in the Hash field that uniquely identifies the given unit or set of extracted data in the
system. This allows for two important improvements: resource savings when re–identifying contacts / accounts
from a set of extracted information and grouping the information received for a contact.

Re–identification of contacts/accounts

For example, the system received an email with the signature of “John Smith Jr.”, the telephone number “123–45–
67” and the address “71 Pilgrim Avenue Chevy Chase, MD 20815”. For the current data set, the system computed a
hash of “Hash1” and recorded it in the Hash field of the EnrchEmailData table based on its contents. The
identification of the contact revealed the contact “John Smith” in the system and recorded the result in the
EnrchFoundContact table.

After a while the system received another email with a signature, which mentions the “John Smith Jr.” contact with
the same phone and address. The system calculated the same hash for the current data set – “Hash1”, because the
incoming hash data has not changed. Instead of creating new records in the EnrchEmailData and EnrchTextEntity
tables and re–identifying this contact, the system found the previously created record in the Hash field of the
EnrichEmailData table and wrote a reference to this record in the Activity table.

This process saves the amount of data stored and does not produce resource–intensive contact identification
requests.

Grouping the highlighted information for a contact

Since each unit of the allocated information in EnrchTextEntity has a hash code based on its contents, when
enriching the data of an existing contact, it becomes possible to use the information found in all the email in which it
participated. When you select the data for enrichment, it is grouped by the Hash field and will not be duplicated.

Machine learning service

Introduction
The machine learning service (or lookup value prediction service) uses statistical analysis methods for machine
learning based on historical data. For example, a history of customer communications with customer support is
considered historical data in bpm’online. The message text, the date and the account category are used. The result is
the [Responsible Group] field.

Bpm’online interaction with the prediction service
There are two stages of model processing in bpm’online: training and prediction.

Bpm’online developer guide 937

https://en.wikipedia.org/wiki/Hash_function

Prediction model is the algorithm which builds predictions and enables the system to automatically make decisions
based on historical data.

Training

The service is “trained” at this stage (Fig. 1). Main training steps:

Establishing a session for data transfer and training.
Sequentially selecting a portion of data for the model and uploading it to the service.
Requesting to include a model a training queue.
Training engine processes the queue for model training, trains the model and saves its parameters to the
local database.
Bpm'online occasionally queries the service to get the model status.
Once the model status is set to Done, the model is ready for prediction.

Fig. 1. Bpm’online interaction with the prediction service on the training stage

Prediction

The prediction task is performed through a call to the cloud service, indicating the Id of the model instance and the
data for the prediction. The result of the service operation is a set of values with prediction probabilities, which is
stored in bpm'online in the MLPrediction table.

If there is a prediction in the MLPrediction table for a particular entity record, the predicted values for the field are
automatically displayed on the edit page (Fig. 2).

Fig. 2. Displaying prediction data

Bpm’online developer guide 938

Bpm'online settings and data types for working with the
prediction service
Bpm'online setup

The following data is provided for working with the prediction service in bpm'online.

1. The CloudServicesAPIKey system setting authenticates the bpm'online instance in cloud services.
2. The record in the [ML problem types] (MLProblemTypes) lookup with the populated [ServiceUrl] field is the

address of the implemented prediction service.
3. The model records in the [ML model] (MLModel) lookup that contain information about the selected data for

the model, the training period, the current training status, etc. For each model, the MLProblemType field
must contain a reference to the correct record of the [ML problem types] lookup.

4. The MLModelTrainingPeriodMinutes system setting determines the frequency of model synchronization
launch.

The MLModel lookup

The primary fields of MLModel lookup are given in Table 1.

Table 1. – Main MLModel lookup fields

Field Data type Purpose
Name String Model name

ModelInstanceUId Unique identifier The identifier of the current model instance.

TrainedOn Date/time The date/time of instance training.

TriedToTrainOn Date/time The date/time of last training attempt.

TrainFrequency Integer Model retraining frequency (days).

MetaData String Metadata with selection column types. Uses the following JSON
format:

{
 inputs: [
 {
 name: "Name of the field 1 in the
data sample",
 type: "Text",
 isRequired: true
 },
 {
 name: "Name of the field 2 in the
data sample",
 type: "Lookup"
 },
 //...
],
 output: {
 name: "Resulting field",
 type: "Lookup",

Bpm’online developer guide 939

 displayName: "Name of the column to
display"
 }
}

In this code:

inputs – a set of incoming columns for the model.
output – a column, the value of which the model should
predict.

Column descriptions support the following attributes:

name – field name from the TrainingSetQuery
expression.
type – data type for the training engine. Supported
values:

“Text” – text column.
“Lookup” – lookup column.
“Boolean” – logical data type.
“Numeric” – numeric type.
“DateTime” – date and time.

isRequired – mandatory field value (true / false). Default
value – false.

TrainingSetQuery String C#-expression of the training data selection. This expression
should return the Terrasoft.Core.DB.Select class instance. For
example:

(Select)new Select(userConnection)
.Column("Id")
.Column("Symptoms")
.Column("CreatedOn")
.From("Case", "c")
.OrderByDesc("c", "CreatedOn")

ATTENTION

Select the “Unique identifier” column type in the selection
expression. This column should have the Id name.

ATTENTION

If the selection expression contains a column for sorting,
then this column must be present in the resulting selection.

You can find examples of data queries creating in the "Creating
data queries for the machine learning model" article.

RootSchemaUId Unique identifier A link to an object schema for which the prediction will be
executed.

Status String The status of model processing (data transfer, training, ready for
forecasting).

InstanceMetric Number A quality metric for the current model instance.

MetricThreshold Number Lowest threshold of model quality.

PredictionEnabled Logical A flag that includes the prediction for this model.

TrainSessionId Unique identifier Current training session.

MLProblemType Unique identifier Machine learning problem (defines the algorithm and service url

Bpm’online developer guide 940

for model training).

A set of classes for training

MLModelTrainerJob: IJobExecutor, IMLModelTrainerJob – model synchronization task

Orchestrates model processing on the side of bpm’online by launching data transfer sessions, starting trainings, and
also checking the status of the models processed by the service. Instances are launched by default by the task
scheduler through the standard Execute method of the IJobExecutor interface.

Public methods:

IMLModelTrainerJob.RunTrainer() is a virtual method that encapsulates the synchronization logic. The base
implementation of this method performs the following actions:

1. Selecting models for training – the records are selected from MLModel based on the following filter:

The MetaData and TrainingSetQuery fields are populated.
The Status field is not in the NotStarted, Done or Error state (or not populated at all).
TrainFrequency is more than 0.
The TrainFrequency days have passed since the last training date (TriedToTrainOn).

For each record of this selection, the data is sent to the service with the help of the predictive model trainer (see
below).

2. Selecting previously trained models and updating their status (if necessary).

The data transfer session for the selection starts for each suitable model. The data is sent in packages of 1000
records during the session. For each model, the selection size is limited to 75,000 records.

MLModelTrainer: IMLModelTrainer – the trainer of the prediction model.

Responsible for the overall processing of a single model during the training stage. Communication with the service is
provided through a proxy to a predictive service (see below).

Public methods:

IMLModelTrainer.StartTrainSession() – sets the training session for the model.

IMLModelTrainer.Upload Data() – transfers the data according to the model selection in packages of 1000 records.
The selection is limited to 75,000 records.

IMLModelTrainer.BeginTraining() – indicates the completion of data transfer and informs the service about the
need to put the model in the training queue.

IMLModelTrainer.UpdateModelState – requests the service for the current state of the model and updates the
Status (if necessary).

If the training was successful (Status contains the Done value), the service returns the metadata for the trained
instance, particularly the accuracy of the resulting instance. If the precision is greater than or equal to the lower
threshold (MetricThreshold), the ID of the new instance is written in the ModelInstanceUId field.

MLServiceProxy: IMLServiceProxy – proxy to the prediction service

A wrapper class for http requests to a prediction service.

Public methods:

IMLServiceProxy.UploadData() – sends a data package for the training session.

MLServiceProxy.BeginTraining() – calls the service for setting up training in the queue

IMLServiceProxy.GetTrainingSessionInfo() – requests the current state from the service for the training session.

IMLServiceProxy.SafeClassify(Guid modelInstanceUId, Dictionary data) – calls the prediction service of the field
value for a single set of field values for the previously trained model instance. In the Dictionary data parameter, the

Bpm’online developer guide 941

field name is passed as the key, which must match the name specified in the MetaData field of the model lookup. If
the result is successful, the method returns a list of values with the ClassificationResult type.

Basic properties of the ClassificationResult type:

Value – field value.
Probability – the probability of a given value in the [0:1] range. The sum of the probabilities for one list of
results is close to 1 (values of about 0 can be omitted).
Significance - the level of importance of this prediction. This is a string enumeration with the following
options:

High - this field value has a distinct advantage over other values from the list. Only one element
in the prediction list can have this level.
Medium - the value of the field is close to several other high values in the list. For example, two
values in the list have a probability of 0.41 and 0.39, and all the others are significantly smaller.
None - irrelevant values with low probabilities.

Expanding the training model logic

The above chain of classes calls and creates instances of each other through the IOC of the
Terrasoft.Core.Factories.ClassFactory container.

If you need to replace the logic of any component, you need to implement the appropriate interface. When you start
the application, you must bind the interface in your own implementation.

Interfaces for logic expansion:

IMLModelTrainerJob – the implementation of this interface will enable you to change the set of models for training.

IMLModelTrainer – responsible for the logic of loading data for training and updating the status of models.

IMLServiceProxy - the implementation of this interface will enable yo to execute queries to arbitrary predictive
services.

Auxiliary classes for forecasting

Auxiliary (utility) classes for forecasting enable you to implement two basic cases:

1. Prediction at the time of creating or updating an entity record on the server.
2. Prediction when the entity is changed on the edit page.

While predicting on the bpm'online’s server side, a business process is created that responds to the entity
creation/change signal, reads a set of fields, and calls the prediction service. If you get the correct result, it stores the
set of field values with probabilities in the MLPrediction table. If necessary, the business process writes a separate
value (for example, with the highest probability) to the corresponding field of the entity.

To call the prediction from the edit page, do the following:

Extend the edit page.
Develop a logic for changing the fields used for the prediction.
Call the bpm'online web-service to perform the communication logic with the prediction service while
preserving the results.
The result of the call is displayed on the edit page in the predicted field.

As an example, consider expanding the ContactPageV2 page of the pre-installed ML package.

LookupMLPredictor

A utility class that helps to predict the value of a field based on a particular model for a particular entity.

Public methods:

TryLoadModelDataForPrediction() – loads and checks the model from the MLModel table (using the Id). Returns
true if the model is trained and the PredictionEnabled flag is set for it.

PredictAndSaveResults() – prepares the data for the prediction service, calls it and saves the results in
MLPrediction. Possible method parameters are listed in table 2.

Bpm’online developer guide 942

Table 2. – Main PredictAndSaveResults() method parameters

Name Description
string schemaName The name of the schema of the target entity for

which the prediction is performed.

Guid entityId Id of the entity record.

string targetColumnName Name of the predicted field.

Dictionary inputColumnPathMap A set of correspondences between the columns
of the entity (or paths to linked columns) and
fields in the model's metadata. Example:

new Dictionary { { "Symptoms", "Symptoms" },
{ "CreatedOn", "CreatedOn" }, {
"Account.Industry", "IndustryId" } };

Func<IEnumerable<ClassificationResult>,
ClassificationResult> valueSelectorFunc

This parameter is optional. A delegate connected
to a method that enables you to specify which
value from the predicted list will be written to
the predicted field. By default, only the value for
which the Significance property is set to "High"
will be recorded in the field.

Creating data queries for the machine learning model

Introduction
Use the Terrasoft.Core.DB.Select class instance for queries of training data or data for predicting machine learning
service (see “Machine learning service” and “How to implement custom prediction model”). It is
dynamically imported by the Terrasoft.Configuration.ML.QueryInterpreter.

ATTENTION

The QueryInterpreter interpreter does not allow the use of lambda expressions.

Use the provided userConnection variable as an argument of the Terrasoft.Core.UserConnection type in the Select
constructor when building query expression. The column with the “Id” alias (the unique id of the target object
instance) is a required in the query expression.

The Select expression can be complex. Use the following practices to simplify it:

Dynamic adding of types for the interpreter.
Using local variables.
Using the Terrasoft.Configuration.QueryExtensions utility class.

Dynamic adding of types for the interpreter
You can dynamically add types for the interpreter. For this the QueryInterpreter class provides the
RegsiterConfigurationType and RegisterType methods. You can use them directly in the expression. For example,
instead of direct using the type id:

new Select(userConnection)
 .Column("Id")
 .Column("Body")

Bpm’online developer guide 943

https://academy.terrasoft.ru/api/netcoreapi/7.12.0/index.html#Terrasoft.Core~Terrasoft.Core.DB.Select.html

 .From("Activity")
 .Where("TypeId").IsEqual(Column.Const("E2831DEC-CFC0-DF11-B00F-001D60E938C6"));

you can use the name of a constant from dynamically registered enumeration:

RegisterConfigurationType("ActivityConsts");
new Select(userConnection)
 .Column("Id")
 .Column("Body")
 .From("Activity")
 .Where("TypeId").IsEqual(Column.Const(ActivityConsts.EmailTypeUId));

Using local variables
You can use local variables to avoid code duplication and more convenient structuring. Constraint: the type of the
variable must be statically calculated and defined by the var word.

For example, the query with repetitive use of delegates:

new Select(userConnection)
 .Column("Id")
 .Column("Body")
 .From("Activity")
 .Where("CreatedOn").IsGreater(Func.DateAddMonth(-1, Func.CurrentDateTime()))
 .And("StartDate").IsGreater(Func.DateAddMonth(-1, Func.CurrentDateTime()));

you can write in a following way:

var monthAgo = Func.DateAddMonth(-1, Func.CurrentDateTime());

new Select(userConnection)
 .Column("Id")
 .Column("Body")
 .From("Activity")
 .Where("StartDate").IsGreater(monthAgo)
 .And("ModifiedOn").IsGreater(monthAgo);

Using the Terrasoft.Configuration.QueryExtensions utility
class
The Terrasoft.Configuration.QueryExtensions utility class provides several extending methods for the
Terrasoft.Core.DB.Select. This enables to build more compact queries.

As the object sourceColumn argument you can use following types (they will be transformed to the
Terrasoft.Core.DB.QueryColumnExpression) for all extending methods:

System.String – the name of the column in the “TableAlias.ColumnName as ColumnAlias” format (where
the TableAlias and ColumnAlias are optional) or “*” – all columns.
Terrasoft.Core.DB.QueryColumnExpression – will be added without changes.
Terrasoft.Core.DB.IQueryColumnExpressionConvertible – will be converted.
Terrasoft.Core.DB.Select – will be considered as subquery.

ATTENTION

An exception will be thrown if the type is not supported.

Terrasoft.Configuration.QueryExtensions use cases

1. The public static Select Cols(this Select select, params object[] sourceColumns) method

Adds specified columns or subexpressions to the query.

Bpm’online developer guide 944

Using the Cols() extension method, instead of the following expression:

new Select(userConnection)
 .Column("L", "Id")
 .Column("L", "QualifyStatusId")
 .Column("L", "LeadTypeId")
 .Column("L", "LeadSourceId")
 .Column("L", "LeadMediumId").As("LeadChannel")
 .Column("L", "BusinesPhone").As("KnownBusinessPhone")
 .From("Lead").As("L");

you can write:

new Select(userConnection).Cols(
 "L.Id",
 "L.QualifyStatusId",
 "L.LeadTypeId",
 "L.LeadSourceId",
 "L.LeadMediumId AS LeadChannel",
 "L.BusinesPhone AS KnownBusinessPhone")
 .From("Lead").As("L");

2. The public static Select Count(this Select select, object sourceColumn) method

Adds an aggregation column to calculate the number of non-empty values to the query.

For example, instead:

var activitiesCount = new Select(userConnection)
 .Column(Func.Count(Column.Asterisk()))
 .From("Activity")

you can write:

var activitiesCount = new Select(userConnection)
 .Count("*") // You can also specify the column name.
 .From("Activity")

3. The public static Select Coalesce(this Select select, params object[] sourceColumns)
method

Adds a column with the function of determining the first value not equal to NULL to the query.

For example, instead:

new Select(userConnection)
 .Cols("L.Id")
 .Column(Func.Coalesce(
 Column.SourceColumn("L", "CountryId"),
 Column.SourceColumn("L", "CountryId"),
 Column.SourceColumn("L", "CountryId")))
 .As("CountryId")
 .From("Lead").As("L")
 .LeftOuterJoin("Contact").As("C").On("L", "QualifiedContactId").IsEqual("C",
"Id")
 .LeftOuterJoin("Account").As("A").On("L", "QualifiedAccountId").IsEqual("A",
"Id");

you can write:

new Select(userConnection)
 .Cols("L.Id")
 .Coalesce("L.CountryId", "C.CountryId", "A.CountryId").As("CountryId")
 .From("Lead").As("L")

Bpm’online developer guide 945

 .LeftOuterJoin("Contact").As("C").On("L", "QualifiedContactId").IsEqual("C",
"Id")
 .LeftOuterJoin("Account").As("A").On("L", "QualifiedAccountId").IsEqual("A",
"Id");

4. The public static Select DateDiff(this Select select, DateDiffQueryFunctionInterval
interval, object startDateExpression, object endDateExpression) method

Adds a column that specifies the date difference to the query.

For example, instead:

new Select(_userConnection)
 .Cols("Id")
 .Column(Func.DateDiff(DateDiffQueryFunctionInterval.Day,
 Column.SourceColumn("L", "CreatedOn"),
Func.CurrentDateTime())).As("LeadAge")
 .From("Lead").As("L");

you can write:

var day = DateDiffQueryFunctionInterval.Day;
new Select(userConnection)
 .Cols("L.Id")
 .DateDiff(day, "L.CreatedOn", Func.CurrentDateTime()).As("LeadAge")
 .From("Lead").As("L");

5. public static Select IsNull(this Select select, object checkExpression, object
replacementValue)

Adds a column with the function replacing NULL value with a replacement expression.

For example, instead:

new Select(userConnection).Cols("Id")
 .Column(Func.IsNull(
 Column.SourceColumn("L", "CreatedOn"),
 Column.SourceColumn("L", "ModifiedOn")))
 .From("Lead").As("L");

you can write:

new Select(userConnection).Cols("L.Id")
 .IsNull("L.CreatedOn", "L.ModifiedOn")
 .From("Lead").As("L");

Bpm'online lending

Contents
Terrasoft.Configuration.EntityMapper class

Terrasoft.Configuration.EntityMapper class

Introduction

Bpm’online developer guide 946

The Terrasoft.Configuration.EntityMapper class is a utility configuration class that stored in the [FinAppLending] package of the
Lending product. EntittyMapper allows to map data of one Entity with another using rules defined in the configuration file. Using
the approach of mapping the data of different entities avoids the appearance of a monotonous code.

The idea of mapping the data of different entities is implemented in the following classes:

EntityMapper – implements the mapping logic.
EntityResult – defines the resulting type of the mapped entity.
MapConfig – a set of mapping rules.
DetailMapConfig – used to set up a list of mapping rules of the details and entities connected with them.
RelationEntityMapConfig – contains rules for mapping connected entities.
EntityFilterMap – a filter for database query.

Terrasoft.Configuration.EntityMapper
Table 1. Methods of the Terrasoft.Configuration.EntityMapper class

Name Parameters Returned
value

Description

public virtual EntityResult GetMappedEntity(Guid recId,
MapConfig config)

recId – GUID
recodrs in the
database.

config – an
instance of the
MapConfig class,
which is a set of
mapping rules.

An instance of the
EntityResult class,
which is a mapped
data for two Entity
objects.

Returns mapped
data for two
Emtity objects.

public virtual Dictionary<string, object> GetColumnsValues(Guid
recordId, MapConfig config, Dictionary<string, object> result)

recordId – GUID
recodrs in the
database.

Config – an
instance of the
MapConfig class,
which is a set of
mapping rules.

Result – a
dictionary of
columns and their
values of the
mapped entity.

A dictionary of
columns and their
values.

Gets the main
entity from the
database and
matches its
columns and
values according
to the rules
specified in the
config object.

public virtual Dictionary<string, object>
GetRelationEntityColumnsValues(List<RelationEntityMapConfig>
relations, Dictionary<string, object> dictionaryToMerge, string
columnName,
Terrasoft.Nui.ServiceModel.DataContract.LookupColumnValue
entitylookup)

relations – a list of
rules for obtaining
related records.

dictionaryToMerge
– a dictionary with
columns and theis
values.

columnName –
name of the parent
column

entitylookup – an
object that contains
name and Id of the
record in the
database.

A dictionary of
columns and their
values.

Gets the related
entities from the
database and
matches them to
the main
entities.

protected virtual EntitySchemaQuery
SetColumns(EntitySchemaQuery esq, Dictionary<string, string>
columns)

esq – instance of
the
EntitySchemaQuery
class

Columns – a
dictionary of names
of the mapped

The instance of the
EntitySchemaQuery
class.

Sets columns for
selection from
the database.

Bpm’online developer guide 947

columns.

protected EntitySchemaQuery SetFilters(EntitySchemaQuery esq,
List<EntityFilterMap> filters)

esq – instance of
the
EntitySchemaQuery
class

filters – a list of the
filters.

The instance of the
EntitySchemaQuery
class.

Sets filters for
the entities to
select records
from the
database.

protected virtual Dictionary<string, List<Dictionary<string,
object>>> GetDetailsColumnsValues(Guid recId, MapConfig
config, Dictionary<string, List<Dictionary<string, object>>>
result)

recId – GUID
recodrs in the
database.

Config – an
instance of the
MapConfig class,
which is a set of
mapping rules.

Result – a
dictionary of
columns and their
values of the
mapped entity.

A dictionary of
details, detail
columns and
column values.

Gets the entity
from the
database and
matches its
columns and
values according
to the rules
specified in the
config object.

Terrasoft.Configuration.EntityResult
Used as a container for returning mapped values.

Table 2. Main properties of the Terrasoft.Configuration.EntityResult class

Property Type Description
Columns: Dictionary<string, object> A dictionary of main entity column names and their values.

Details Dictionary<string,
List<Dictionary<string,
object>>>

A dictionary of the detail names with the list of their columns
and values.

Terrasoft.Configuration.MapConfig
Used to set a list of mapping rules

Table 3. Main properties of the Terrasoft.Configuration.MapConfig class

Property Type Description
SourceEntityName string Entity name in the database.

Columns: Dictionary<string, object> A dictionary with the names of columns of one entity and
compared columns of another entity.

DetailsConfig List<DetailMapConfig> A list of configuration objects with rules for details.

CleanDetails List<string> A list of detail names for cleaning their values.

RelationEntities List<RelationEntityMapConfig> List of configuration objects with rules for mapping related
records with the main entity.

Terrasoft.Configuration.DetailMapConfig
Used to set up a list of mapping rules of the details and entities connected with them.

Table 4. Main properties of the Terrasoft.Configuration.DetailMapConfig class

Property Type Description
DetailName string Detail name (Tt ensure the uniqueness of detail instance).

SourceEntityName string Entity name in the database.

Columns: Dictionary<string, object> A dictionary with the names of columns of one entity and
compared columns of another entity.

Bpm’online developer guide 948

Filters List<EntityFilterMap> A list of configuration objects with filtration rules for more
accurate selections from the database.

RelationEntities List<RelationEntityMapConfig> List of configuration objects with rules for mapping related
records with the main entity.

Terrasoft.Configuration.RelationEntityMapConfig
Contains rules for mapping connected entities.

Table 5. Main properties of the Terrasoft.Configuration.RelationEntityMapConfig class

Property Type Description
ParentColumnName string The name of the parent column, which, when found, will

trigger the logic for obtaining and mapping the entity data.

SourceEntityName string Entity name in the database.

Columns: Dictionary<string, object> A dictionary with the names of columns of one entity and
compared columns of another entity.

Filters List<EntityFilterMap> A list of configuration objects with filtration rules to refine
selections from the database.

RelationEntities List<RelationEntityMapConfig> List of configuration objects with rules for mapping related
records with the main entity.

Terrasoft.Configuration.EntityFilterMap
A filter for database query.

Table 5. Main properties of the Terrasoft.Configuration.EntityFilterMap class

Property Type Description
ColumnName string The name of the column, which when found, will start the

filtering logic.

Value object The value to compare to.

Bpm'online marketing

Contents
Campaign elements

Campaign elements

Introduction
Marketing campaign diagrams are created in a visual campaign designer in the [Campaigns] section. The campaign
diagram consists of campaign elements and transitions (flows).

Once the campaign is launched, the flow-schema of the campaign is created. The campaign elements are converted
to a campaign execution chain and the start time is calculated for each element. The flow-schema can be
significantly different from the visual campaign diagram in the designer.

Campaign elements can be synchronous and asynchronous.

Synchronous elements are executed according to the order specified in the flow-schema. The transition to the
subsequent elements is performed once the synchronous element is executed. The execution flow is blocked and

Bpm’online developer guide 949

https://academy.bpmonline.com/documents/marketing/7-11/campaigns-section

waits for the operation to complete.

Asynchronous elements wait for the finished execution of certain external systems, resources, asynchronous
services, or user reactions (e.g., clicking a link in an email).

Their position in the flow-schema is determined by their element type. The [Add from folder] and [Exit according to
folder conditions] elements are executed first. These elements are used to add or remove participants from the
campaign audience. Campaign participants are moving from one element to the other through the flows. If the flow
has certain configured conditions, the system filters the participants based on these conditions and determines the
execution time of the subsequent element.

The mechanism for planning the next campaign launch
The following is the algorithm for for planning the next campaign launch:

1. The time of the next launch of an element is determined by the configured delay.

The “In a day” option is selected. The date and time of the next execution of this element is calculated with
the help of the following formula:

Date and time of execution = current date and time + N minutes / hour,

where N is the value of the [Number of days] field, populated by the user.

The “Few days” option is selected. The next execution of this element is performed with the help of the
following formula:

Date = [current date+ N days],

where N is the value of the [Number of days] field, populated by the user.

Execution time = time specified by the user.

The “No, execute after the previous one” option is selected. The next execution of this element is
performed at the time of the next launch of the campaign.

2. According to the variant described in paragraph 1, the launch time for each element of the campaign scheme is
calculated.

3. Upon comparing all values, the closest launch time selected and set as the campaign launch time.

4. Forming a list of elements, which will be executed upon next launch. The list contains all elements, the launch
time of which is the same as the campaign launch time.

Main campaign element classes
JavaScript classes

The base element schema class is ProcessFlowElementSchema. The CampaignBaseCommunicationSchema is the
parent class for all elements in the [Communications] group. The CampaignBaseAudienceSchema is the parent
class for the [Audience] group of elements.

When creating an element in a new group of elements, it is recommended to implement the base schema of the
element first, and then inherit each element from it.

Each schema corresponds to the schema of the element properties edit page. The base edit page schema is
BaseCampaignSchemaElementPage. Each new element page extends the base page.

The CampaignSchemaManager class manages the schemas of elements available in the system. It inherits the main
functionality of the BaseSchemaManager class.

C# classes

Simple element classes

CampaignSchemaElement – base class. All other elements are inherited from this class.

SequenceFlowElement – base class for the [Sequence flow] element.

ConditionSequenceFlowElement – base class for the [Condition flow] element.

Bpm’online developer guide 950

EmailConditionalTransitionElement – transition element class by response.

AddCampaignParticipantElement – add audience (participants) element class.

ExitFromCampaignElement – the class of the audience exit element.

MarketingEmailElement – the class of the Email element.

Executable element classes

CampaignProcessFlowElement – base class. All other executable elements are inherited from this class.

AddCampaignAudienceElement – audience element class.

ExcludeCampaignAudienceElement – the class of the audience exit element.

BulkEmailCampaignElement – the class of the Email element.

Bpm'online service

Contents
PortalMessagePublisherExtensions mixin. Portal messages in SectionActionDashboard

PortalMessagePublisherExtensions mixin. Portal messages in
SectionActionDashboard

Introduction
A mixin is a class designed to extend the functions of other classes. Mixins are separately created classes with
additional functionality. Learn more about mixins in the “Mixins. The "mixins" property article.

The PortalMessagePublisherExtensions mixin is used for the extension of the SectionActionDashboard schema
(and its derived schemas). It allows you to extend the configuration of the SectionActionDashboard tabs with the
PortalMessageTab portal message tab and add the corresponding Portal message portal. The mixin is implemented
in the PortalMessagePublisher package and is available in the ServiceEnterprise product (or in the bundles that
include this product).

Methods

Name Description
extendTabsConfig(config) : Object Extends the configuration of the SectionActionDashboard tabs with the

PortalMessageTab portal messages tab.

Returns the augmented object (Object) of the SectionActionDashboard tab
configuration.

The config parameter (Object) – SectionActionDashboard tab
configuration object.

extendSectionPublishers(publishers)
: Array

Adds a portal channel (Portal) to the message publisher collection.

Returns the augmented collection of message publishers (Array).

The publishers (Array) parameter is the collection of message publishers.

Bpm’online developer guide 951

Use case
define("CaseSectionActionsDashboard", ["PortalMessagePublisherExtensions"],
function() {
 return {
 mixins: {
 /**
 * @class PortalMessagePublisherExtensions extends tabs and publishers
configs.
 */
 PortalMessagePublisherExtensions:
"Terrasoft.PortalMessagePublisherExtensions"
 },
 methods: {
 /**
 * @inheritdoc Terrasoft.SectionActionsDashboard#getExtendedConfig
 * @overridden
 */
 getExtendedConfig: function() {
 // Getting the tab configuration object from the parent method.
 var config = this.callParent(arguments);
 // Calling the mixin method, adding a portal tab configuration.

this.mixins.PortalMessagePublisherExtensions.extendTabsConfig.call(this, config)
 // Returns the extended configuration object.
 return config;
 },

 /**
 * @inheritdoc Terrasoft.SectionActionsDashboard#getSectionPublishers
 * @overridden
 */
 getSectionPublishers: function() {
 // Getting a collection of message publishers from the parent method.
 var publishers = this.callParent(arguments);
 // Calling the mixin method, adding a portal channel.

this.mixins.PortalMessagePublisherExtensions.extendSectionPublishers.call(this,
publishers);
 // Returns the extended collection of message publishers.
 return publishers;
 }
 },
 diff: /**SCHEMA_DIFF*/[
 {
 "operation": "insert",
 "name": "PortalMessageTab",
 "parentName": "Tabs",
 "propertyName": "tabs",
 "values": {
 "items": []
 }
 },
 {
 "operation": "insert",
 "name": "PortalMessageTabContainer",
 "parentName": "PortalMessageTab",
 "propertyName": "items",
 "values": {
 "itemType": this.Terrasoft.ViewItemType.CONTAINER,
 "classes": {

Bpm’online developer guide 952

 "wrapClassName": ["portal-message-content"]
 },
 "items": []
 }
 },
 {
 "operation": "insert",
 "name": "PortalMessageModule",
 "parentName": "PortalMessageTab",
 "propertyName": "items",
 "values": {
 "classes": {
 "wrapClassName": ["portal-message-module", "message-module"]
 },
 "itemType": this.Terrasoft.ViewItemType.MODULE,
 "moduleName": "PortalMessagePublisherModule",
 "afterrender": {
 "bindTo": "onMessageModuleRendered"
 },
 "afterrerender": {
 "bindTo": "onMessageModuleRendered"
 }
 }
 }
]/**SCHEMA_DIFF*/
 };
});

DataManager class description and use cases

Introduction
Sometimes It may be necessary to create, modify and delete entity data without saving these changes to the database
in the process of working with the client part of the application. Saving changes to the database must take place
when the save method is explicitly called. These functions are implemented in the DataManager and
DataManagerItem classes.

The DataManager class is a singleton available through the Terrasoft global object. This class provides the
dataStore repository. The contents of one or more database tables can be loaded into the repository. Example:

dataStore: {
SysModule: sysModuleCollection,
SysModuleEntity: sysModuleEntityCollection
}

sysModuleCollection and sysModuleEntityCollection are the data collections of the DataManagerItem type of the
SysModule and SysModuleEntity schemas. Each collection record is a record of the corresponding database table.

DataManager and DataManagerItem class diagram is available on Fig. 1.

Fig. 1 Class diagram

Bpm’online developer guide 953

Base properties and methods
Base properties and methods of the DataManager class are available in Table 1 and Table 2. ” article.

Table 1. The DataManager class properties

Name Type Description
dataStore Object The data collection repository.

itemClassName String Name of the record class. Has the
“Terrasoft.DataManagerItem” value.

Table 2. Main methods of the DataManager class

Name Parameters Description
select config {Object} – configuration object;

callback {Function} – callback function;

scope {Object} – the callback function
context.

If there is no data with the
config.entitySchemaName name in the
dataStore, then the method forms and
executes the request to the database and
returns the received data, or the method
will return the data collection from the
dataStore.

createItem config {Object} – configuration object;

callback {Function} – callback function;

scope {Object} – the callback function
context.

Creates a new record of the
config.entitySchemaName type with the
config.columnValues colomn values.

addItem item {Terrasoft.DataManagerItem} –
added record.

Adds the item record to the schema data
collection.

findItem entitySchemaName {String} – data
collection name;

id {String} — record Id.

Returns the record of the schema data
collection with the entitySchemaName
name and id Id.

Bpm’online developer guide 954

remove item {Terrasoft.DataManagerItem} –
deleted record.

Sets the isDeleted flag for the item record.
The record will be deleted from the
database after saving the changes.

removeItem item {Terrasoft.DataManagerItem} –
deleted record.

Deletes the record from the schema data
collection.

update config {Object} – configuration object;

callback {Function} – callback function;

scope {Object} – the callback function
context.

Updates the record with the
config.primaryColumnValue primary
column value by the config.columnValues
values.

discardItem item {Terrasoft.DataManagerItem} – a
record with the canceled changes.

Cancels changes for the item record made in
current working session with the
DataManger object.

save config {Object} – configuration object;

callback {Function} – callback function;

scope {Object} – the callback function
context.

Saves the schema data collections specified
in the config.entitySchemaNames to the
database.

Base properties and methods of the DataManagerItem class are available in Table 3 and Table 4. ” article.

Table 3. The DataManagerItem class properties

Name Type Description
viewModel Terrasoft.BaseViewMode Object projection of the record in the database.

Table 4. Main methods of the DataManagerItem class

Name Parameters Description
setColumnValue columnName {String} – column name;

columnValue {String} – column value.

Sets the new columnValue value for the
columnName column.

getColumnValue columnName {String} – column name; Returns the value of the columnName
column.

getValues No. Returns values of all record columns.

remove No. Sets isDeleted flag to the record.

discard No. Cancels changes for the record made in
current working session with the
DataManger object.

save No. Saves changes in the database.

getIsNew No. Returns the flag that the record is new.

getIsChanged No. Returns the flag that the record was
modified.

Examples
Getting records from the [Contact] table:

// Definition of the configuration object.
var config = {
 //Entity Schema Name.
 entitySchemaName: "Contact",
 // Remove duplicates in the resulting dataset.
 isDistinct: true

Bpm’online developer guide 955

};
// Receiving data.
Terrasoft.DataManager.select(config, function (collection) {
 // Saving received records to local storage.
 collection.each(function (item) {
 Terrasoft.DataManager.addItem(item);
 });
}, this);

Adding new record to the DataManager object:

// Definition of the configuration object.
var config = {
 // Entity Schema Name.
 entitySchemaName: "Contact",
 // Column values.
 columnValues: {
 Id: "00000000-0000-0000-0000-000000000001",
 Name: "Name1"
 }
};
// Creating a new record.
Terrasoft.DataManager.createItem(config, function (item) {
 Terrasoft.DataManager.addItem(item);
}, this);

Getting the record and changing the column value:

// Getting a record.
var item = Terrasoft.DataManager.findItem("Contact",
 "00000000-0000-0000-0000-000000000001");
// Setting a new value for "Name2" to the [Name] column.
item.setColumnValue("Name", "Name2");

Deleting the record from the DataManager object:

// Definition of the configuration object.
var config = {
 // Entity Schema Name.
 entitySchemaName: "Contact",
 // Primary column value.
 primaryColumnValue: "00000000-0000-0000-0000-000000000001"
};
// Sets the isDeleted attribute for item.
Terrasoft.DataManager.remove(config, function () {
}, this);

Cancels changes made in current working session with the DataManger object.

// Getting a record.
var item = Terrasoft.DataManager.findItem("Contact",
 "00000000-0000-0000-0000-000000000001");
// Undo changes for writing.
Terrasoft.DataManager.discardItem(item);

Saves changes in the database.

// Definition of the configuration object.
var config = {
 // Entity Schema Name.
 entitySchemaNames: ["Contact"]
};
// Saving changes to the database.

Bpm’online developer guide 956

Terrasoft.DataManager.save(config, function () {
}, this);

Feature Toggle. Mechanism of enabling and disabling functions

Introduction
Feature toggle is a software development technique that provides support for connecting additional functionality in
a running application. This allows to use continuous integration, keep the application working and hide the
functionality that is under development process.

The main idea is that there is a block of additional functionality (often not fully implemented) in the source code and
conditional operator that defines if the functionality connected.

Mechanism of enabling and disabling functions
The FeaturesPage page is used to add, enable and disable functions. The page address is:

[Application address]/0/Nui/ViewModule.aspx#BaseSchemaModuleV2/FeaturesPage

Example:

http://mybpmonline.com/0/Nui/ViewModule.aspx#BaseSchemaModuleV2/FeaturesPage

To add new functions specify its code, name and description and click the [Create feature] button (Fig. 1).

Fig. 1. Interface of adding new feature

Use corresponding checkbox to enable or disable new features (Fig. 2.1). To apply changes click the [Save changes]
button (Fig. 2.2).

Fig. 2. Enable/disable feature

Bpm’online developer guide 957

Storing the functionality datain the database
A list of functionality available for enabling/disabling is stored in the Feature table of the application database,
Table is empty by default. Main Feature table fields are given in table 1.

Table 1. Main Feature table fields

Name Type Description
Id uniqueidentifier Unique Id of the record

Name varchar(250) Functionality name.

Code varchar(50) Functionality code.

Information about functionality state (enabled/disabled) stored in the FeatureState field of the
AdminUnitFeatureState table (Fig.1). The AdminUnitFeatureState table binds the Feature and SysAdminUnit
tables where users and system user groups are defined. Main AdminUnitFeatureState table fields are given in table
2.

Table 2. Main AdminUnitFeatureState table fields

Name Type Description
Id uniqueidentifier Unique Id of the record

FeatureId uniqueidentifier Unique Id of the functionality record.

SysAdminUnitId uniqueidentifier Unique Id of the user record.

FeatureState int Functionality state. 1 – enabled, 0 – disabled.

Fig. 1 Diagram of table relationships

Defining the new functionality in the source code.
To implement the new functionality to the source code it should be defined in the block of the conditional operator

Bpm’online developer guide 958

that will check the state of the functionality connection (FeatureState).

Client side JavaScript

A conditional template for defining additional functionality in the source code:

// The method defining the additional functionality.
someMethod: function() {
 // Functionality connection check.
 if (Terrasoft.Features.getIsEnabled("functionality code")) {
 // Implementation of additional functionality.
 ...
 }
 // Method Implementation
 ...
}

The getIsFeatureEnabled method is implemented in the BaseSchemaViewModel base schema view model.
Therefore, the Terrasoft.Features.getIsEnabled method can be replaced with
this.getIsFeatureEnabled("functionality code").

Refresh the browser page after connecting the new functionality to enable it in the client code and load it in the
browser.

Server side C#

A set of extending methods of the UserConnection class was implemented to use the Feature toggle in the source
code schemas on the server side in the Terrasoft.Configuration.FeatureUtilities class. A list of the extended
methods is given in the Table 3. The FeatureState functionality states are enumerated in the same class.

Table 2. Main methods of the DataManager class

Methods. Parameters Description
int GetFeatureState(
this UserConnection
source, string code)

code – functionality code. Returns functionality state.

Dictionary <string,
int>
GetFeatureStates(
this UserConnection
source)

No. Returns the state of all functionality.

void SetFeatureState(
this UserConnection
userConnection,
string code, int state,
bool forAllUsers =
false)

code – functionality code;

state – functionality state (0/1);

forAllUsers – a flag of enabling the
functionality for all users.

Returns functionality state.

void CreateFeature(
this UserConnection
source, string code,
string name, string
description)

code – functionality code;

name – functionality name;

Description – functionality description.

Creates new functionality.

bool
GetIsFeatureEnabled(
this UserConnection
source, string code)

code – functionality code. Checks if the functionality connected.

A conditional template for defining additional functionality in the source code:

…

Bpm’online developer guide 959

// A namespace in which the ability to switch additional
// functionality is defined.
using Terrasoft.Configuration;
…
// The method in which additional functionality will be defined.
public void AnyMethod() {
 // Check if functionality is enabled.
 if (UserConnection.GetIsFeatureEnabled("functionality code")) {
 // Implementation of additional functionality.
 }
 // Method implementation.
 ...
}

Setting the value of functionality state is executed by call of the SetFeatureState method:

UserConnection.SetFeatureState("functionality code", FeatureState);

The MoneyUtilsMixin mixin

Introduction
The MoneyUtilsMixin mixin contains the general logic of cash transactions.

Methods
The getCurrencyDivision method

The getCurrencyDivision method is used to get the denomination (multiplicity) of a currency. Returns the
denomination (multiplicity) of the currency. The type of returned value is “Number”.

NOTE

The denomination (multiplicity) of the currency is the amount of currency for which the calculation of the
exchange rate will be made. For example: x1, x10, x100, etc.

Method format: this.getCurrencyDivision([config]);

Possible properties of the configuration object that are passed as a parameter are listed in Table 1.

Table 1. 1. Properties of the parameter object of the getCurrencyDivision method

Name Type Description Default
values

config Object Object with additional parameter
properties.

config.currencyAttribute
(optional)

String The name of the view model attribute
containing the currency object.

Currency

config.currencyDivisionProp
(optional)

Number The name of the currency object property
containing the denomination (multiplicity)
of the currency. If this property is specified
it will be returned.

Division

config.currencyDivision Number The value of the denomination (multiplicity)

Bpm’online developer guide 960

(optional) of the currency. If this property is specified
it will be returned.

The recalculatePrimaryValue method

The recalculatePrimaryValue method calculates the value of the specified attribute in the base currency.

NOTE

“Base” currency is the currency that defines exchange rate for all other currencies. Base currency is defined in
the [Base currency] system setting.

Method format: this.recalculatePrimaryValue(attribute [, config]);

Possible method parameters are listed in table 2.

Table 2. Parameters of the recalculatePrimaryValue method

Name Type Description Default
values

attribute String The name of the view model
attribute, for which the value in the
base currency must be recalculated.

config (optional) Object Object with additional parameter
properties. May include parameters
for the getCurrencyDivision method.

config.modelInstance
(optional)

Terrasoft.BaseModel A view model for which the
recalculation will be performed.

this

config.primaryValueAttribute

(optional)

String The name of the attribute containing
the value in the base currency.

“Primary” +
attribute

config.currencyRateAttribute
(optional)

String The name of the attribute containing
the currency exchange rate value.

CurrencyRate

The recalculateValue method

The recalculateValue method calculates the value of the specified attribute according to the base currency.

Method format: this.recalculateValue(attribute [, config]);

Possible method parameters are listed in table 3.

Table 3. Parameters of the recalculateValue method

Name Type Description
attribute String The name of the attribute, the value in the base currency

must be recalculated for this attribute.

config (optional) Object Object with additional parameters. It can include parameters
for the recalculatePrimaryValue method with parameters for
the getCurrencyDivision method.

The getPercentage method

The getPercentage method calculates which percentage does a part of a total number make. Returns the percentage.
The type of returned value is “Number”.

Method format: this.getPercentage(amount, part);

Possible method parameters are listed in table 4.

Bpm’online developer guide 961

Table 4. Parameters of the getPercentage method

Name Type Description
amount Number Total number.

part Number Part of the total for which the percentage value must be
calculated.

Use cases

// Returns 20.
this.getPercentage(10, 2);
// Returns 100.
this.getPercentage(10, 10);
// Returns 0.0001.
this.getPercentage(100, 0.0001);

The getPercentagePart method

The getPercentagePart method calculates which number (“part”) makes the specified percentage from a total
number. Returns the part of a number. The type of returned value is “Number”.

Method format: this.getPercentagePart(amount, percent);

Possible method parameters are listed in table 5.

Table 5. Parameters of the getPercentagePart method

Name Type Description
amount Number Total number.

percent Number Percentage.

Use cases

 // Returns 2.
this.getPercentagePart(10, 0.2);

The getIncludedPercentagePart method

The getIncludedPercentagePart method divides the total number into two parts. One of the parts is calculated as
the percentage of the second part. Returns the part that was calculated as the percentage. The type of returned value
is “Number”.

Method format: this.getIncludedPercentagePart(amount, percent);

Possible method parameters are listed in table 6.

Table 6. Parameters of the getIncludedPercentagePart method

Name Type Description
amount Number Total number.

percent Number Percentage.

Use cases

// Returns 1, because 1 is a 10% of 10, 10 + 1 = 11.
this.getIncludedPercentagePart(11, 10);

The roundMoney method

The roundMoney method rounds the value with the precision specified in the
“Terrasoft.data.constants.MONEY_PRECISION”. Banking rounding is used. The type of returned value is
“Number”.

Bpm’online developer guide 962

Method format: this.roundMoney(amount);

Possible method parameters are listed in table 7.

Table 7. Parameters of the roundMoney method

Name Type Description
amount Number Total number.

Use cases

// If Terrasoft.data.constants.MONEY_PRECISION = 4 (by default):
// Returns 0.1235.
this.roundMoney(0.123456789);
// Returns 0.1234.
this.roundMoney(0.123449);

The roundValue method

The roundValue method rounds the value with the precision specified in the configuration object or in the
“Terrasoft.data.constants.MONEY_PRECISION”. Banking rounding is used. The type of returned value is
“Number”.

Method format: this.roundValue(amount [,config]);

Possible method parameters are listed in table 8.

Table 8. Parameters of the roundValue method

Name Type Description
amount Number Total number.

config (optional) Object Object with additional parameters.

config.targetColumnName
(optional)

String The name of the view model column for which the calculation
is made. The precision of this column will be used. If the
column does not have the precision property, then the
precision from the
“Terrasoft.data.constants.MONEY_PRECISION” will be
used.

config.decimalPlaces
(optional)

Number Precision (number of decimals) for rounding the value.

Use cases

// Returns 0.12.
this.roundValue(0.123456789, {decimalPlaces: 2});
// If the "SomeColumnName" column has a property
// precision = 4, Returns 0.1235.
this.roundValue(0.123456789, {targetColumnName: “SomeColumnName”});

The getMoneyCalculator method

The getMoneyCalculator method returns the DecimalUtils object that is configured with the
“Terrasoft.data.constants.MONEY_PRECISION” precision. The type of returned value is “DecimalUtils”.

For more information about the DecimalUtils object, see the "The DecimalUtils module” article.

Method format: this.getMoneyCalculator();

Use cases

var calculator = this.getMoneyCalculator();
// Returns 3.
calculator.add(1, 2);
// Returns 0.3.

Bpm’online developer guide 963

calculator.add(0.1, 0.2);

The DecimalUtils module

Introduction
Certain errors cay occur when using JavaScript to perform floating point calculations. For example:

var a = 0.1 + 0.2; // a = 0.30000000000000004.
var b = 0.3 - 0.1; // b = 0.19999999999999998.

The DecimalUtils module was created to avoid these errors.

It is designed to perform highly accurate mathematical operations and generates pseudo-random numbers. The
Terrasoft.DecimalUtils class is defined in this module. It contains all methods used for mathematical operations.

Сonstructor
The Terrasoft.DecimalUtils class instance is created using the Ext.create() method of the global Ext object.

Сonstructor format var decimalUtils = Ext.create("Terrasoft.DecimalUtils" [, config]);

The optional config parameter is the configuration object of the constructor. Properties of the config object are
described in table 1.

Table 1. Properties of the DecimalUtils constructor configuration object

Name Type Description Default value
decimalPlaces
(optional)

Number The number of fractional part digits. Banker's
rounding is applied to all calculations.

4

precision (optional) Number The number of significant figures for internal
calculations. It includes both integer and
fractional parts. For example, the number
123456789.123456789 contains 18 significant
digits - 9 integer digits and 9 fractional digits.

24

Methods
The add() method

The add method calculates the sum of two numbers. Returning value type – Number.

Method format: decimalUtils.add(a, b);

Possible method parameters are listed in table 2.

Table 2. Add() method parameters

Name Type Description
a Number Addend

b Number Addend

Use case:

// Crearing an object.

Bpm’online developer guide 964

var decimalUtils = Ext.create("Terrasoft.DecimalUtils");
// The add() method returns 0.3.
decimalUtils.add(0.1, 0.2);

The subtract() method

The subtract() method subtracts two numbers, i.e. calculates the difference. Returning value type – Number.

Method format: decimalUtils.subtract(a, b);

Possible method parameters are listed in table 3.

Table 3. Parameters of the subtract() method

Name Type Description
a Number Minuend

b Number Subtrahend

Use case:

// Crearing an object.
var decimalUtils = Ext.create("Terrasoft.DecimalUtils");
// The subtract() method returns 0.2.
decimalUtils.subtract(0.3, 0.1);

The multiply() method

The multiply() method calculates the multiplication of two numbers. Returning value type – Number.

Method format: decimalUtils.multiply(a, b);

Possible method parameters are listed in table 4.

Table 4. Parameters of the multiply() method

Name Type Description
a Number Multiplier

b Number Multiplier

Use case:

// Crearing an object.
var decimalUtils = Ext.create("Terrasoft.DecimalUtils");
// The multiply() method returns 0.03.
decimalUtils.multiply(0.3, 0.1);

The divide() method

The divide() method divides two numbers. Returning value type – Number.

Method format: decimalUtils.divide(a, b);

Possible method parameters are listed in table 5.

Table 5. Parameters of the divide() method

Name Type Description
a Number Dividend

b Number Divisor

Use case:

// Crearing an object.
var decimalUtils = Ext.create("Terrasoft.DecimalUtils");

Bpm’online developer guide 965

// The divide() method returns 3.
decimalUtils.divide(0.3, 0.1);

The evaluate() method

The evaluate() method evaluates the result of the passed expression. Returning value type – Number.

Method format: decimalUtils.evaluate(expression);

Possible method parameters are listed in table 6.

Table 6. Parameters of the evaluate() method

Name Type Description
expression Object An object with mathematical operation properties (add,

subtract, multiply, divide). Its values are arrays containing
the Number value types or objects with subexpressions. It
has a recursive structure.

Use case:

// Crearing an object.
var decimalUtils = Ext.create("Terrasoft.DecimalUtils");
// A configuration object is passed as an argument.
decimalUtils.evaluate({
 // Calculating the sum. The summand values are passed in the array.
 add: [// 1 + 7 = 8.
 // The first summand is a nested expression.
 {
 // Calculating the subtract. The values are passed in the array.
 subtract: [// 4 - 3 = 1.
 // The minuend is a nested expression. It contains the multiplication
operation.
 { multiply: [2, 2] }, // 2 * 2 = 4.
 3
]
 },
 // The second summand is a nested expression.
 {
 // Calculating the subtract. The values are passed in the array.
 subtract: [// 5 - (-2) = 7.
 // The minuend is a nested expression. It contains the multiplication
operation.
 { divide: [10, 2] }, // 10 ÷ 2 = 5.
 -2
]
 }
]
});// Returns 8.

Note

An array of operation arguments can contain an arbitrary number of elements. The operation is applied to the
elements from left to right.

An example of using an addition operation with four arguments:

var decimalUtils = Ext.create("Terrasoft.DecimalUtils");
decimalUtils.evaluate({
 add: [1, 2, 3, 4]
});

Calculation sequence:

Bpm’online developer guide 966

1 + 2 = 3;
3 + 3 = 6;
6 + 4 = 10;

An example of using an addition operation with four arguments:

var decimalUtils = Ext.create("Terrasoft.DecimalUtils");
decimalUtils.evaluate({
 subtract: [10, 5, 3, 1]
});

Calculation sequence:

10 - 5 = 5;
5 - 3 = 2;
2 - 1 = 1;

The toDecimalPlaces() method

The toDecimalPlaces() method rounds the number with the specified precision. This precision is specified by the
decimalPlaces property of the configuration object passed to the constructor (see example below). Banker's
rounding is applied to these calculations. Returning value type – Number.

Method format: decimalUtils.toDecimalPlaces(number);

Possible metric parameters are listed in table 7.

Table 7. Parameters of the toDecimalPlaces() method

Name Type Description
number Number The number to be rounded.

Use case:

var decimalUtils = Ext.create("Terrasoft.DecimalUtils", {
 decimalPlaces: 1
});
decimalUtils.toDecimalPlaces(1.15); // Returns 1.2

The roundValue() method

The roundValue() method rounds the number with the precision which is passed in the configuration object. If the
precision has not been passed, the method rounds uses the precision of the decimalPlaces specified in the
constructor configuration object. Banker's rounding is applied to these calculations. Returning value type –
Number.

Method format: decimalUtils.roundValue(number [, config]);

Possible method parameters are listed in table 8.

Table 8. Parameters of the roundValue() method

Name Type Description
number Number The number to be rounded.

config (optional) Object An object with additional parameters.

config.decimalPlaces
(optional)

Number The number of fractional part digits.

Use case:

var decimalUtils = Ext.create("Terrasoft.DecimalUtils", {
 decimalPlaces: 1
});
decimalUtils.roundValue(1.123456, {decimalPlaces: 4});// Returns 1.1235.

Bpm’online developer guide 967

decimalUtils.roundValue(1.123456);// Returns 1.1.

The random() method

The random() method generates a pseudo-random number from 0 to 1 (not including 0 and 1) with the number of
decimal places equal to decimalPlaces. Returning value type – Number.

Method format: var randomValue = decimalUtils.random();

Use case

var decimalUtils = Ext.create("Terrasoft.DecimalUtils");
// Returns a random number, e.g. 0.35.
var randomValue = decimalUtils.random();

Basic macros in the MS Word printables

Introduction
A printables can be configured using bpm'online MS Word Report Designer standard tools. More information about
MS Word printables can be found in the “The MS Word printables setup” article. Use the macros to implement the
specific tasks of printables configuring. A process of the custom macro creation is described in the “How to create
macros for a custom report in Word” article.

Adding macro
You can add the required macro on the stage of column configuration. For this, select the required column in the
[Selected Columns] field (fig. 1).

Fig. 1. — Printable columns list

Bpm’online developer guide 968

https://academy.bpmonline.com/documents/sales-enterprise/7-11/ms-word-printables-setup

After that, click the column edit button and add the macro in the opened window (Fig. 2).

Fig. 2. — Adding macro

Macro recording format
A following format is used for the MS Word printables macros:

Column name [#Macro name|Arguments#]

The [#Date#] macro
Converts date according to the specified format. If the data format is not specified, then the values will be converted
to the default format ("MM-dd-yy"). More information about formats can be found in the MSDN documentation.
Argument is optional.

Example:

ColumnName[#Date|MM-dd-yy#]

When the value "12/30/2016 11:48:24 AM” is entered, the macro will return the “12-30-16” as a result.

Bpm’online developer guide 969

https://msdn.microsoft.com/ru-ru/library/8kb3ddd4(v=vs.110).aspx

The [#Lower#] macro
Converts a string to the lowercase. This macro is used without an arguments.

Example:

The ColumnName[#Lower#]

When the value "ExamPle" is entered, the macro will return the "example” as a result.

The [#Upper#] macro
Converts a string to the uppercase. If the argument "FirstChar" is passed, only the first character will be converted to
the uppercase. Argument is optional.

Examples:

ColumnName[#Upper#]

When the value "example" is entered, the macro will return the "EXAMPLE” as a result.

ColumnName[#Upper|FirstChar#]

When the value "example" is entered, the macro will return the "Eample” as a result.

The [#NumberDigit#] macro
Converts a fractional number to a thousand-digit number. A “space” character is the delimiter by default. Arguments
are optional.

Examples:

ColumnName[#NumberDigit#]

When the value "345566777888.567" is entered, the macro will return the "345 566 777 888.567” as a result.

ColumnName[#NumberDigit|,#]

When the value "345566777888.567" is entered, the macro will return the "345,566,777,888.567” as a result.

NOTE

If the fractional part is zero, it will not be displayed. For example, if the input vaule is "345566777888.000",
the macro will return "345,566,777,888" as a result.

The [#NumberRU#] macro
Converts a number to a text string. The Cent argument returns the fractional part of the number without converting
it to string. The Decimal argument converts the fractional part of the number to string. Arguments are optional.

ColumnName[#NumberRU#]

When the value "456" is entered, the macro will return the "четыреста пятьдесят шесть” as a result.

When the value "456.78" is entered, the macro will return the "четыреста пятьдесят шесть” as a result. If
arguments are not specified, then only decimal part of the number is converted (see Decimal argument example).

ColumnName[#NumberRU|Cent#]

When the value "123.45" is entered, the macro will return the "45” as a result.

When the value "123" is entered, the macro will return the "00” as a result.

ColumnName[#NumberRU|Decimal#]

Bpm’online developer guide 970

When the value "123.45" is entered, the macro will return the "семьсот семьдесят семь целых семьдесят семь
сотых” as a result.

The [#Boolean#] macro
Converts boolean value to a user type value. Arguments are required. The CheckBox argument converts the entered
value to the checkbox element ("☑"/"☐"). Text arguments must match the "Yes, No” format.

ColumnName[#Boolean|CheckBox#]

If the column has the “true” value, the macro will return "☑” as a result.

ColumnName[#Boolean|Yes,No#]

If the column has the “true” value, the macro will return "Yes” as a result.

Web-to-Case

Introduction
Web-to-Case functionality implements the ability to create cases in the bpm'online by filling the required form fields
embedded in a third-party site - landing.

The ProductCore package depends on the WebForms package, that contains Web-to-Case functionality. This means
that landings can be used in all products. Pre-configured base functionality is implemented in the service enterprise,
customer center, marketing products and all bundles that these products are part of.

More information about landings can be found in the [Landings] section articles of the corresponding products
(such as bpm'online marketing).

Web-to-Case configuration can be done in the system interface. To implement generated JavaScript to a third-party
site, you need the basic Web development skills.

The Web-to-Case base functionality allows to configure the following features without programming (using minor
improvements on a third-party site):

The form interface and styles.
List of the additionally passed fields.
List of default values for the fields that are not displayed in the form.
The list of domains from which the case registration for each landing will be possible.
The address to which the user will be redirected after submitting the form.
JavaScript event handlers of successful/unsuccessful case registration.
Additional landings, that can be configured in different way. That makes it possible to distinguish cases
created from different sites.

You can modify the project to set up a preliminary handler of case registration through the Web-to-Case with the
data validation, correction, creation of related entities and etc. The automatic creation of contact for the registered
case is configured in the bpm'online base configuration in the handler of case registration through the Web form.

The logic of the automatic filling of case fields.
In the process of case registration through the Web form, the following fields are recommended for filling: [Name],
[Email], [Phone], [Case subject]. The [Case subject] value will be passed to the new case.

Bpm’online developer guide 971

https://academy.bpmonline.com/documents/marketing/7-10/landing-pages-and-web-forms-section

The bpm'online will identify the contact by [Name], [Email] and [Phone] fields. The search is performed in a
following way:

1. If contact fields matches the [Name], [Email] and [Phone] fields from the filled form, they will be added to
the created case.

2. If contact fields matches only the [Name] and [Email] fields from the filled form, they will be added to the
created case.

3. If contact fields matches only the [Email] field from the filled form, it will be added to the created case.
4. Otherwise, a new contact is created and the [Name], [Email] and [Phone] fields will be filled in. The created

contact is added to the registered case.

If more than one contact are found, then the first contact will be used as contact of the case. Also the case
registration date (RegisteredOn column) will be automatically filled with the current date and time.

Recommendations for the execution of project solutions
If you need to customize the Web-to-Case, use its base functionality as an example.

To execute the project solution:

1. Create a page schema that is inherited from the CaseGeneratedWebFormPageV2. The page should not be a
replacement page.

2. Add a record of the new type of landing to the LandingType table and localization to the SysLandingTypeLcz
table.

3. Register the typed page created in the first step (the value of the type is new).
4. If you need preliminary processing of the form data before saving the record in the database, you need to

create a class that implements the IGeneratedWebFormPreProcessHandler interface. This class is a
preliminary handler for case registration. Implement the Execute() method. This method is the entry point to
the handler. Additional actions are implemented in this method. You can take the
WebFormCasePreProcessHandler schema as an example.

5. If you need to perform actions after saving the record in the database, you need to create a class that
implements the IGeneratedWebFormPreProcessHandler interface. This class is a preliminary handler for
case registration. Implement the Execute() method and perform necessary actions.

6. If you created the registration handlers of the case, register them in the WebFormProcessHandlers table. Use
an existing record as an example of registration.

7. Edit the script template that forms the configuration JavaScript object of the landing, and place it in the
ScriptTemplate localized string of the created page. Specify the similar script for all localizations used. You
can find an example of the script in the CaseGeneratedWebFormPageV2 schema.

8. Bind all created data to the package.

Separate query pool

Introduction
Some heavy database requests (DB) can fully occupy database server resources for a long time and thus make it
difficult or impossible to work for other users. Among these requests are:

Incomplete queries in dynamic groups, dashboard blocks.
Complex analytical samples in dashboard blocks.

To solve this problem it is necessary to limit the resources allocated by the database server for processing Select-
requests, or to transfer them to a separate query pool. This will reduce their impact on the work of other users and
parts of the system.

NOTE

Bpm’online developer guide 972

Only Select-requests can be transfered to the separate query pool and only if they are not part of the
transaction.

Separate query pool implementation
MS SQL Server enables you to limit the allocated resources using the built-in Resource Governor tool. However, its
ranking capabilities are based on information about the connection, and not a specific request. Bpm'online uses
connections from a single pool for all queries, and since all connections are the same they are not available for
ranking.

To separate the light and potentially heavy queries, the ability to send requests through a special connection in
which the suffix "_Limited" is appended to the App (or Application Name) property of the connection string is
added.

For example, specifying the “App = bpmonline” property in the connection string of the ConnectionStrings.config
file will result in it being changed to “bpmonline_Limited” in the separate query pool connection. If the App (or
Application Name) property is not specified in ConnectionStrings.config, the followinf default value is set for the
shared connection: ".Net SqlClient DataProvider", and ".Net SqlClient DataProvider_Limited” in the separate query
pool connection.

An example of connection string configuration with the App user property:

<add name="db" connectionString="App=bpmonline; Data Source=dbserver\mssql2016;
Initial Catalog=BpmonlineSolution; Persist Security Info=True;
MultipleActiveResultSets=True; Integrated Security=SSPI; Pooling = true; Max Pool
Size = 100; Async = true; Connection Timeout=500" />

Thus, when loading dashboards or filtering sections with dynamic groups, the application creates additional
database connections that differ from the basic “_Limited” suffix.

Separating the pools will allow database administrators to regulate the allocation of resources to requests from the
marked connection.

ATTENTION

No resource restriction occurs in this case. The application only provides an opportunity to use a mark for the
ranking of connections in Resource Governor. Please note that the work of Resource Governor is difficult to
see on an unloaded server with “short” requests. The effect is noticeable when working with a fully loaded
database, and when the “heavy” request is being processed for a long time.

Enabling the separate query pool functionality
To enable the separate query pool functionality, set the true value for the UseQueryKinds setting in the application’s
.\Terrasoft.WebApp\Web.config file.

<add key="UseQueryKinds" value="true" />

As a result, requests from dashboards and dynamic groups will be sent to connections marked with the “_Limited”
suffix.

Resource Governor configuration example
Group and pool configuration is performed using an SQL-script. For example:

ALTER RESOURCE POOL poolLimited
WITH
(
 MAX_CPU_PERCENT = 20,
 MIN_CPU_PERCENT = 0
 -- REQUEST_MAX_MEMORY_GRANT_PERCENT = value
 -- REQUEST_MAX_CPU_TIME_SEC = value

Bpm’online developer guide 973

https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor

 -- REQUEST_MEMORY_GRANT_TIMEOUT_SEC = value
 -- MAX_DOP = value
 -- GROUP_MAX_REQUESTS = value
);
GO
--- Create a workload group for off-hours processing
--- and configure the relative importance.
CREATE WORKLOAD GROUP groupLimited
WITH
(
 IMPORTANCE = LOW
)
USING poolLimited
GO
ALTER RESOURCE GOVERNOR RECONFIGURE;
GO

Learn more about the configuration in the Resource Governor documentation.

For each new connection, the classifier function is used, which returns the name of the group. For example:

USE [master]
GO

ALTER FUNCTION [dbo].[fnProtoClassifier]()
 RETURNS sysname
 WITH SCHEMABINDING
AS
BEGIN
 IF(app_name() like '%_Limited')
 BEGIN
 RETURN N'groupLimited'
 END
RETURN N'default'
END;

Use case
To execute a query in a separate query pool, get a special DBExecutor for it, passing the value of Limited from the
QueryKind enumerator as an optional parameter. Learn more about the DBExecutor in the corresponding Using
the DBExecutor for working with the database. In the following example, QueryKind is the argument of the
EnsureDBConnection() method, the value of which comes in the custom EntitySchemaQuery request (ESQ-
request), and is set to the server ESQ-request and then to the Select-request.

using (DBExecutor executor = userConnection.EnsureDBConnection(QueryKind)) {
 // ...
};

Calling EnsureDBConnection(QueryKind.General) is equivalent to calling EnsureDBConnection() without
QueryKind.

Thus, if you set the instance of the Terrasoft.EntitySchemaQuery class to the QueryKind.Limited attribute in the
client application, this value will be passed to the server and a special DBExecutor (using the marked connection to
the database) will be provided.

An example of setting the QueryKind.Limited characteristic of a client ESQ-request in the ChartModule schema:

...
getChartDataESQ: function() {
 return this.Ext.create("Terrasoft.EntitySchemaQuery", {
 rootSchema: this.entitySchema,
 queryKind: Terrasoft.QueryKind.LIMITED
 });

Bpm’online developer guide 974

https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor

},

...

ATTENTION

If there are nested calls to userConnection.EnsureDBConnection(QueryKind) in your code, make sure that you
use the same QueryKind value at all nesting levels.

Development recommendations for Right-To-Left mode

The bpm'online supports displaying text information in Right-To-Left (RTL) mode. Follow these recommendations
while developing new functionality to avoid errors in data displaying.

1. Less-code must be written correctly. For example, there must be a semicolon after the value of the CSS property.

2. Avoid defining styles in JavaScript code. If the styles are required, then for the margin, padding, border, float
and text-align styles it is necessary to provide behavior for RTL-mode. For this, use the Terrasoft.getIsRtlMode()
method:

var borderColorCSS = Terrasoft.getIsRtlMode() ? "border-right-color" : "border-left-
color";

3. If the CSS style is required only for the RTL mode, it must be “wrapped” with the html tag with the attribute
dir="rtl":

html[dir="rtl"] {
 .links-container label {
 text-align: left;
 }
}

4. To rotate the image around the axes, use the rotateY(180g) and scaleX(-1) less-functions:

html[dir="rtl"] {
 .links-container img {
 transform: rotateY(180g);
 }
}
...
html[dir="rtl"] {
 .links-container img {
 transform: scaleX(-1);
 }
}

5. For the margin, padding and border you cannot use contraction (for example, margin: 1px 2px 0 0;). An
example of correct use of styles:

html[dir="rtl"] {
 .myclass {
 margin-top: 1px;
 margin-right: 2px;
 margin-bottom: 0;
 margin-left: 0;
 padding-top: 1px;
 padding-right: 0;

Bpm’online developer guide 975

 padding-bottom: 1px;
 padding-left: 0;
 border-top-width: 2px;
 border-right-width: 10px;
 border-bottom-width: 4px;
 border-left-width: 20px;
 }
}

6. The transform: translate(-50%, -50%) CSS property is used in Left-to-Right mode and in the RTL mode you
should set the value of the transform: translate(50%, -50%) property as follows:

html[dir="rtl"] {
 .links-container img {
 transform: translate(50%, -50%);
 }
}

Client static content in the file system

Introduction
Before the version 7.11, at the request of client content (.js, .css files), the application server generated the content
dynamically, based on the current structure of package connections and schema dependencies. Generated data were
cached and sent to client application.

Starting with version 7.11 all client content is preliminary generated in special application folder ie. it becomes static.
When requesting client content, the IIS searches for requested content in this folder and sends it to the client
application. Thus, the overall performance of the application is increased and the server load is reduced.

Advantages and disadvantages
Advantages and disadvantages of using the client static content are given in the Table 1.

Table 1. Advantages and disadvantages of using the client static content

Advantages Disadvantages
Dynamic generation of client content

No need to pre-generate client content Processor overload when computing the hierarchy of
packages, schemas, and content generation

Database overload when for getting the hierarchy of
packages, schemas, and content generation

Memory consumption for caching client content

Usage of preliminary generated client content

Minimum CPU load (CPU) Need to pre-generate client content

Missing database queries

Client content is cached by IIS

Bpm’online developer guide 976

Generating static client content
Client content is generated in the specific folder (.\Terrasoft.WebApp\conf). In contains .js files with schema source
code, .css files of styles and .js files of resources of all cultures of the application.

ATTENTION

Starting with version 7.11.1 the .\Terrasoft.WebApp\conf folder also contains images.

ATTENTION

The application's IIS pool user requires modify permission (reading and writing of files and subfolders
and deletion of the folder) to the .\Terrasoft.WebApp\conf directory. Without the write permission
bpm'online application will not be able to generate static content.

The IIS pool user name is set in the [Identity] property. You can access this property through the [Advanced
Settings] menu command on the [Application Pools] tab of the IIS Manager.

The actions to start generation of client content

Primary or secondary generation of static client content starts when the following actions are performed:

Saving a schema through client schema designer and client objects designer.
Saving through section wizard and detail wizard.
Installing and deleting applications from Marketplace and zip archive.
Applying translation.
The [Compile all items] and [Compile modified items] actions in the [Configuration] section.

ATTENTION

When deleting schemas and packages from the [Configuration] section you need to perform [Compile all
items] and [Compile modified items] actions.

When installing and updating schemas and packages from the SVN you need to perform [Compile all
items] action.

NOTE

Only the [Compile all items] action performs full regeneration of client static content. Other actions lead only
to regeneration of modified schemas.

Generation of client content with the WorkspaceConsole utility

The BuildConfiguration operation was added to the WorkspaceConsole utility and this operation performs
generation of client content. Operation parameters are listed in table 2.

Table 2. Parameters of the BuildConfiguration operation

Parameter Details
workspaceName Workspace name by default (Default).

destinationPath Folder to which the static content will be generated

webApplicationPath Path to the web applcation from which the information about connection to
database will be read.

This parameter is optional. If this value has not been indicated, the connection
will be established to the database specified in the connection string of the
Terrasoft.Tools.WorkspaceConsole.config file. If the value is specified, the
connection will be established with the database from the

Bpm’online developer guide 977

ConnectionStrings.config file of the web application.

force If the value is set to true, the generation of the content will be performed for all
schemas. If the value is set to false, the generation will be performed only for
modified schemas.

This parameter is optional. The value is false by default.

Use cases:

Terrasoft.Tools.WorkspaceConsole.exe -operation=BuildConfiguration -
workspaceName=Default -destinationPath="C:\WebApplication\BPMOnline\Terrasoft.WebApp"
-force=true -logPath=C:\wc\log

Terrasoft.Tools.WorkspaceConsole.exe -operation=BuildConfiguration -
workspaceName=Default -webApplicationPath="C:\WebApplication\BPMOnline" -
destinationPath="C:\WebApplication\BPMOnline\Terrasoft.WebApp" -force=true -
logPath=C:\wc\log

Compatibility with the development in the file system mode
Currently, the development in the file system is no compatible with getting client content from preliminary
generated files. For the correct work of the development in the file system you need to disable getting static client
content from the file system. Set the “false” for the UseStaticFileContent flag in the Web.config file to disable this
functions.

<fileDesignMode enabled="true" />
...
<add key="UseStaticFileContent" value="false" />

Generation of client content when adding a new culture
Execute the [Compile all items] action in the [Configuration] section after adding new cultures.

ATTENTION

If a user cannot log in to the system after adding new culture, you need to access the [Configuration] section by
the http://[path to application]/0/dev path and execute the [Compile all items] action.

Changes in the parameter object that generates an image URL
(version 7.11.1)
Images in the client part of bpm’online are always being requested by a browser with a specific URL specified in the
src attribute of the img html-element. The Terrasoft.ImageUrlBuilder (imagurlbuilder.js) module with the
getUrl(config) public method that gets the image URL is used in the URL generation. This method receives the
config configuration JavaScript object that contains an object of parameters in the params property. The image
URL is being generated on the basis of this object.

Till the 7.11.0 version the structure of the params object had the following view:

config: {
 params: {
 schemaName: "",
 resourceItemName: "",
 hash: ""
 }
}

In this code:

schemaName – schema name (string)

Bpm’online developer guide 978

resourceItemName – image name in the bpm’online (string)
Hash – image hash (string).

Starting with version 7.11.1 the resourceItemExtension string property that contains file extension (for example,
.png) was added to the parameters list. A new structure of the params object:

config: {
 params: {
 schemaName: "",
 resourceItemName: "",
 hash: "",
 resourceItemExtension: ""
 }
}

ATTENTION

Starting with version 7.11.1 if the params object is generated in the custom program code (not obtained from
the resources), the resourceItemExtension property should be added to the object. In the opposite case, the
image will be retrieved from the database, not from the static content. In the next versions, the ability to
retrieve an image from the database will be disabled. Therefore, the absence of the resourceItemExtension
property will cause errors when loading images on a page.

An example of correct generation of configuration object of parameters for getting the URL of a static image:

var localizableImages = {
 AddButtonImage: {
 source: 3,
 params: {
 schemaName: "ActivityMiniPage",
 resourceItemName: "AddButtonImage",
 hash: "c15d635407f524f3bbe4f1810b82d315",
 resourceItemExtension: ".png"
 }
 }
}

Record deactivation

Introduction
In the bpm'online version 7.11.3 you can deactivate records of the system objects to exclude them from the business
logic. It can be used if the data is outdated and will never be used. Enable this function with the [Allow record
deactivation] property in the object designer (Fig. 1) and it will be enabled after object publication.

ATTENTION

In 7.11.3, these functions are disabled by default. To enable them, set the "UseRecordDeactivation" setting in
the ..\Terrasoft.WebApp\Web.config file to "true".

Fig. 1. [Allow record deactivation] property

Bpm’online developer guide 979

ATTENTION

Deactivation of the records is available for all objects but automatic filtering of all records works only in drop-
down lists, on the lookup selection page and in quick filters. The automatic filter is not applied on pages with
lookup contents, in the advanced filters and sections.

Use case in program code
The UseRecordDeactivation parameter that defines enabling and disabling filtering by inactive records appeared in
the EntitySchemaQuery. By default the parameter value is false. If you change the value to true, inactive records will
be filtered from the request to select data from the object with enabled record deactivation.

Use case in client code:

var esq = Ext.create("Terrasoft.EntitySchemaQuery", {
 rootSchemaName: "MyCustomLookup",
 useRecordDeactivation: true
});

Use case in server code:

var esq = new EntitySchemaQuery(userConnection.EntitySchemaManager, "ContactType") {
 UseRecordDeactivation = true
};
esq.PrimaryQueryColumn.IsAlwaysSelect = true;
var sqlQuery = esq.GetSelectQuery(userConnection).GetSqlText();
Console.WriteLine(sqlQuery);

The text of resulting SQL query is assigned to the sqlQuery variable. After the initialization of the
EntitySchemaQuery instance the query will look like following:

SELECT
 [ContactType].[Id] [Id]
FROM [dbo].[ContactType] [ContactType] WITH(NOLOCK)
WHERE
 [ContactType].[RecordInactive] = 0

Bpm’online developer guide 980

Monitoring of private properties overriding. The
Terrasoft.PrivateMemberWatcher class

Introduction
Starting with version 7.12.0 version you can override private properties via the Terrasoft.PrivateMemberWatcher
class. When defining a custom class, this functionality checks whether the private properties or methods declared in
the parent classes have been overridden. The warning is displayed in the browser console in debug mode.

ATTENTION

In bpm’online, the private properties and methods of the class are starting with underscore (for example,
_privateMemberName).

For example, a module schema with the source code given below was added to a custom package:

define("UsrPrivateMemberWatcher", [], function() {
 Ext.define("Terrasoft.A", {_a: 1});
 Ext.define("Terrasoft.B", {extend: "Terrasoft.A"});
 Ext.define("Terrasoft.MC", {_b: 1});
 Ext.define("Terrasoft.C", {extend: "Terrasoft.B", mixins: {ma: "Terrasoft.MC"}});
 Ext.define("Terrasoft.MD", {_c: 1});
 // Overriding _a property.
 Ext.define("Terrasoft.D", {extend: "Terrasoft.C", _a: 3, mixins: {mb:
"Terrasoft.MD"}});
 // Overriding _c property.
 Ext.define("Terrasoft.E", {extend: "Terrasoft.D", _c: 3});
 // Overriding _a and _b properties.
 Ext.define("Terrasoft.F", {extend: "Terrasoft.E", _b: 3, _a: 0});
});

Then, after loading the module via the browser address bar (see “Client Modules”), a number of warnings will be
displayed in the console (Fig. 1).

Fig. 1. Warning message for overriding private members of the class

Bpm’online developer guide 981

The [Timeline] tab

Introduction
Starting from version 7.12.0 you can use the [Timeline] tab for quick analysis of customer cooperation, opportunity, case, etc.
history in bpm’online. This tab is available by default in the [Contacts], [Accounts], [Leads], [Opportunities] and [Cases]
sections.

The database tables
The following tables are provided in the database for setting up the timeline:

TimelinePageSetting – for setting up sections and their tiles (table 1).
TimelineTileSetting – for setting up all existing and custom timeline tiles (table 2).
SysTimelineTileSettingLcz – for localizing tile names (see "Localization tables”).

Table 1. – TimelinePageSetting table primary columns

Column Details
Id Record identifier.

Key Key – the name of section page schema. For example, AccountPageV2, ContactPageV2, etc.

Data Section timeline setup in JSON format.

Table 2. – TimelineTileSetting table primary columns

Column Details
Id Record identifier.

Name Tile caption that will be displayed in the filter menu. It must have plural form, for example, “Tasks”.
Localization is preformed via the SysTimelineTileSettingLcz table. If this field is not populated, the

Bpm’online developer guide 982

tile caption will be derived from the entity or type schema name.

Data Section timeline setup in JSON format (table 3).

Image The tile icon that will be displayed in the filter menu and on the left side of the tile on the [Timeline]
tab.

Table 3. – Timeline tile configuration parameters in JSON format.

Column Details If required Example
entityConfigKey Tile key. It should

match the Id in the
TimelineTileSetting
table of the
corresponding
existing tile that
should be displayed
for the entity.

No 706f803d-6a30-4bcd-88e8-
36a0e722ea41

entitySchemaName: Name of the entity
object schema.

Yes Activity

referenceColumnName Name of the object
column that will be
used for selecting
records.

Yes Account

masterRecordColumnName Name of the parent
record column that
will be used for
selecting records.

Yes Id

typeColumnName Name of the type
column .

No Type

typeColumnValue Value of the type
column.

Should only be applied when
typeColumnName is
indicated.

fbe0acdc-cfc0-df11-b00f-001d60e938c6

viewModelClassName The view model class
name of the existing
tile.

No. If the value is not
populated, the
BaseTimelineItemViewModel
base class will apply.

Terrasoft.ActivityTimelineItemViewMode

viewClassName Name of the existing
tile view class.

No. If the value is not
populated, the
BaseTimelineItemViewl base
class will apply.

Terrasoft.ActivityTimelineItemView

orderColumn Column for sorting. Yes StartDate

authorColumnName Column for the
author.

Yes Owner

captionColumnName Column for the
caption.

Yes, if the
messageColumnName
column is not indicated.

Title

messageColumnName Column for
messages.

Yes, if the
captionColumnName column
is not indicated.

DetailedResult

caption Tile caption that will
be displayed in the
filter menu. It must
have plural form, for
example, “Tasks”. It
is used for setting a
tile caption that
would differ from the
one indicated in the
Name field of the
corresponding tile
setting in
TimelinePageSetting.

No My Activity

Bpm’online developer guide 983

columns Setup array for
additional tile
columns.

No

columnName Path to the entity
object column.

Yes Result

columnAlias Column alias in the
tile model view.

Yes ResultMessage

isSearchEnabled Indicates the
capability of text
search according to
the column value (for
text columns only).

No true

Adding the [Timeline] tab to the section

NOTES

Adding the [Timeline] tab tiles to the new section is described in the "How to create the [Timeline] tab tiles bound
to custom section" article.

To add the [Timeline] tab to the section page and display records thereon:

1. Add a new record to the TimelinePageSetting table.

2. Populate the corresponding columns (table 1). Indicate the section page schema name in the Key column. For example, if you
need to add a tab to the {Accounts} section, the Key column value will be "AccountPageV2". The Data column contains the
configuration of timeline tiles that are displayed on the indicated section tab in JSON format (table 3).

ATTENTION

The [Timeline] tab will not be displayed on the section record edit page if the tile configuration in the Data column is not
available or if there exist errors (for example, syntax error) in the configuration.

Usage of base tile
To start using the timeline in a section, perform base tile configuration (fig.1). The base tile compound elements:

icon
caption
author
date (sorting)
message

Fig. 1. – The base tile element location

Example

Add the [Contract] tile to the [Accounts] section page. Sorting should be performed according to the StartDate column; the
caption values, author and tile messages should be derived from the Number, Owner and Notes columns correspondingly.

Case implementation

1. Add a new record (or update an existing record) in the TimelinePageSetting table.

2. Set the "AccountPageV2” value for the Key column and populate the Data column with the following JSON object:

[

Bpm’online developer guide 984

 {
 "entityConfigKey": "0ef5bd15-f3d3-4673-8af7-f2e61bc44cf0",
 "entitySchemaName": "Contract",
 "referenceColumnName": "Order",
 "orderColumnName": "StartDate",
 "authorColumnName": "Owner",
 "captionColumnName": "Number",
 "messageColumnName": "Notes",
 "caption": "My Contracts",
 "masterRecordColumnName": "Id"
 }
]

ATTENTION

The [Orders] base tile is used in the following case. This tile has a record in the TimelineTileSettings table with the
0ef5bd15-f3d3-4673-8af7-f2e61bc44cf0 Id.

ATTENTION

As the data in the Data column are stored in the varbinary(max) form, use specific editor (such as dbForge Studio Express
for SQL Server) to modify them (Fig. 2). To do this:

1. Select a table.

2. Select the necessary column of the record and click the edit button.

3. Enter the text data display mode in the data editor.

4. Add necessary data.

5. Save the changes in the data editor.

Fig. 2. Editing data via the dbForge Studio Express for SQL Server

The result of the base tile usage on the [Timeline] tab in the [Accounts] section is shown in fig.3

Fig. 3. – The [Timeline] tab in the [Accounts] section.

Bpm’online developer guide 985

See also
How to create the [Timeline] tab tiles bound to custom section

Server content in the file system

Introduction
Till the version 7.11.3 inclusive, information about tan object for the Runtime mode was stored in the specific
automatically generated class, that was inherited from the EntitySchema class (see “.NET class libraries of
platform core (on-line documentation)”). For example, for the [Contact] object the ContactSchema class is
generated according to the object schema.

NOTE

Class generation was performed during compilation of the Terrasoft.Configuration.dll library, for example on
clicking the [Compile all items] button in the [Configuration] section.

Starting version 7.12.0 information about the object for the Runtime mode is stored in the specific database (server
content) located in the .\Terrasoft.WebApp\conf\runtime-data\ folder of the deployed bpm’online application.

ATTENTION

The .\Terrasoft.WebApp\conf\runtime-data\ folder should have access permission for modification
(permissions for reading and writing files and sub-folders, and deleting the folder) for the user of the IIS pool
in which the application is launched. Otherwise, the bpm'online will not be able to generate server content.

The IIS pool user name is set in the [Identity] property. You can access this property via the [Advanced
Settings] menu on the [Application Pools] tab of IIS manager.

Bpm’online developer guide 986

NOTE

For backward compatibility in version 7.12.0, object schema classes are still being generated. In the nearest
versions the generation of the schema classes of the object will be disabled.

Server content generation
Primary or secondary generation of server content starts when the following actions are performed:

Saving the schema in the object designer.
Saving through section wizard and detail wizard.
Installing and deleting applications from Marketplace and zip archive.
The [Compile all items] and [Compile modified items] actions in the [Configuration] section.

ATTENTION

When deleting schemas and packages from the [Configuration] section you need to perform [Compile all
items] and [Compile modified items] actions.

When installing or updating a package from SVN, you need to perform the [Compile all items] action.

NOTE

Only the [Compile all items] action performs full regeneration of client static content. Other actions lead only
to regeneration of modified schemas.

Generation of client content with the WorkspaceConsole utility

Use the BuildConfiguration operation to generate the server content via the WorkspaceConsole utility. Operation
parameters are listed in table 1.

Table 1. Parameters of the BuildConfiguration operation

Parameter Details
workspaceName Workspace name by default (Default).

destinationPath Folder to which the static content will be generated

webApplicationPath Path to the web applcation from which the information about connection to
database will be read.

This parameter is optional. If this value has not been indicated, the connection
will be established to the database specified in the connection string of the
Terrasoft.Tools.WorkspaceConsole.config file. If the value is specified, the
connection will be established with the database from the
ConnectionStrings.config file of the web application.

force If the value is set to true, the generation of the content will be performed for all
schemas. If the value is set to false, the generation will be performed only for
modified schemas.

This parameter is optional. The value is false by default.

Use cases:

Terrasoft.Tools.WorkspaceConsole.exe -operation=BuildConfiguration -
workspaceName=Default -destinationPath="C:\WebApplication\BPMOnline\Terrasoft.WebApp"
-force=true -logPath=C:\wc\log

Terrasoft.Tools.WorkspaceConsole.exe -operation=BuildConfiguration -
workspaceName=Default -webApplicationPath="C:\WebApplication\BPMOnline" -
destinationPath="C:\WebApplication\BPMOnline\Terrasoft.WebApp" -force=true -
logPath=C:\wc\log

Bpm’online developer guide 987

Logging in bpm’online. Log4net

Introduction
Logging is useful for localization of application troubles. Bpm’online enables logging for all main operations.

The Lof4net solution is used for logging. This tool enables to perform logging of parameters from different
components of the application into separate log files.

Logging is performed separately for the application loader and for the Default configuration. To set up logging,
modify the ..\Terrasoft.WebApp\log4net.config configuration file.

Storing log data

ATTENTION

Location of the log files depends on the value of Windows system variables.

By default the loader log files are located by following path:

[TEMP]\BPMonline\Site_[{SiteId}]\[{ApplicationName}]\Log\[{DateTime.Today}]

Example:

C:\Windows\Temp\BPMonline\Site_1\bpmonline7121\Log\2018_05_22

Files with the Default configuration logs are located by following path:

[TEMP]\BPMonline\Site_[{SiteId}]\[{ApplicationName}]\[ConfigurationNumber]\Log\
[{DateTime.Today}]

Example:

C:\Windows\Temp\BPMonline\Site_1\bpmonline7121\0\Log\2018_05_22

Variables specified in the square brackets:

[TEMP] – the base folder. By default the C:\Windows\Temp folder is used by IIS and the C:\Users\{User
name}\AppData\Local\Temp folder used by Visual Studio (IIS Express).
[{SiteId}] – site number. For the IIS, the number is specified in the site advanced settings (Fig. 1). For the
Visual Studio the number is 2.
[{ApplicationName}] – application name (Fig. 1).
[ConfigurationNumber] – configuration number. The number for the Default, configuration usually is 0.
[{DateTime.Today}] – logging date.

Fig. 1. Advanced setting of the IIS site

Bpm’online developer guide 988

https://logging.apache.org/log4net/release/manual/introduction.html

Changing the logging level
By default the logging level for all bpm’online components is set to provide maximal performance for the
application. Possible levels of logging in order of increasing priority:

ALL – logging of all events. Significantly reduces application performance.
DEBUG – logging all events at debugging.
INFO – logging of errors, warnings and messages.
WARN – logging of errors and warnings.
ERROR – logging of errors.
FATAL – logging only errors that lead to the termination of the component being logged.
OFF – logging disabled.

Example 1. Set the maximum level of logging for all components

To do this, specify the ALL level in the <root> XML element of the .\Terrasoft.WebApp\log4net.config file.

<root>
 <level value="ALL" />
 <appender-ref ref="commonAppender" />
</root>

Example 2. Set logging of errors when working with SVN

To do this, specify the ERROR level in the <logger name="Svn"> XML element of the
.\Terrasoft.WebApp\log4net.config file.

<logger name="Svn" >
 <level value="ERROR" />
 <appender-ref ref="SvnAppender" />
</logger>

Bpm’online developer guide 989

	Table of Contents
	Getting started with the bpm’online platform
	Architecture
	Application infrastructure
	Components
	Packages, schemas, modules

	Application interface and structure
	Main menu
	Sections
	Section lists
	Section analytics
	Section actions
	Filters
	Tags

	Record edit page
	Details
	Mini-page
	Modal windows
	Communication panel
	Command line
	Action dashboard

	How to start the development
	Development process organization
	Organizing a development environment
	Recommended development sequence
	Development rules
	How to deploy bpm'online on-site
	Deploying the bpm'online cloud application
	Create repository in SVN server
	Working with packages
	Package structure and contents
	Package dependencies. Basic application packages
	Package [Custom]
	Creating and installing a package for development
	Committing a package to repository
	Installing packages from repository
	Updating package from repository
	Exporting packages from the application interface
	Creating a package in the file system development mode
	Binding data to packages

	Transferring changes between the working environments
	Exporting packages from the application interface
	Installing marketplace applications from a zip archive
	Transferring changes using schema export and import
	Transferring changes using SVN
	Transferring changes using WorkspaceConsole

	Creating a custom client module schema
	Creating the entity schema
	Creating the [Source code] schema

	Development resources
	Built-in development tools
	The [Configuration] section
	The [Configuration] section. The [Data] tab
	Source code and metadata viewport
	Designers of configuration items
	Workspace of the Object Designer
	Module designer
	Source code designer
	Process designer workspace
	User task designer workspace
	Workspace of image list designer
	Report designer
	Setting up the report designer connection with server
	Report designer workspace
	Report designer features

	Development in the file system
	Visual Studio settings for development in the file system
	Working with the server side source code in Visual Studio
	Working with the client code in the file system
	Working with SVN in the file system
	Creating a package in the file system development mode
	How to install an SVN package in the file system development mode
	How to bind existing package to SVN
	Updating and committing changes to the SVN from the file system
	Creation of the package and switching to the file system development mode

	Developing the configuration server code in the user project
	Automatic displaying of changes in the development of the custom logic
	Packages file content
	Localization of the file content
	How to create Unit-tests via NUnit and Visual Studio
	How to use TypeScript when developing custom functions

	Working with WorkspaceConsole
	WorkspaceConsole settings
	WorkspaceConsole parameters
	Exporting packages from database
	Saving packages to the database
	Saving SVN packages

	Client code debugging
	Server code debugging

	Bpm’online development cases
	Section business logic
	Creating a new section
	Adding an action to the list
	How to add a section action: handling the selection of a single record
	How to add a section action: handling the selection of several records
	Handling the selection of several records. Examples

	How to add a button to a section
	How to highlight a record in the list in color
	Adding quick filter block to a section

	Page configuration
	Setting the edit page fields using business rules
	The FILTRATION rule use case
	The BINDPARAMETER rule. How to hide a field on an edit page based on a specific condition
	The BINDPARAMETER rule. How to lock a field on an edit page based on a specific condition
	The BINDPARAMETER rule. How to make a field required based on a specific condition
	Business rules created via wizards

	Adding an action to the edit page
	Control elements
	Adding a new field to the edit page
	Adding a button to the edit page
	How to add a button to an edit page in the new record add mode
	How to add the button on the edit page in the combined mode

	How to add a field with an image to the edit page
	How to add the color select button to the edit page
	How to add multi-currency field
	How to add custom logic to the existing controls

	Adding calculated fields
	How to set a default value for a field
	How to add the field validation
	Using filtration for lookup fields. Examples
	Adding an action panel
	Adding a new channel to the action panel
	Displaying contact's time zone
	How to display the difference between dates on edit page fields
	How to block fields of the edit page

	Adding details
	Adding an edit page detail
	Adding a detail with an editable list
	Creating a detail with selection from lookup
	Adding multiple records to a detail
	Creating a custom detail with fields
	Advanced settings of a custom detail with fields
	Creating a detail in wizards
	Adding the [Attachments] detail
	Displaying additional columns on the [Attachments] tab
	How to hide menu commands of the detail with list

	Business processes
	How to add auto-numbering to the edit page field
	Process launch from a client module
	Creating custom [User task] process element
	How to customize notifications for the [User task] process element
	How to run bpm'online processes via web service
	How to save the record without closing the edit page which is opened by the business process

	Typical customizations
	Creating pop-up summaries (mini pages)
	Adding pop-up summaries (mini pages) to a module
	Creating a pop-up summary (mini page) for adding records
	Adding pop-up hints
	How to modify sales pipeline calculations
	How to enable additional filtering in a sales pipeline
	Adding a custom dashboard widget
	The Terrasoft.AlignableContainer custom element
	Adding a duplicate search rule
	Junk case custom filtering
	How to display custom implementation of approving in the section wizard
	How to create custom reminders and notifications
	How to create the [Timeline] tab tiles bound to custom section
	Adding multi-language email templates to a custom section

	Analytics
	How to create macros for a custom report in Word

	Working with data
	CRUD-operations in configuration
	The use of EntitySchemaQuery implementation on client
	Building of paths to columns relative to root schema
	Adding columns to a query
	Getting query result
	EntitySchemaQuery filters handling

	CRUD-operations on server side
	Composing add data queries
	The use of EntitySchemaQuery for creation of queries in database
	Composing modify data queries
	Composing delete data queries

	Web-services in configuration
	How to create custom configuration service
	How to call configuration services with ServiceHelper
	Creating anonymous web service
	How to call configuration services using Postman

	Reading multilingual data with EntitySchemaQuery
	Views localization
	Working with the localized data via Entity
	Adding a multilingual terminator to an object schema
	Using the DBExecutor for working with the database

	Sales products customization
	How to change the calculation for the "Closed" column in the [Forecasts] section.
	Configuration of the editable columns on the product selection page

	Service products customization
	Adding a new rule for calculating case deadline
	Adding a macro handler in email templates
	Creating Web-to-Case landing pages
	How to hide feed area in the agent desktop
	Adding floating icons for internal case feed posts

	Lending product customization
	How to create custom verification action page
	Using the EntityMapper schema

	Marketing product customization
	Adding a custom campaign element

	Prediction
	How to implement custom prediction model

	Integration with bpm'online and public API
	Choosing the method of integration with bpm'online
	Authenticating external requests to bpm'online services
	The AuthService.svc authentication service
	Protection from CSRF attacks during integration with bpm'online
	DataService web service
	DataService. Adding records
	DataService. Reading records
	DataService. Data filtering
	DataService. Using macros
	DataService. Updating records
	DataServiсe. Deleting records
	DataService. Batch queries

	OData
	Possibilities for the bpm'online integration over the OData protocol
	Working with bpm'online objects over the OData protocol using Http request
	Working with bpm'online objects over the OData protocol WCF-client
	Examples of requests for filter selection
	Executing OData queries using Fiddler

	Integration of third-party sites via iframe
	Web-To-Object. Using landings and web-forms
	The ProcessEngineService.svc web service

	Platform description
	System Settings
	Setting user session timeout

	Working with data structure
	Configuration localizable resources
	Localizable resource structure and use
	Localization tables
	Bound data structure

	User interface
	AMD concept Modules
	Modular development principles in bpm'online
	Client Modules
	Client view model schemas
	Mixins. The "mixins" property
	Attributes. The "attributes" property
	Messages. The "messages" property
	Methods. The "methods" property
	Rules. The "rules" property
	Business rules. The businessRules property
	Modules. The "modules" property
	The "diff" array
	Alias mechanism
	Schema formatting requirements for compatibility with wizards
	Handling a data context loss
	Properties. The "properties" property
	Automatically generated view model properties

	Sandbox. Module message exchange
	Sandbox. Bidirectional messages
	Sandbox. Loading and unloading modules
	New bindTo format at setting connection between view and viewModel

	Controls
	Controls. Introduction
	Details
	The [Connected entity profile] control
	SourceCodeEditMixin class description and work examples.
	Blocking edit page fields

	Dashboard widgets
	Charts
	Metrics
	Gauge
	Lists
	Web-page
	Sales pipeline

	Scheduler setup
	Recommendations on scheduler setup
	Quartz policies for the processing of overdue tasks

	Integration
	Phone integration
	Oktell
	Webitel
	Asterisk

	Email integration
	Working with email threads

	Self-service Portal
	ClientMessageBridge
	ClientMessageBridge. Message history save mechanism
	ClientMessageBridge. API description
	ClientMessageBridge. The client-side WebSocket message handler

	Sync Engine synchronization mechanism
	Bpm'online synchronization with external storages
	Synchronizing metadata in bpm'online
	Synchronizing tasks with MS Exchange
	Synchronizing email with MS Exchange
	Synchronizing contacts with MS Exchange
	Synchronizing appointments with MS Exchange

	Data Enrichment and Prediction
	Contact data enrichment from emails
	Machine learning service
	Creating data queries for the machine learning model

	Bpm'online lending
	Terrasoft.Configuration.EntityMapper class

	Bpm'online marketing
	Campaign elements

	Bpm'online service
	PortalMessagePublisherExtensions mixin. Portal messages in SectionActionDashboard

	DataManager class description and use cases
	Feature Toggle. Mechanism of enabling and disabling functions
	The MoneyUtilsMixin mixin
	The DecimalUtils module
	Basic macros in the MS Word printables
	Web-to-Case
	Separate query pool
	Development recommendations for Right-To-Left mode
	Client static content in the file system
	Record deactivation
	Monitoring of private properties overriding. The Terrasoft.PrivateMemberWatcher class
	The [Timeline] tab
	Server content in the file system
	Logging in bpm’online. Log4net

