
Integrations & API
Authentication
Version 8.0

This documentation is provided under restrictions on use and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this documentation, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you
find any errors, please report them to us in writing.

© 2023 Creatio. All rights reserved.

4

4

4

5

6

7

8

8

9

9

9

9

Table of Contents

Authentication

Authentication types

Disable protection against CSRF attacks

Implement authentication using C#

Example implementation algorithm

AuthService.svc web-service

Request string

Request headers

Request body

HTTP status code

Response headers

Response body

Table of Contents | 3

© 2023 Creatio. All rights reserved.

Authentication
 Medium

Authentication verifies the authenticity of the ID specified by a user. The positive authentication result is
user authorization, i. e., Creatio grants the user permissions to resources they can use to solve their problems.

Attention. Restrict user permissions to objects, records, and columns required for the corresponding
integration to work. We recommend creating a specific user for integration and giving the required
permissions. If you give unnecessary permissions to the integration user, you put Creatio at security risk.
We do not recommend giving the integration user permission to execute the [Can manage configuration
elements] (CanManageSolution code) system operation or Supervisor user permissions.

Learn more about authentication on Wikipedia.

Authenticate all external requests to Creatio web services.

Authentication types
Creatio supports the following authentication types:

We recommend using Forms authentication to integrate external services with Creatio. Forms authentication
is implemented via the AuthService.svc web service. Use the cookies received in response from the
AuthService.svc web service in the subsequent requests to Creatio.

View examples that use authentication cookies in separate articles: OData, DataService.

Disable protection against CSRF attacks
CSRF (Cross Site Request Forgery) is a type of an attack on website visitors. CSRF attacks are based on HTTP
protocol disadvantages. Protection is enabled by default, but you can disable it.

Attention. We recommend disabling protection against CSRF attacks only when you use basic
authentication. If needed, you can disable CSRF protection for a single service or several methods of
different services. If you disable CSRF protection for all services, you put Creatio at security risk.

You can disable protection against CSRF attacks for the following service types:

Anonymous authentication

Basic authentication

Cookie-based authentication (Forms authentication)

Authentication based on the OAuth 2.0 open authorization protocol. Learn more in a separate article: Set up
OAuth 2.0 authorization for integrated applications.

Authentication | 4

© 2023 Creatio. All rights reserved.

https://en.wikipedia.org/w/index.php?title=Authentication&oldid=1139742023
https://academy.creatio.com/documents?id=2396
https://academy.creatio.com/documents?id=15431
https://academy.creatio.com/documents?id=15411

Disable protection against CSRF attacks for all services

Disable protection against CSRF attacks for a single service

Disable protection against CSRF attacks for several methods of different
services

Implement authentication using C#
 Medium

Example. Implement authentication using C#.

all Creatio services

single Creatio service

several methods of different Creatio services

Open the Web.Config file in the Creatio root directory.1.

Set the UseCsrfToken setting to false .

Web.ConfigWeb.Config file

2.

<add value="false" key="UseCsrfToken" />

Repeat the setup in the ...\Terrasoft.WebApp\Web.Config file.3.

Open the Web.Config file in the Creatio root directory.1.

Set the service name to the DisableCsrfTokenValidationForPaths setting.

Web.ConfigWeb.Config file

2.

<add key="DisableCsrfTokenValidationForPaths" value="/ServiceModel/ MsgUtilService.svc" />

Open the Web.Config file in the Creatio root directory.1.

List the method names in the DisableCsrfTokenValidationForPaths setting.

Web.ConfigWeb.Config file

2.

<add key="DisableCsrfTokenValidationForPaths" value="/MsgUtilService.svc/Ping,/AuthService.svc/Login" />

Implement authentication using C%23 | 5

© 2023 Creatio. All rights reserved.

Example implementation algorithm
Create a C# console application in Visual Studio and give it a name, e.g., RequestAuthentification .

Example of a software implementation of the authentication

// Sends a request to the authentication service and processes the response.
public void TryLogin() {
 var authData = @"{
 ""UserName"":""" + _userName + @""",
 ""UserPassword"":""" + _userPassword + @"""
 }";
 var request = CreateRequest(_authServiceUrl, authData);
 _authCookie = new CookieContainer();
 request.CookieContainer = _authCookie;
 // Upon successful authentication, we save authentication cookies for
 // further use in requests to Creatio. In case of failure
 // authentication application console displays a message about the reason
 // of the mistake.
 using (var response = (HttpWebResponse)request.GetResponse())
 {
 if (response.StatusCode == HttpStatusCode.OK)
 {
 using (var reader = new StreamReader(response.GetResponseStream()))
 {
 var responseMessage = reader.ReadToEnd();
 Console.WriteLine(responseMessage);
 if (responseMessage.Contains("\"Code\":1"))
 {
 throw new UnauthorizedAccessException($"Unauthorized {_userName} for {_appUrl}"
 }
 }
 string authName = ".ASPXAUTH";
 string authCookeValue = response.Cookies[authName].Value;
 _authCookie.Add(new Uri(_appUrl), new Cookie(authName, authCookeValue));
 }
 }
}
// Create request to the authentication service.
private HttpWebRequest CreateRequest(string url, string requestData = null)
 {
 HttpWebRequest request = (HttpWebRequest)WebRequest.Create(url);
 request.ContentType = "application/json";
 request.Method = "POST";
 request.KeepAlive = true;
 if (!string.IsNullOrEmpty(requestData))

Implement authentication using C%23 | 6

© 2023 Creatio. All rights reserved.

AuthService.svc web-service
 Medium

 {
 using (var requestStream = request.GetRequestStream())
 {
 using (var writer = new StreamWriter(requestStream))
 {
 writer.Write(requestData);
 }
 }
 }
 return request;
 }
// Method realizes protection from CSRF attacks: copies cookie, which contents CSRF-token
// and pass it to the header of the next request.
private void AddCsrfToken(HttpWebRequest request) {
 var cookie = request.CookieContainer.GetCookies(new Uri(_appUrl))["BPMCSRF"];
 if (cookie != null) {
 request.Headers.Add("BPMCSRF", cookie.Value);
 }
}

API

Request structure

// Request string.
POST Creatio_application_address/ServiceModel/AuthService.svc/Login

// Request headers.
Content-Type: application/json; charset=utf-8
ForceUseSession: true

// Request body.
{
 "UserName":"User name",
 "UserPassword":"User password"
}

Response structure

// HTTP status code.

AuthService.svc web-service | 7

© 2023 Creatio. All rights reserved.

Request string

Authentication service supports POST HTTP method.

Creatio application address.

To perform authentication, call the Login AuthService.svc method.

Request headers

Encoding and resource type passed in the request body.

The ForceUseSession header accounts for using the existing session.

Status: code
// Response headers.

Set-Cookie: BPMLOADER=cookie_value; path=/Creatio_application_address; HttpOnly
Set-Cookie: .ASPXAUTH=cookie_value; path=/Creatio_application_address; HttpOnly
Set-Cookie: BPMCSRF=cookie_value; path=/
Set-Cookie: UserName=cookie_value; expires=date_expire_to; path=/; HttpOnly

// Response body example.
{
 "Code": 0,
 "Message": "",
 "Exception": null,
 "PasswordChangeUrl": null,
 "RedirectUrl": null

}

method required

Creatio_application_address required

ServiceModel/AuthService.svc/Login required

Content-Type application/json required

ForceUseSession true required

AuthService.svc web-service | 8

© 2023 Creatio. All rights reserved.

Request body
The request body must pass the Creatio user credentials. The credentials are passed as a JSON object.

The user name of a Creatio user.

The password of a Creatio user.

HTTP status code

HTTP status code.

Status codes

The request has been completed sucessfully and the resource value is not
equal to zero. In this case, the request body should contain the
authentication status code. If it contains 0, the authentication is successful.
In case of unsuccessful authentication, the authentication status code will
equal 1 and the request body will contain a message about the cause of the
unsuccessful authentication.

The server cannot provide access to the resource specified in the request
(for example, if a method name is spelled incorrectly). Request body can
contain additional information.

Response headers
The response to a POST request contains authentication cookies. You need to save these cookies on the side
of the client or on the client computer to use them in your further Creatio web service queries.

Response body

If the code contains a “0” value, the authentication is successful. Othewise, it is failed.

The message notifying of an unsuccessful authentication.

UserName string required

UserPassword string required

code

200 OK

403 Forbidden

Code required

Message required

AuthService.svc web-service | 9

© 2023 Creatio. All rights reserved.

The object that contains a detailed description of the exception connected with the unsuccessful
authentication.

Exception required

AuthService.svc web-service | 10

© 2023 Creatio. All rights reserved.

	Table of Contents
	Authentication
	Authentication types
	Disable protection against CSRF attacks
	Disable protection against CSRF attacks for all services
	Disable protection against CSRF attacks for a single service
	Disable protection against CSRF attacks for several methods of different services

	Implement authentication using C#
	Example implementation algorithm

	AuthService.svc web-service
	Request string
	Request headers
	Request body
	HTTP status code
	Response headers
	Response body

