
Back-end development
Custom web services
Version 8.0

This documentation is provided under restrictions on use and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this documentation, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you
find any errors, please report them to us in writing.

© 2023 Creatio. All rights reserved.

5

6

11

12

14

14

15

15

17

18

18

19

19

21

21

22

23

23

24

24

25

25

26

27

27

28

29

29

30

31

32

33

35

35

36

36

Table of Contents

Custom web services

Develop a custom web service

Call a custom web service

Migrate an existing custom web service to .NET Core

Develop a custom web service that uses cookie-based authentication

1. Create a Source code schema

2. Create a service class

3. Implement the class method

Outcome of the example

Develop a custom web service that uses anonymous authentication

1. Create a Source code schema

2. Create a service class

3. Implement the class method

4 Register the custom web service that uses anonymous authentication

5. Enable both HTTP and HTTPS support for the custom web service that uses anonymous authentication

6. Enable all users to access the custom web service that uses anonymous authentication

7. Restart Creatio in IIS

Outcome of the example

Develop a custom web service that uses anonymous authentication and non-standard text encoding

1. Create a Source code schema

2. Create a web service class

3. Implement a method of the web service class

4 Register the web service

5. Register a non-standard text encoding

6. Enable both HTTP and HTTPS support for the web service

7. Enable access to the web service for all users

8. Restart Creatio in IIS

Outcome of the example

Call a custom web service from the front-end

1. Create a custom web service

2. Create a replacing contact record page

3. Add the button to the contact record page

Outcome of the example

Call a custom web service from Postman

1. Create a request collection

2. Set up an authentication request

Table of Contents | 3

© 2023 Creatio. All rights reserved.

39

40

42

42

3. Execute the authentication request

4 Set up the request to the custom web service that uses cookie-based authentication

5. Execute the request to the custom web service that uses cookie-based authentication

Outcome of the example

Table of Contents | 4

© 2023 Creatio. All rights reserved.

Custom web services
 Medium

A web service is software reachable via a unique URL, which enables interaction between applications. The
purpose of a web service is to integrate Creatio with external applications and systems.

Based on the custom business logic, Creatio generates and sends a request to the web service, receives the
response, and extracts the needed data. Use this data to create or update records in the Creatio database as
well as for custom business logic or automation.

Creatio supports the following web service types:

.NET Framework system web services use the WCF technology and are managed at the IIS level. .NET Core
system web services use the ASP.NET Core Web API technology.

Learn more about the authentication types Creatio provides for web services in a separate article: Authentication.
We recommend using authentication based on the OAuth 2.0 open authorization protocol. Learn more about
OAuth-based authentication in the user documentation: Set up OAuth 2.0 authorization for integrated
applications.

Creatio system web services that use cookie-based authentication include:

Creatio services that use anonymous authentication include AuthService.svc that executes Creatio
authentication requests. Learn more about the web service in a separate article: Authentication.

This article covers custom web services. Learn more about system web services in a separate guide: Integrations
& API.

External REST and SOAP services that you can integrate with low-code tools. Learn more in the user
documentation guide: Web services.

System web services.

System web services that use cookie-based authentication.

System web services that use anonymous authentication.

Custom web services.

Custom web services that use cookie-based authentication.

Custom web services that use anonymous authentication.

odata that executes OData 4 external application requests to the Creatio database server. Learn more about
using the OData 4 protocol in Creatio in a separate article: OData.

EntityDataService.svc that executes OData 3 external application requests to the Creatio database server.
Learn more about using the OData 3 protocol in Creatio in a separate article: OData.

ProcessEngineService.svc that enables external applications to run Creatio business processes. Learn more
about the web service in a separate article: Service that runs business processes.

Custom web services | 5

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/docs/user/no_code_customization/web_services
https://docs.microsoft.com/en-us/dotnet/framework/wcf/
https://docs.microsoft.com/en-us/aspnet/core/web-api/?view=aspnetcore-5.0
https://academy.creatio.com/documents?id=15402
https://academy.creatio.com/documents?id=2396
https://academy.creatio.com/documents?id=15431&anchor=title-1398-1
https://academy.creatio.com/documents?id=15431&anchor=title-1398-2
https://academy.creatio.com/documents?id=15441
https://academy.creatio.com/documents?id=15402
https://academy.creatio.com/docs/developer/integrations_and_api

Develop a custom web service
A custom web service is a RESTful service that uses the WCF (for .NET Framework) or ASP .NET Core (for
.NET Core) technology. Unlike system web services, custom web services let you solve unique integration
problems.

The web service development procedure differs for each Creatio deployment framework. View the unique
features of the custom web service development for the .NET Framework and .NET Core frameworks below.

You can use Postman to test querying a custom web service. Learn more about Postman in the official Postman
documentation. Learn more about querying Creatio using Postman in a separate article: Working with requests in
Postman. Learn more about calling a web service via Postman in a separate article: Call a custom web service
from Postman.

Develop a custom web service that uses cookie-based authentication

As a result, you will be able to call the custom web service that uses cookie-based authentication from the source
code of configuration schemas as well as from external applications.

Create a [Source code] schema. Learn more about creating a schema in a separate article: Source code
(C#).

1.

Create a service class.2.

Add the Terrasoft.Configuration namespace or any of its nested namespaces in the Schema Designer.
Name the namespace arbitrarily.

a.

Add the namespaces the data types of which to utilize in the class using the using directive.b.

Use the Terrasoft.Web.Http.Abstractions namespace if you want the custom web service to support both
.NET Framework and .NET Core. If you develop the web service using the System.Web namespace and have
to run it on .NET Core, adapt the web service.

c.

Add the class name that matches the schema name (the [Code] property).d.

Specify the Terrasoft.Nui.ServiceModel.WebService.BaseService class as a parent class.e.

Add the [ServiceContract] and [AspNetCompatibilityRequirement] class attributes that contain the needed
parameters. Learn more about the [ServiceContract] attribute in the official Microsoft documentation.
Learn more about the [AspNetCompatibilityRequirements] attribute in the official Microsoft documentation.

f.

Implement the class methods that correspond to the web service endpoints.

Add the [OperationContract] and [WebInvoke] method attributes that contain the needed parameters. Learn
more about the [OperationContract] attribute in the official Microsoft documentation. Learn more about the
[WebInvoke] attribute in the official Microsoft documentation.

3.

Implement additional classes whose instances receive or return the web service methods (optional).
Required to pass data of complex types. For example, object instances, collections, arrays, etc.

Add the [DataContract] attribute to the class and the [DataMember] attribute to the class fields. Learn more
about the [DataContract] attribute in the official Microsoft documentation. Learn more about the
[DataMember] attribute in the official Microsoft documentation.

4.

Publish the source code schema.5.

Custom web services | 6

© 2023 Creatio. All rights reserved.

https://www.postman.com/
https://academy.creatio.com/documents?id=15452
https://academy.creatio.com/documents?id=15266
https://academy.creatio.com/documents?id=15108&anchor=title-2123-8
https://academy.creatio.com/documents?id=15262&anchor=title-1243-7
https://docs.microsoft.com/en-us/dotnet/api/system.servicemodel.servicecontractattribute?view=dotnet-plat-ext-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.servicemodel.activation.aspnetcompatibilityrequirementsattribute?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.servicemodel.operationcontractattribute?view=dotnet-plat-ext-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.servicemodel.web.webinvokeattribute?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.serialization.datacontractattribute?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.serialization.datamemberattribute?view=net-5.0

Develop a custom web service that uses anonymous authentication
A custom web service that uses anonymous authentication does not require the user to pre-
authenticate, i. e., you can use the service anonymously.

Attention. We do not recommend using anonymous authentication in custom web services. It is insecure
and can hurt performance.

Develop a custom web service that uses anonymous authentication for .NET Framework
Take steps 1-5 in the Develop a custom web service that uses cookie-based authentication instruction.1.

Add the SystemUserConnection system connection when creating a service class.2.

Specify the user on whose behalf to process the HTTP request when creating a class method. To do this, call
the SessionHelper.SpecifyWebOperationIdentity method of the Terrasoft.Web.Common namespace after
retrieving SystemUserConnection . This method enables business processes to manage the database entity (
Entity) from the custom web service that uses anonymous authentication.

3.

Terrasoft.Web.Common.SessionHelper.SpecifyWebOperationIdentity(HttpContextAccessor.GetInstance(), SystemUserConnection.CurrentUser);

Register the custom web service that uses anonymous authentication.4.

Create an *.svc file in the ..\Terrasoft.WebApp\ServiceModel directory. The file name must match the web
service name.

a.

Add the following record to the file.b.

Template that registers the custom web service that uses anonymous authentication

<% @ServiceHost
 Service = "Service, ServiceNamespace"
 Factory = "Factory, FactoryNamespace"
 Debug = "Debug"
 Language = "Language"
 CodeBehind = "CodeBehind"
%>

Example that registers the custom web service that uses anonymous authentication

<% @ServiceHost
 Service = "Terrasoft.Configuration.UsrAnonymousConfigurationServiceNamespace.UsrAnonymousConfigurationService"
 Debug = "true"
 Language = "C#"
%>

Custom web services | 7

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15262&anchor=title-2148-2

The Service attribute contains the full name of the web service class and specifies the namespace.

Learn more about the @ServiceHost WCF directive in the official Microsoft documentation.

Save the file.c.

Register a non-standard text encoding (optional).

Since version 8.0.2, Creatio lets you use arbitrary character encodings in .NET Framework web services that
use anonymous authentication. For example, you can use such encodings as ISO-8859, ISO-2022, etc. Learn
more about encodings in Wikipedia.

To register an arbitrary character encoding:

5.

Add a <customBinding> section to the ..\Terrasoft.WebApp\ServiceModel\http\bindings.config file.a.

Add the following attributes to the <customBinding> file section:

Example of changes to the ..\Terrasoft.WebApp\ServiceModel\http\bindings.config file

Register each encoding (i. e., add <binding> file section for each) individually.

b.

name attribute of the <binding> element. Fill it with a custom name of the encoding.

encoding attribute of the <customTextMessageEncoding> element. Fill it with the code of the encoding, for
example, ISO-8859-1.

manualAddressing attribute of the <httpTransport> element. Set it to true .

<bindings>
 ...
 <customBinding>
 <binding name="CustomEncodingName">
 <customTextMessageEncoding encoding="ISO-8859-1" />
 <httpTransport manualAddressing="true"/>
 </binding>
 ...
 </customBinding>
</bindings>

Save the file.f.

Add an identical record to the ..\Terrasoft.WebApp\ServiceModel\https\bindings.config file.g.

Enable both HTTP and HTTPS support for the custom web service that uses anonymous authentication.6.

Add the following record to the ..\Terrasoft.WebApp\ServiceModel\http\services.config file.

Example of changes to the ..\Terrasoft.WebApp\ServiceModel\http\services.config file

a.

<services>

Custom web services | 8

© 2023 Creatio. All rights reserved.

https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/wcf-directive/servicehost
https://en.wikipedia.org/wiki/Character_encoding

The <services> element contains the list of Creatio web service configurations (the <service> nested
elements).

The name attribute contains the name of the type (class or interface) that implements the web service
contract.

The <endpoint> nested element contains the address, binding, and interface that defines the contract of
the web service specified in the name attribute of the <service> element.

The binding attribute contains the value of the character encoding. Must match the name of the file
section where the encoding that the web service uses is registered. Set to "webHttpBinding" to use the
UTF-8 encoding. Set to "customBinding" to use a custom encoding.

The bindingConfiguration attribute. Must be present if the binding attribute is set to "customBinding." The
value of the current attribute must match the value of the <binding> element’s name attribute specified on
the previous step.

Learn more about the web service configuration elements in the official Microsoft documentation.

 ...
 <service name="Terrasoft.Configuration.[Custom namespace].[Service name]">
 <endpoint name="[Service name]EndPoint"
 address=""
 binding="[Binding]"
 bindingConfiguration="[Custom encoding]"
 behaviorConfiguration="RestServiceBehavior"
 bindingNamespace="http://Terrasoft.WebApp.ServiceModel"
 contract="Terrasoft.Configuration.[Custom namespace].[Service name]" />
 </service>
</services>

Save the file.b.

Add an identical record to the ..\Terrasoft.WebApp\ServiceModel\https\services.config file.c.

Enable all users to access the custom web service that uses anonymous authentication.7.

Add the <location> element that defines the relative path and access permissions to the web service to
the ..\Terrasoft.WebApp\Web.config file.

Example of changes to the ..\Terrasoft.WebApp\Web.config file

a.

<configuration>
 ...
 <location path="ServiceModel/[Service name].svc">
 <system.web>
 <authorization>
 <allow users="*" />
 </authorization>
 </system.web>
 </location>

Custom web services | 9

© 2023 Creatio. All rights reserved.

https://docs.microsoft.com/en-us/dotnet/framework/wcf/configuring-services-using-configuration-files

As a result, you will be able to call the custom web service that uses anonymous authentication from the source
code of configuration schemas as well as from external applications. You can access the web service both with
and without pre-authentication.

Develop a custom web service that uses anonymous authentication for .NET Core

As a result, you will be able to call the custom web service that uses anonymous authentication from the source
code of configuration schemas as well as from external applications. You can access the web service both with
and without pre-authentication.

 ...
</configuration>

Add the relative web service path to the value attribute of the <appSettings> element's AllowedLocations
key in the ..\Terrasoft.WebApp\Web.config file.

Example of changes to the ..\Terrasoft.WebApp\Web.config file

b.

<configuration>
 ...
 <appSettings>
 ...
 <add key="AllowedLocations" value="[Previous values];ServiceModel/[Service name].svc" />
 ...
 </appSettings>
 ...
</configuration>

Save the file.c.

Restart Creatio in IIS.8.

Take steps 1-5 in the Develop a custom web service that uses cookie-based authentication instruction.1.

Enable all users to access the custom web service that uses anonymous authentication.

To do this, add the web service data to the AnonymousRoutes block of the
..\Terrasoft.WebHost\appsettings.json configuration file.

Example of changes to the ..\Terrasoft.WebHost\appsettings.json file

2.

"Terrasoft.Configuration.[Service name]": [
 "/ServiceModel/Service name].svc"
]

Restart Creatio.3.

Custom web services | 10

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15262&anchor=title-2148-5

Attention. Reconfigure the web service after updating Creatio. The existing configuration files are
overwritten as part of the update.

Call a custom web service
You can call a custom web service in several ways:

Call a custom web service from the browser

Call a custom web service that uses cookie-based authentication from the browser
To call a .NET Framework custom web service that uses cookie-based authentication from the browser:

The procedure to call a .NET Core custom web service that uses cookie-based authentication is identical. That
said, the /0 prefix is not required.

Call a custom web service that uses anonymous authentication from the browser
To call a .NET Framework custom web service that uses anonymous authentication from the browser, use the
request string below.

from the browser.

from the front-end.

Retrieve the authentication cookies using the AuthService.svc system web service.1.

Call a custom web service using the following request string:2.

Template URL of a custom web service that uses cookie-based authentication

[Creatio application URL]/0/rest/[Custom web service name]/[Custom web service endpoint]?[Optional parameters]

Example URL of a custom web service that uses cookie-based authentication

http://mycreatio.com/0/rest/UsrCustomConfigurationService/GetContactIdByName?Name=User1

Template URL of a custom web service that uses anonymous authentication

[Creatio application URL]/0/ServiceModel/[Custom web service name].svc/[Custom web service endpoint]?[Optional parameters]

Custom web services | 11

© 2023 Creatio. All rights reserved.

The procedure to call a .NET Core custom web service that uses anonymous authentication is identical. That
said, the /0 prefix is not required.

Call a custom web service from the front-end

Attention. The ServiceHelper module supports only POST requests. As such, add the [WebInvoke]
attribute that contains the Method = "POST" parameter to the custom web service methods.

Migrate an existing custom web service to .NET Core
You can migrate a .NET Framework custom web service that retrieves the scope without inheriting the
Terrasoft.Web.Common.BaseService base class to .NET Core. To do this, adapt the custom web service.

The HttpContextAccessor property of the Terrasoft.Web.Common.BaseService provides unified access to context (
HttpContext) both in .NET Framework and .NET Core. The UserConnection and AppConnection properties let you
retrieve the user connection object and the connection object on the application level. This lets you omit the
HttpContext.Current property of the System.Web library.

Example that uses the properties of the Terrasoft.Web.Common.BaseService parent class

Example URL of a custom web service that uses anonymous authentication

http://mycreatio.com/0/ServiceModel/UsrCustomConfigurationService.svc/GetContactIdByName?Name=User1

Add the ServiceHelper module as a dependency to the module of the page from which to call the service. This
module provides a convenient interface for executing server requests via the Terrasoft.AjaxProvider request
provider implemented in the client core.

1.

Call a custom web service from the ServiceHelper module.

You can call a custom web service in several ways:

2.

Call the callService(serviceName, serviceMethodName, callback, serviceData, scope) method.

Call the callService(config) method, where config is a configuration object.

The config configuration object has the following properties:

serviceName is the name of the custom web service.

methodName is the name of the custom web service method to call.

callback is the callback function that handles the web service response.

data is the object that contains the initialized incoming parameters for the web service method.

scope is the scope of the request execution.

namespace Terrasoft.Configuration.UsrCustomNamespace
{

Custom web services | 12

© 2023 Creatio. All rights reserved.

Creatio supports the following scope retrieval options for web services developed without inheriting the
Terrasoft.Web.Common.BaseService class:

Attention. Do not use specific access implementations to request context peculiar to .NET Framework
(the System.Web library) or .NET Core (the Microsoft.AspNetCore.Http library) in the configuration.

Example that adapts the web service to .NET Core

 using Terrasoft.Web.Common;

 [ServiceContract]
 [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Required)]
 public class UsrCustomConfigurationService: BaseService
 {
 /* The web service method. */
 [OperationContract]
 [WebInvoke(Method = "GET", RequestFormat = WebMessageFormat.Json, BodyStyle = WebMessageBodyStyle.Wrapped,
 ResponseFormat = WebMessageFormat.Json)]
 public void SomeMethod() {
 ...
 /* UserConnection is the BaseService property. */
 var currentUser = UserConnection.CurrentUser;
 /* AppConnection is the BaseService property. */
 var sdkHelpUrl = AppConnection.SdkHelpUrl;
 /* HttpContextAccessor is the BaseService property. */
 var httpContext = HttpContextAccessor.GetInstance();
 ...
 }
 }
}

via the IHttpContextAccessor interface registered in DI (ClassFactory) .

This option lets you view the explicit class dependencies for thorough automated testing and debugging.
Learn more about using the class factory in a separate article: Replacing class factory.

via the HttpContext.Current static property.

Add the Terrasoft.Web.Http.Abstractions namespace to the source code using the using directive. The
HttpContext.Current static property implements unified access to HttpContext . To adapt the web service
code to .NET Core, replace the System.Web namespace using Terrasoft.Web.Http.Abstractions .

namespace Terrasoft.Configuration.UsrCustomNamespace
{
 /* Use instead of System.Web. */
 using Terrasoft.Web.Http.Abstractions;

Custom web services | 13

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15221

Develop a custom web service that uses
cookie-based authentication

 Medium

Example. Create a custom web service that uses cookie-based authentication. The service must execute a
Creatio request to return the contact information by the specified name. Creatio must return the following
data:

1. Create a [Source code] schema

 [ServiceContract]
 [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Required)]
 public class UsrCustomConfigurationService
 {
 /* The web service method. */
 [OperationContract]
 [WebInvoke(Method = "GET", RequestFormat = WebMessageFormat.Json, BodyStyle = WebMessageBodyStyle.Wrapped,
 ResponseFormat = WebMessageFormat.Json)]
 public void SomeMethod() {
 ...
 var httpContext = HttpContext.Current;
 ...
 }
 }
}

If the contact is found, return the contact ID.

If several contacts are found, return the ID of the first contact only.

If no contacts are found, return an empty string.

Go to the [Configuration] section and select a custom package to add the schema.1.

Click [Add] → [Source code] on the section list toolbar.2.

Develop a custom web service that uses cookie-based authentication | 14

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/docs/7-17/developer/development_tools/creatio_ide/develop_in_creatio_ide/development_in_creatio_ide#title-1188-1
https://academy.creatio.com/docs/7-18/developer/development_tools/packages/packages_basics/overview

2. Create a service class

3. Implement the class method
Go to the Schema Designer and add the public string GetContactIdByName(string Name) class method that
implements the endpoint of the custom web service. The method executes database queries using
EntitySchemaQuery . Depending on the value of the Name parameter in the query string, the response body will
contain:

Go to the Schema Designer and fill out the schema properties:

Click [Apply] to apply the properties.

3.

Set [Code] to "UsrCustomConfigurationService."

Set [Title] to "CustomConfigurationService."

Go to the Schema Designer and add the namespace nested into Terrasoft.Configuration . You can use an
arbitrary name. For example, UsrCustomConfigurationServiceNamespace .

1.

Add the namespaces the data types of which to utilize in the class using the using directive.2.

Add a class name that matches the schema name (the [Code] property).3.

Specify the Terrasoft.Nui.ServiceModel.WebService.BaseService class as a parent class.4.

Add the [ServiceContract] and
[AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Required)]

attributes to the class.

5.

The ID of the contact (string type) if the contact is found.

The ID of the first found contact (string type) if several contacts are found.

Develop a custom web service that uses cookie-based authentication | 15

© 2023 Creatio. All rights reserved.

View the source code of the UsrCustomConfigurationService custom web service below.

UsrCustomConfigurationService

The empty string if no contacts are found.

namespace Terrasoft.Configuration.UsrCustomConfigurationServiceNamespace
{
 using System;
 using System.ServiceModel;
 using System.ServiceModel.Web;
 using System.ServiceModel.Activation;
 using Terrasoft.Core;
 using Terrasoft.Web.Common;
 using Terrasoft.Core.Entities;

 [ServiceContract]
 [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Required)]
 public class UsrCustomConfigurationService: BaseService
 {

 /* The method that returns the contact ID by the contact name. */
 [OperationContract]
 [WebInvoke(Method = "GET", RequestFormat = WebMessageFormat.Json, BodyStyle = WebMessageBodyStyle.Wrapped,
 ResponseFormat = WebMessageFormat.Json)]
 public string GetContactIdByName(string Name) {
 /* The default result. */
 var result = "";
 /* The EntitySchemaQuery instance that accesses the Contact database table. */
 var esq = new EntitySchemaQuery(UserConnection.EntitySchemaManager, "Contact");
 /* Add columns to the query. */
 var colId = esq.AddColumn("Id");
 var colName = esq.AddColumn("Name");
 /* Filter the query data. */
 var esqFilter = esq.CreateFilterWithParameters(FilterComparisonType.Equal, "Name", Name);
 esq.Filters.Add(esqFilter);
 /* Retrieve the query results. */
 var entities = esq.GetEntityCollection(UserConnection);
 /* If the service receives data. */
 if (entities.Count > 0)
 {
 /* Return the "Id" column value of the first query result record. */
 result = entities[0].GetColumnValue(colId.Name).ToString();
 /* You can also use this option:
 result = entities[0].GetTypedColumnValue<string>(colId.Name); */
 }
 // Return the results.
 return result;

Develop a custom web service that uses cookie-based authentication | 16

© 2023 Creatio. All rights reserved.

Click [Save] then [Publish] on the Designer's toolbar.

Outcome of the example
As a result, Creatio will add the custom UsrCustomConfigurationService REST web service that has the
GetContactIdByName endpoint.

Access the GetContactIdByName endpoint of the web service from the browser and pass the contact name in the
Name parameter.

Request string that contains the name of the existing contact

If you access the web service without preauthorization, an error will occur.

Log in to Creatio and execute the request once more. If Creatio finds the contact from the Name parameter in the
database, the GetContactIdByNameResult property will return the contact ID value.

If Creatio finds no contacts from the Name parameter in the database, the GetContactIdByNameResult property will
return an empty string.

 }
 }
}

http://mycreatio.com/0/rest/UsrCustomConfigurationService/GetContactIdByName?Name=Andrew%20Baker

Develop a custom web service that uses cookie-based authentication | 17

© 2023 Creatio. All rights reserved.

Request string that contains the name of a non-existing contact

Develop a custom web service that uses
anonymous authentication

 Medium

Example. Create a custom web service that uses anonymous authentication. The service must execute a
Creatio request to return the contact information by the specified name. Creatio must return the following
data:

1. Create a [Source code] schema

http://mycreatio.com/0/rest/UsrCustomConfigurationService/GetContactIdByName?Name=Andrew%20Bake

If the contact is found, return the contact ID.

If several contacts are found, return the ID of the first contact only.

If no contacts are found, return an empty string.

Go to the [Configuration] section and select a custom package to add the schema.1.

Click [Add] → [Source code] on the section list toolbar.2.

Go to the Schema Designer and fill out the schema properties:3.

Set [Code] to "UsrAnonymousConfigurationService."

Develop a custom web service that uses anonymous authentication | 18

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/docs/7-17/developer/development_tools/creatio_ide/develop_in_creatio_ide/development_in_creatio_ide#t1itle-1188-1
https://academy.creatio.com/docs/7-18/developer/development_tools/packages/packages_basics/overview

2. Create a service class

3. Implement the class method
Go to the Schema Designer and add the public string GetContactIdByName(string Name) class method that
implements the endpoint of the custom web service. The method executes database queries using
EntitySchemaQuery . Depending on the value of the Name parameter in the query string, the response body will
contain:

Click [Apply] to apply the properties.

Set [Title] to "AnonymousConfigurationService."

Go to the Schema Designer and add the namespace nested into Terrasoft.Configuration . You can use an
arbitrary name. For example, UsrAnonymousConfigurationServiceNamespace .

1.

Add the namespaces the data types of which to utilize in the class using the using directive.2.

Add the class name that matches the schema name (the [Code] property).3.

Specify the Terrasoft.Nui.ServiceModel.WebService.BaseService class as a parent class.4.

Add the [ServiceContract] and
[AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Required)]

attributes to the class.

5.

Add the SystemUserConnection system connection to enable anonymous access to the custom web service.6.

The ID of the contact (string type) if the contact is found.

The ID of the first found contact (string type) if Creatio several contacts are found.

The empty string if Creatio no contacts are found.

Develop a custom web service that uses anonymous authentication | 19

© 2023 Creatio. All rights reserved.

Specify the user on whose behalf to process the HTTP request. To do this, call the
SessionHelper.SpecifyWebOperationIdentity method of the Terrasoft.Web.Common namespace after retrieving
SystemUserConnection . This method enables business processes to manage the database entity (Entity) from
the custom web service that uses anonymous authentication.

View the source code of the UsrAnonymousConfigurationService custom web service below.

UsrAnonymousConfigurationService

Terrasoft.Web.Common.SessionHelper.SpecifyWebOperationIdentity(HttpContextAccessor.GetInstance(), SystemUserConnection.CurrentUser);

/* The custom namespace. */
namespace Terrasoft.Configuration.UsrAnonymousConfigurationServiceNamespace
{
 using System;
 using System.ServiceModel;
 using System.ServiceModel.Web;
 using System.ServiceModel.Activation;
 using Terrasoft.Core;
 using Terrasoft.Web.Common;
 using Terrasoft.Core.Entities;

 [ServiceContract]
 [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Required)]
 public class UsrAnonymousConfigurationService: BaseService
 {
 /* The link to the UserConnection instance required to access the database. */
 private SystemUserConnection _systemUserConnection;
 private SystemUserConnection SystemUserConnection {
 get {
 return _systemUserConnection ?? (_systemUserConnection = (SystemUserConnection)AppConnection.SystemUserConnection);
 }
 }

 /* The method that returns the contact ID by the contact name. */
 [OperationContract]
 [WebInvoke(Method = "GET", RequestFormat = WebMessageFormat.Json, BodyStyle = WebMessageBodyStyle.Wrapped,
 ResponseFormat = WebMessageFormat.Json)]
 public string GetContactIdByName(string Name){
 /* Specify the user on whose behalf to process the HTTP request. */
 SessionHelper.SpecifyWebOperationIdentity(HttpContextAccessor.GetInstance(), SystemUserConnection.CurrentUser);
 /* The default result. */
 var result = "";
 /* The EntitySchemaQuery instance that accesses the Contact database table. */
 var esq = new EntitySchemaQuery(SystemUserConnection.EntitySchemaManager, "Contact");
 /* Add columns to the query. */

Develop a custom web service that uses anonymous authentication | 20

© 2023 Creatio. All rights reserved.

Click [Save] then [Publish] on the Designer's toolbar.

4 Register the custom web service that uses anonymous
authentication

5. Enable both HTTP and HTTPS support for the custom web
service that uses anonymous authentication

 var colId = esq.AddColumn("Id");
 var colName = esq.AddColumn("Name");
 /* Filter the query data. */
 var esqFilter = esq.CreateFilterWithParameters(FilterComparisonType.Equal, "Name", Name);
 esq.Filters.Add(esqFilter);
 /* Retrieve the query results. */
 var entities = esq.GetEntityCollection(SystemUserConnection);
 /* If the service receives data. */
 if (entities.Count > 0)
 {
 /* Return the "Id" column value of the first query result record. */
 result = entities[0].GetColumnValue(colId.Name).ToString();
 /* You can also use this option:
 result = entities[0].GetTypedColumnValue<string>(colId.Name); */
 }
 /* Return the results. */
 return result;
 }
 }
}

Go to the ..\Terrasoft.WebApp\ServiceModel directory.1.

Create a UsrAnonymousConfigurationService.svc file and add the following record to it.

The Service attribute contains the full name of the web service class and specifies the namespace.

2.

<% @ServiceHost
 Service = "Terrasoft.Configuration.UsrAnonymousConfigurationServiceNamespace.UsrAnonymousConfigurationService"
 Debug = "true"
 Language = "C#"
%>

Open the ..\Terrasoft.WebApp\ServiceModel\http\services.config file and add the following record to it.

..\Terrasoft.WebApp\ServiceModel\http\services.config file

1.

Develop a custom web service that uses anonymous authentication | 21

© 2023 Creatio. All rights reserved.

6. Enable all users to access the custom web service that uses
anonymous authentication

<services>
 ...
 <service name="Terrasoft.Configuration.UsrAnonymousConfigurationServiceNamespace.UsrAnonymousConfigurationService">
 <endpoint name="[Service name]EndPoint"
 address=""
 binding="webHttpBinding"
 behaviorConfiguration="RestServiceBehavior"
 bindingNamespace="http://Terrasoft.WebApp.ServiceModel"
 contract="Terrasoft.Configuration.UsrAnonymousConfigurationServiceNamespace.UsrAnonymousConfigurationService" />
 </service>
</services>

Add an identical record to the ..\Terrasoft.WebApp\ServiceModel\https\services.config file.2.

Open the ..\Terrasoft.WebApp\Web.config file.1.

Add the <location> element that defines the relative path and access permissions to the web service.

..\Terrasoft.WebApp\Web.config file

2.

<configuration>
 ...
 <location path="ServiceModel/UsrAnonymousConfigurationService.svc">
 <system.web>
 <authorization>
 <allow users="*" />
 </authorization>
 </system.web>
 </location>
 ...
</configuration>

Add the relative web service path to the value attribute of the AllowedLocations key in the <appSettings>
element.

..\Terrasoft.WebApp\Web.config file

3.

<configuration>
 ...
 <appSettings>
 ...
 <add key="AllowedLocations" value="[Previous values];ServiceModel/UsrAnonymousConfigurationService.svc" />

Develop a custom web service that uses anonymous authentication | 22

© 2023 Creatio. All rights reserved.

7. Restart Creatio in IIS
Restart Creatio in IIS to apply the changes.

Outcome of the example
As a result, Creatio will add the custom UsrAnonymousConfigurationService REST web service that has the
GetContactIdByName endpoint. You can access the web service from the browser, with or without pre-
authentication.

Access the GetContactIdByName endpoint of the web service from the browser and pass the contact name in the
Name parameter.

Request string that contains the name of the existing contact

If Creatio finds the contact from the Name parameter in the database, the GetContactIdByNameResult property will
return the contact ID value.

If Creatio finds no contacts from the Name parameter in the database, the GetContactIdByNameResult property will
return an empty string.

Request string that contains the name of a non-existing contact

 ...
 </appSettings>
 ...
</configuration>

http://mycreatio.com/0/ServiceModel/UsrAnonymousConfigurationService/GetContactIdByName?Name=Andrew%20Baker

http://mycreatio.com/0/ServiceModel/UsrAnonymousConfigurationService/GetContactIdByName?Name=Andrew%20Bake

Develop a custom web service that uses anonymous authentication | 23

© 2023 Creatio. All rights reserved.

Develop a custom web service that uses
anonymous authentication and non-
standard text encoding

 Medium

The example is relevant to Creatio version 8.0.2 and later.

Example. Create a custom web service that uses anonymous authentication and gets an arbitrary text in
the ISO-8859-1 encoding. The web service must return identical text that uses the same encoding.

1. Create a [Source code] schema
Go to the [Configuration] section and select a custom package to add the schema.1.

Click [Add] → [Source code] on the section list toolbar.2.

Fill out the schema properties in the Source Code Designer:3.

Set [Code] to "UsrEncodingService."

Set [Title] to "Service with custom encoding."

Develop a custom web service that uses anonymous authentication and non-standard text encoding | 24

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15101&anchor=title-2093-1
https://academy.creatio.com/documents?id=15121

2. Create a web service class

3. Implement a method of the web service class

Click [Apply] to apply the properties.

Go to the Schema Designer and add the namespace nested into Terrasoft.Configuration . For example,
UsrEncodingServiceNamespace .

1.

Add the using directive to import the namespaces whose data types are utilized in the class.2.

Add a class name to match the schema name (the [Code] property).3.

Specify the Terrasoft.Nui.ServiceModel.WebService.BaseService class as a parent class.4.

Add the [ServiceContract] and
[AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Required)]

attributes to the class.

5.

Add the SystemUserConnection system connection to enable anonymous access to the custom web service.6.

Implement the endpoint of the custom web service. To do this, add the public string Test(string Name)
method to the class in the Source Code Designer. Depending on the Name parameter value specified in the
ISO-8859-1 encoding and sent in the request string, the response body contains the same parameter value in
the same encoding.

1.

Specify the user on whose behalf to process the current HTTP request. To do this, call the
SessionHelper.SpecifyWebOperationIdentity method of the Terrasoft.Web.Common namespace after retrieving
SystemUserConnection . This method enables business processes to manage the database entity (Entity) from
the custom web service that uses anonymous authentication.

2.

Terrasoft.Web.Common.SessionHelper.SpecifyWebOperationIdentity(HttpContextAccessor.GetInstance(), SystemUserConnection.CurrentUser);

Develop a custom web service that uses anonymous authentication and non-standard text encoding | 25

© 2023 Creatio. All rights reserved.

View the source code of the UsrEncodingService custom web service below.

UsrEncodingService

Click [Publish] on the Source Code Designer’s toolbar to apply the changes on the database level.

4 Register the web service

/* Custom namespace. */
namespace Terrasoft.Configuration.UsrEncodingServiceNamespace
{
 using System;
 using System.ServiceModel;
 using System.ServiceModel.Web;
 using System.ServiceModel.Activation;
 using Terrasoft.Core;
 using Terrasoft.Web.Common;
 using Terrasoft.Core.Entities;

 [ServiceContract]
 [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Required)]
 public class UsrEncodingService: BaseService
 {
 /* Reference to the UserConnection instance required to call the database. */
 private SystemUserConnection _systemUserConnection;
 private SystemUserConnection SystemUserConnection {
 get {
 return _systemUserConnection ?? (_systemUserConnection = (SystemUserConnection)AppConnection.SystemUserConnection);
 }
 }

 /* Method that returns the value of the passed parameter in the specified encoding. */
 [OperationContract]
 [WebInvoke(Method = "POST", RequestFormat = WebMessageFormat.Xml, BodyStyle = WebMessageBodyStyle.Wrapped, ResponseFormat = WebMessageFormat.Xml)]
 public string Test(string Name){
 /* The user on whose behalf to process the HTTP request. */
 SessionHelper.SpecifyWebOperationIdentity(HttpContextAccessor.GetInstance(), SystemUserConnection.CurrentUser);
 /* Return the result. */
 return Name;
 }
 }
}

Create a UsrEncodingService.svc file in the ..\Terrasoft.WebApp\ServiceModel directory.1.

Develop a custom web service that uses anonymous authentication and non-standard text encoding | 26

© 2023 Creatio. All rights reserved.

5. Register a non-standard text encoding

6. Enable both HTTP and HTTPS support for the web service

Add the following record to the UsrEncodingService.svc file.

The Service attribute contains the full name of the web service class and specifies the namespace.

2.

<% @ServiceHost
 Service = "Terrasoft.Configuration.UsrEncodingServiceNamespace.UsrEncodingService"
 Debug = "true"
 Language = "C#"
%>

Save the file.3.

Add <customBinding> section to the ..\Terrasoft.WebApp\ServiceModel\http\bindings.config file.1.

Add the following attributes to the <customBinding> file section:

..\Terrasoft.WebApp\ServiceModel\http\bindings.config file

2.

Set the name attribute of the <binding> element to "ISO88591Encoding."

Set the encoding attribute of the <customTextMessageEncoding> element to "ISO-8859-1."

Set the manualAddressing attribute of the <httpTransport> element to true.

<bindings>
 ...
 <customBinding>
 <binding name="ISO88591Encoding">
 <customTextMessageEncoding encoding="ISO-8859-1" />
 <httpTransport manualAddressing="true"/>
 </binding>
 ...
 </customBinding>
</bindings>

Save the file.3.

Add an identical record to the ..\Terrasoft.WebApp\ServiceModel\https\bindings.config file.4.

Add the following record to the ..\Terrasoft.WebApp\ServiceModel\http\services.config file.

..\Terrasoft.WebApp\ServiceModel\http\services.config file

1.

Develop a custom web service that uses anonymous authentication and non-standard text encoding | 27

© 2023 Creatio. All rights reserved.

7. Enable access to the web service for all users

The binding attribute contains the "<customBinding>" value that must match the name of the
<customBinding> file section that registers the character encoding.

The bindingConfiguration attribute contains the name of the registered character encoding. Must match the
value of the <binding> element’s name attribute specified on the previous step.

<services>
 ...
 <service name="Terrasoft.Configuration.UsrEncodingServiceNamespace.UsrEncodingService">
 <endpoint name="UsrEncodingServiceEndPoint"
 address=""
 binding="customBinding"
 bindingConfiguration="ISO88591Encoding"
 behaviorConfiguration="RestServiceBehavior"
 bindingNamespace="http://Terrasoft.WebApp.ServiceModel"
 contract="Terrasoft.Configuration.UsrEncodingServiceNamespace.UsrEncodingService" />
 </service>
</services>

Save the file.2.

Add an identical record to the ..\Terrasoft.WebApp\ServiceModel\https\services.config file.3.

Add the <location> element that defines the relative path and access permissions to the web service to the
..\Terrasoft.WebApp\Web.config file.

..\Terrasoft.WebApp\Web.config file

1.

<configuration>
 ...
 <location path="ServiceModel/UsrEncodingService.svc">
 <system.web>
 <authorization>
 <allow users="*" />
 </authorization>
 </system.web>
 </location>
 ...
</configuration>

Add the relative web service path to the value attribute of the <appSettings> element's AllowedLocations key
in the ..\Terrasoft.WebApp\Web.config file.

..\Terrasoft.WebApp\Web.config file

2.

Develop a custom web service that uses anonymous authentication and non-standard text encoding | 28

© 2023 Creatio. All rights reserved.

8. Restart Creatio in IIS
Restart Creatio in IIS to apply the changes.

Outcome of the example
Use Postman request testing tool to view the outcome of the example. Learn more about working in Postman in
the official Postman documentation. Learn more about using Postman to query Creatio in a separate article:
Working with requests in Postman. Learn more about using Postman to call a web service in a separate article:
Call a custom web service from Postman.

To view the outcome of the example, execute a request to the UsrEncodingService web service.

Configure the request in Postman as follows:

<configuration>
 ...
 <appSettings>
 ...
 <add key="AllowedLocations" value="[Previous values];ServiceModel/UsrEncodingService.svc" />
 ...
 </appSettings>
 ...
</configuration>

Save the file.3.

Specify the POST request method.

Specify the Test method in the request string to the UsrEncodingService custom web service.

Request string to the UsrEncodingService custom web service

http://mycreatio.com/0/ServiceModel/UsrEncodingService.svc/Test

Configure the request data format on the [Body] tab.

Set the "raw" option.

Select the "XML" type.

Fill out the body of the POST request. Pass the characters in the ISO-8859-1 character encoding in the
request body. Learn more about the characters the ISO-8859-1 character encoding uses in Wikipedia.

Develop a custom web service that uses anonymous authentication and non-standard text encoding | 29

© 2023 Creatio. All rights reserved.

https://www.postman.com/
https://academy.creatio.com/documents?id=15452
https://academy.creatio.com/documents?id=15266
https://en.wikipedia.org/wiki/ISO/IEC_8859-1

As a result, you will receive a response to the POST request. The response format is XML , the code is .
Postman will display the response body on the [Body] tab. The body will contain the value of the Name
parameter in the ISO-8859-1 character encoding.

Call a custom web service from the front-
end

200 OK

Call a custom web service from the front-end | 30

© 2023 Creatio. All rights reserved.

 Medium

Example. Add a button that calls a custom web service to the contact add page. Display the response
returned by the web service in a dialog box.

1. Create a custom web service
This example uses the UsrCustomConfigurationService custom web service. Learn more about developing the
service in a separate article: Develop a custom web service that uses cookie-based authentication.

Change the Method parameter of the WebInvoke attribute in the UsrCustomConfigurationService custom web
service to POST .

View the source code of the custom web service the example uses below.

UsrCustomConfigurationService

namespace Terrasoft.Configuration.UsrCustomConfigurationServiceNamespace
{
 using System;
 using System.ServiceModel;
 using System.ServiceModel.Web;
 using System.ServiceModel.Activation;
 using Terrasoft.Core;
 using Terrasoft.Web.Common;
 using Terrasoft.Core.Entities;

 [ServiceContract]
 [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Required)]
 public class UsrCustomConfigurationService: BaseService
 {

 /* The method that returns the contact ID by the contact name. */
 [OperationContract]
 [WebInvoke(Method = "POST", RequestFormat = WebMessageFormat.Json, BodyStyle = WebMessageBodyStyle.Wrapped,
 ResponseFormat = WebMessageFormat.Json)]
 public string GetContactIdByName(string Name) {
 /* The default result. */
 var result = "";
 /* The EntitySchemaQuery instance that accesses the Contact database table. */
 var esq = new EntitySchemaQuery(UserConnection.EntitySchemaManager, "Contact");
 /* Add columns to the query. */
 var colId = esq.AddColumn("Id");
 var colName = esq.AddColumn("Name");
 /* Filter the query data. */
 var esqFilter = esq.CreateFilterWithParameters(FilterComparisonType.Equal, "Name", Name);
 esq.Filters.Add(esqFilter);

Call a custom web service from the front-end | 31

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/docs/7-16/developer/back_end_development/web_services/overview#case-1239

2. Create a replacing contact record page

 /* Retrieve the query results. */
 var entities = esq.GetEntityCollection(UserConnection);
 /* If the service receives data. */
 if (entities.Count > 0)
 {
 /* Return the "Id" column value of the first query result record. */
 result = entities[0].GetColumnValue(colId.Name).ToString();
 /* You can also use this option:
 result = entities[0].GetTypedColumnValue<string>(colId.Name); */
 }
 /* Return the results. */
 return result;
 }
 }
}

Go to the [Configuration] section and select a custom package to add the schema.1.

Click [Add] → [Replacing view model] on the section list toolbar.2.

Select the ContactPageV2 package's [Display schema — Contact card] view model schema to replace in the
[Parent object] property. After you confirm the parent object, Creatio will populate the other properties.

3.

Call a custom web service from the front-end | 32

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/docs/7-17/developer/development_tools/creatio_ide/develop_in_creatio_ide/development_in_creatio_ide#title-1188-2
https://academy.creatio.com/docs/7-18/developer/development_tools/packages/packages_basics/overview

3. Add the button to the contact record page

Enable the ServiceHelper module as a dependency in the declaration of the record page module. Learn more
about the module dependencies in a separate article: AMD concept. Module definition.

4.

Click the button in the [Localizable strings] block of the properties panel and fill out the localizable string
properties:

1.

Set [Code] to "GetServiceInfoButtonCaption."

Set [Value] to "Call service."

Add the button handler.

Call the web service using the callService() method of the ServiceHelper module. Pass the following
parameters of the callService() function:

View the source code of the ContactPageV2 replacing view model below.

ContactPageV2

2.

UsrCustomConfigurationService , the name of the custom web service class

GetContactIdByName , the name of the custom web service method to call

the callback function in which to process the service output

serviceData , the object that contains the initialized incoming parameters for the custom web service
method

the execution context

Call a custom web service from the front-end | 33

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/docs/developer/front_end_development/modules/amd_concept_module_definition/overview

define("ContactPageV2", ["ServiceHelper"],
function(ServiceHelper) {
 return {
 /* The name of the record page object's schema. */
 entitySchemaName: "Contact",
 details: /**SCHEMA_DETAILS*/{}/**SCHEMA_DETAILS*/,
 /* The methods of the record page's view model. */
 methods: {
 /* Check if the [Full name] page field is filled out. */
 isContactNameSet: function() {
 return this.get("Name") ? true : false;
 },
 /* The button click handler method. */
 onGetServiceInfoClick: function() {
 var name = this.get("Name");
 /* The object that initializes the incoming parameters for the service method. */
 var serviceData = {
 /* The name of the property matches the name of the service method's incoming parameter. */
 Name: name
 };
 /* Call the web service and process the outcome. */
 ServiceHelper.callService("UsrCustomConfigurationService", "GetContactIdByName",
 function(response) {
 var result = response.GetContactIdByNameResult;
 this.showInformationDialog(result);
 }, serviceData, this);
 }
 },
 diff: /**SCHEMA_DIFF*/[
 /* The metadata to add the custom button to the page. */
 {
 /* Add the element to the page. */
 "operation": "insert",
 /* The name of the parent control to add the button. */
 "parentName": "LeftContainer",
 /* Add the button to the control collection of the parent whose metaname is specified in parentName. */
 "propertyName": "items",
 /* The name of the button to add. */
 "name": "GetServiceInfoButton",
 /* The additional field properties. */
 "values": {
 /* Set the type of the added element to button. */
 itemType: Terrasoft.ViewItemType.BUTTON,
 /* Bind the button caption to the localizable schema string. */
 caption: {bindTo: "Resources.Strings.GetServiceInfoButtonCaption"},
 /* Bind the button click handler method. */
 click: {bindTo: "onGetServiceInfoClick"},

Call a custom web service from the front-end | 34

© 2023 Creatio. All rights reserved.

Outcome of the example
As a result, Creatio will display the [Call service] button on the contact page after you refresh the Creatio web
page. Click the button to call the GetContactIdByName method of the UsrCustomConfigurationService custom web
service. The method returns the ID of the current contact.

Call a custom web service from Postman
 Medium

Integrate external applications with custom Creatio web services via HTTP requests to the services. Editing and
debugging tools, such as Postman or Fiddler, help to understand the request creation principles.

Postman is a request testing toolset. The purpose of Postman is to send test requests from the client to the
server and receive the server's responses. The example in this article calls a custom web service that uses
cookie-based authentication from Postman.

 /* Bind the button availability property. */
 enabled: {bindTo: "isContactNameSet"},
 /* Set up the field location. */
 "layout": {"column": 1, "row": 6, "colSpan": 2, "rowSpan": 1}
 }
 }
]/**SCHEMA_DIFF*/
 };
});

Click [Save] on the Designer's toolbar.3.

Call a custom web service from Postman | 35

© 2023 Creatio. All rights reserved.

https://www.postman.com/
http://www.telerik.com/fiddler

Example. Call a custom web service that uses cookie-based authentication from Postman.

This example uses the UsrCustomConfigurationService custom web service. Learn more about developing the
service in a separate article: Develop a custom web service that uses cookie-based authentication.

Since this custom web service uses cookie-based authentication, authorize in Creatio first. Do this by calling the
AuthService.svc system web service. Learn more about authentication in a separate article: Authentication.

1. Create a request collection

2. Set up an authentication request

Go to the [Collections] tab on the Postman request toolbar and click [+ New Collection].1.

Fill out the request collection fields:2.

Set [Name] to "Test configuration web service."

Click [Create] to create a request collection.3.

Go to the request working area in Postman and right-click the name of the Test configuration web service1.

Call a custom web service from Postman | 36

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15263
https://academy.creatio.com/documents?id=15402

collection → [Add request].

Fill out the request fields:2.

Set [Request name] to "Authentication."

Click [Save to Test configuration web service] to add the request to the collection.3.

Select the POST request method in the drop-down list of the Postman workspace toolbar.4.

Enter the string of the authentication service request in the Postman workspace toolbar.5.

Template of the AuthService.svc service URL

[Creatio application URL]/ServiceModel/AuthService.svc/Login

Example of the AuthService.svc service URL

Call a custom web service from Postman | 37

© 2023 Creatio. All rights reserved.

http://mycreatio.com/creatio/ServiceModel/AuthService.svc/Login

Set the request data format:6.

Go to the [Body] tab.a.

Set the "raw" option.b.

Select the "JSON" type.c.

Go to the [Body] tab in the Postman workspace and fill out the body of the POST request. The body is a
JSON object that contains the login credentials.

Body of the POST request

7.

{
 "UserName": "User01",
 "UserPassword":"User01"
}

Call a custom web service from Postman | 38

© 2023 Creatio. All rights reserved.

3. Execute the authentication request
Click [Send] in the Postman workspace toolbar to execute the request from Postman.

As a result, Postman will receive a response that contains a JSON object. View the response body on the
Postman Body tab.

The indicators of a successfully executed request are as follows:

The response also contains BPMLOADER , .ASPXAUTH , BPMCSRF , and UserName cookies. Postman displays them on
the Cookies and Headers tab.

The server returns the status code.200 OK

The Code parameter of the response body contains "0."

Call a custom web service from Postman | 39

© 2023 Creatio. All rights reserved.

Use these cookies in further requests to Creatio services that use cookie-based authentication.

If you enabled the CSRF attack protection, always use the BPMCSRF cookie for request methods (POST , PUT ,
DELETE) that modify (add, change, or delete) the entity. If you do not use the BPMCSRF cookie, the server returns
the status code. Creatio does not check for the BPMCSRF cookie for GET requests. You do not
have to use the BPMCSRF cookie with Creatio demo sites since they have CSRF attack protection disabled by
default.

The request fails if it contains errors in the string or the body.

The indicators of an unsuccessfully executed request are as follows:

4 Set up the request to the custom web service that uses
cookie-based authentication
The UsrCustomConfigurationService custom web service accepts GET requests only.

To set up the request to the custom web service that uses cookie-based authentication:

403 Forbidden

The Code parameter of the response body contains "1."

The Message parameter of the response body contains the reason for the authentication failure.

Call a custom web service from Postman | 40

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15402&anchor=title-1391-1
https://www.creatio.com/trial/creatio

Go to the request working area in Postman and right-click the name of the Test configuration web service
collection → [Add request].

1.

Fill out the request fields:2.

Set [Request name] to "Configuration web service."

Click [Save to Test configuration web service] to add the request to the collection.3.

Postman selects the GET method by default. Enter the string of the UsrCustomConfigurationService custom
web service request in the request field of the Postman workspace toolbar.

4.

Template of the custom web service's URL

[Creatio application URL]/0/rest/UsrCustomConfigurationService/GetContactIdByName?Name=[Contact name]

Example of the custom web service's URL

http://mycreatio.com/creatio/0/rest/UsrCustomConfigurationService/GetContactIdByName?Name=Andrew Baker

Go to the [Headers] tab in the Postman workspace and add the cookies received as a result of the
authorization request to the headers of the custom web service request. Add the cookie name to the [Key]
field and copy the corresponding cookie value to the [Value] field.

5.

Call a custom web service from Postman | 41

© 2023 Creatio. All rights reserved.

5. Execute the request to the custom web service that uses
cookie-based authentication
Click [Send] on the workspace toolbar to execute a request from Postman.

Outcome of the example
As a result, Postman will receive a response that contains a JSON object. View the response body on the
Postman Body tab.

If Creatio finds the contact from the Name parameter in the database, the GetContactIdByNameResult property will
return the contact ID value.

Call a custom web service from Postman | 42

© 2023 Creatio. All rights reserved.

If Creatio finds no contacts from the Name parameter in the database, the GetContactIdByNameResult property will
return an empty string.

Call a custom web service from Postman | 43

© 2023 Creatio. All rights reserved.

	Table of Contents
	Custom web services
	Develop a custom web service
	Develop a custom web service that uses cookie-based authentication
	Develop a custom web service that uses anonymous authentication
	Develop a custom web service that uses anonymous authentication for .NET Framework
	Develop a custom web service that uses anonymous authentication for .NET Core

	Call a custom web service
	Call a custom web service from the browser
	Call a custom web service that uses cookie-based authentication from the browser
	Call a custom web service that uses anonymous authentication from the browser

	Call a custom web service from the front-end

	Migrate an existing custom web service to .NET Core

	Develop a custom web service that uses cookie-based authentication
	1. Create a Source code schema
	2. Create a service class
	3. Implement the class method
	Outcome of the example

	Develop a custom web service that uses anonymous authentication
	1. Create a Source code schema
	2. Create a service class
	3. Implement the class method
	4 Register the custom web service that uses anonymous authentication
	5. Enable both HTTP and HTTPS support for the custom web service that uses anonymous authentication
	6. Enable all users to access the custom web service that uses anonymous authentication
	7. Restart Creatio in IIS
	Outcome of the example

	Develop a custom web service that uses anonymous authentication and non-standard text encoding
	1. Create a Source code schema
	2. Create a web service class
	3. Implement a method of the web service class
	4 Register the web service
	5. Register a non-standard text encoding
	6. Enable both HTTP and HTTPS support for the web service
	7. Enable access to the web service for all users
	8. Restart Creatio in IIS
	Outcome of the example

	Call a custom web service from the front-end
	1. Create a custom web service
	2. Create a replacing contact record page
	3. Add the button to the contact record page
	Outcome of the example

	Call a custom web service from Postman
	1. Create a request collection
	2. Set up an authentication request
	3. Execute the authentication request
	4 Set up the request to the custom web service that uses cookie-based authentication
	5. Execute the request to the custom web service that uses cookie-based authentication
	Outcome of the example

