
Front-end development
Client schema
Version 8.0

This documentation is provided under restrictions on use and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this documentation, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you
find any errors, please report them to us in writing.

© 2023 Creatio. All rights reserved.

4

4

5

21

21

23

24

25

26

27

30

30

33

35

35

36

36

39

42

42

Table of Contents

Client schema

Develop a client schema

Client schema properties

Overload a mixin method

1. Create a mixin

2. Connect the mixin

3. Overload the mixin method

Method declaration example

Array of modifications usage example

Example of using the alias mechanism for repeated schema replacement

attributes property

Primary properties

Additional properties

messages property

Properties

rules and businessRules properties

Primary properties

Additional properties

diff property

Properties

Table of Contents | 3

© 2023 Creatio. All rights reserved.

Client schema
 Easy

A client view model schema is a visual module schema that implements the front-end part of Creatio. A client
view model schema is a configuration object for generating views and view models by ViewGenerator and
ViewModelGenerator . Learn more about module types and their specificities in a separate article: Client module
types.

Develop a client schema
Ways to develop client view model schemas:

Structure elements of the client schema:

Use marker comments in the schema source code for the diff , modules , details , and businessRules
properties.

The purpose of marker comments is to uniquely identify the client schema properties. When you open the
Wizard, Creatio validates the presence of marker comments as shown in the table below.

The [Configuration] section. Learn more about development in the [Configuration] section in a separate
article: View model schema.

Section Wizard. Learn more about section development in the Section Wizard in user documentation: Create a
new section

Detail Wizard. Learn more about detail development in the Detail Wizard in user documentation: Create a
detail.

Auto-generated code. Contains the description of the schema, its dependencies, localized resources, and
messages.

Rendering styles. Only available in some types of client schemas.

The schema source code. A syntactically correct JavaScript code that defines the module.

Client schema | 4

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15304&anchor=title-1278-2
https://academy.creatio.com/documents?id=15102&anchor=title-2123-3
https://academy.creatio.com/documents?id=1245
https://academy.creatio.com/documents?id=1403

Validation rules for marker comments in client schemas

Schema type Required marker comments

EditViewModelSchemaEditViewModelSchema model view
schema of a record page

ModuleViewModelSchemaModuleViewModelSchema model
view schema of a section

EditControlsDetailViewModelSchemaEditControlsDetailViewModelSchema

model view schema of a detail
with fields

DetailViewModelSchemaDetailViewModelSchema model
view schema of a detail

GridDetailViewModelSchemaGridDetailViewModelSchema model
view schema of a detail that
has a list

Client schema properties
The source code of client schemas has a generic structure available below.

Source code of a client schema

details: /**SCHEMA_DETAILS*/{}/**SCHEMA_DETAILS*/,
modules: /**SCHEMA_MODULES*/{}/**SCHEMA_MODULES*/,
diff: /**SCHEMA_DIFF*/[]/**SCHEMA_DIFF*/,
businessRules: /**SCHEMA_BUSINESS_RULES*/{}/**SCHEMA_BUSINESS_RULES*/

modules: /**SCHEMA_MODULES*/{}/**SCHEMA_MODULES*/,
diff: /**SCHEMA_DIFF*/[]/**SCHEMA_DIFF*/

define("ExampleSchema", [], function() {
 return {
 entitySchemaName: "ExampleEntity",
 mixins: {},
 attributes: {},
 messages: {},
 methods: {},
 rules: {},
 businessRules: /**SCHEMA_BUSINESS_RULES*/{}/**SCHEMA_BUSINESS_RULES*/,
 modules: /**SCHEMA_MODULES*/{}/**SCHEMA_MODULES*/,
 diff: /**SCHEMA_DIFF*/[]/**SCHEMA_DIFF*/
 };
});

Client schema | 5

© 2023 Creatio. All rights reserved.

After the module is loaded, Creatio calls the anonymous factory function, which returns the schema
configuration object. Properties of the configuration object schema:

Schema name (entitySchemaName)
To implement the entity schema name, use the required entitySchemaName property. Simply specify it in one of
the inheritance hierarchy schemas.

Example that declares the entitySchemaNameentitySchemaName property

Mixins (mixins)
A mixin is a class that extends the functions of other classes. JavaScript does not support multiple inheritances.
However, mixins let you extend the schema functionality without duplicating the logic used in the schema

entitySchemaName . The name of the entity schema used by the current client schema.

mixins . A configuration object that contains a mixin declaration.

attributes . A configuration object that contains schema attributes.

messages . A configuration object that contains schema messages.

methods . A configuration object that contains schema methods.

rules . A configuration object that contains schema business rules.

businessRules . A configuration object that contains schema business rules created or modified by the Section
Wizard or Detail Wizard. The /**SCHEMA_BUSINESS_RULES*/ marker comments are required since they are
necessary for the operation of the Wizards.

modules . A configuration object that contains schema modules. The / ** SCHEMA_MODULES * / marker
comments are required since they are necessary for the operation of the Wizards.

Note. The details property loads a detail to a page. Since a detail is also a module, we recommend
using the modules property instead.

diff . A configuration object array that contains the schema view description. The /**SCHEMA_DIFF*/ marker
comments are required since they are necessary for the operation of the Wizards.

properties . A configuration object that contains view model properties.

$-properties . Automatically generated properties for the attributes of the view model schema.

define("ClientSchemaName", [], function () {
 return {
 /* Object schema (model). */
 entitySchemaName: "EntityName",
 /* ... */
 };
});

Client schema | 6

© 2023 Creatio. All rights reserved.

methods. You can use the same set of actions in different client schemas of Creatio. Create a mixin to avoid
duplicating the code in each schema. Mixins are different from other modules added to the dependency list in
the way of calling their methods from the module schema. You can call to their methods directly, much like those
of a schema. Use the mixins property to implement mixins.

Mixin management procedure:

Create a mixin
Create a mixin similarly to an object schema.

Assign a name to the mixin
When naming mixins, use an -able suffix in the schema name. For example, name a mixin that enables serializing
in the components Serializable . If a mixin name cannot end "-able," end the schema name in Mixin.

Attention. Do not use words like Utilities , Extension , Tools , or similar in the names. They make the
purpose of the mixin impossible to discern based on the mixin name.

Connect the namespace
Enable a corresponding name array in the mixin (Terrasoft.configuration.mixins for the configuration,
Terrasoft.core.mixins for the core).

Implement the mixin functionality
Mixins cannot depend on the internal implementation of the schema to which to apply them. Mixins must be
independent mechanisms that receive a set of parameters, process them, and, if needed, return a result. Design
mixins as modules that must be connected to the schema dependency list when the define() function declares
the schema.

View the mixin structure below.

Mixin structure

Create a mixin.1.

Assign a name to the mixin.2.

Connect the corresponding name array.3.

Implement the mixin functionality.4.

Use the mixin in the client schema.5.

define("MixinName", [], function() {
 Ext.define("Terrasoft.configuration.mixins.MixinName", {
 alternateClassName: "Terrasoft.MixinName",
 /* Mixin functionality. */
 });
 return Ext.create(Terrasoft.MixinName);

Client schema | 7

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15102&anchor=title-2123-6

Use the mixin
The mixin implements the functionality needed in the client schema. To receive the set of mixin actions, specify
the mixin in the mixins block of the client schema.

Use a mixin in the client schema

Once you connect the mixin, you can use its methods, attributes, and fields in the client schema as if they were
part of the client schema. That way, method calls are more concise than when using a separate schema. For
example, getDefaultImageResource is a mixin function. To call the getDefaultImageResource mixin function in the
custom schema to which the mixin is connected, use this.getDefaultImageResource(); .

Note. To overload a mixin function, create a function with the same name in the client schema. As a result,
Creatio will use the function of the schema, and not that of the mixin, when calling.

Attributes (attributes)
Use the attributes property to implement attributes.

Messages (messages)
The purpose of messages is to organize data exchange between modules. Use the messages property to
implement messages. Use the Terrasoft.MessageMode enumeration to set the message mode.

})

/* MixinName is a module where the mixin class is implemented. */
define("ClientSchemaName", ["MixinName"], function () {
 return {
 /* SchemaName is the name of the entity. */
 entitySchemaName: "SchemaName",
 mixins: {
 /* Connect the mixin. */
 MixinName: "Terrasoft.NameSpace.Mixin"
 },
 attributes: {},
 messages: {},
 methods: {},
 rules: {},
 modules: /**SCHEMA_MODULES*/{}/**SCHEMA_MODULES*/,
 diff: /**SCHEMA_DIFF*/[]/**SCHEMA_DIFF*/
 };
});

Client schema | 8

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15327

Message mode types

Message
mode

Description Connection

Address Address messages are only
received by the last
subscriber.

To switch to address mode, set the mode
property to this.Terrasoft.MessageMode.PTP .

Broadcasting Broadcasting messages are
received by all subscribers.

To switch to broadcasting mode , set the mode
property to this.Terrasoft.MessageMode.BROADCAST
.

Aside from modes, you can also specify the message direction.

Message direction types

Message
direction

Description Connection

Publishing The message can only be
published, i. e., it is an outbound
message.

To set the message direction to publishing, set
the direction property to
this.Terrasoft.MessageDirectionType.PUBLISH .

Subscription The message can only be
subscribed to, i. e., it is an
inbound message.

To set the message direction to subscription,
set the direction property to
this.Terrasoft.MessageDirectionType.SUBSCRIBE

.

Bidirectional The bidirectional mode enables
publishing of and subscription to
the same message in different
instances of a single class or
within a single schema
inheritance hierarchy. The same
message cannot be announced
with different directions in a
single schema inheritance
hierarchy. Learn more about
using bidirectional messages in
cases where that is a
requirement in a separate article:
Sandbox.

Corresponds to
the
Terrasoft.MessageDirectionType.BIDIRECTIONAL

enumeration value.

Message publication
Declare a message with the "publishing" direction in the schema where you want to publish the message.

Client schema | 9

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15321

Example that declares a message with the "publishingpublishing" direction

Publishing is done by calling the publish method from the sandbox class instance.

Message publishing example

Attention. Message publishing can return the handler function results only in the address mode.

Message subscription
Declare a message with the "subscription" direction in the subscription schema.

Example that declares a message with the "subscriptionsubscription" direction

messages: {
 /* Message name. */
 "GetColumnsValues": {
 /* Set the message mode to address. */
 mode: this.Terrasoft.MessageMode.PTP,
 /* Set the message direction to "publishing." */
 direction: this.Terrasoft.MessageDirectionType.PUBLISH
 }
}

// GetColumnsValues method that gets the message publishing result.
getColumnsValues: function(argument) {
/* Message publishing.
GetColumnsValues is the message name.
argument is the argument passed to the handler function of the subscriber. An argument is an object with the message parameters.
key is an array of message filtering tags. */
return this.sandbox.publish("GetColumnsValues", argument, ["key"]);
}

messages: {
 /* Message name. */
 "GetColumnsValues": {
 /* Set the message mode to address. */
 mode: this.Terrasoft.MessageMode.PTP,
 /* Set the message direction to "subscription." */
 direction: this.Terrasoft.MessageDirectionType.SUBSCRIBE
 }
}

Client schema | 10

© 2023 Creatio. All rights reserved.

The subscription is made by calling the subscribe method in the sandbox class instance.

Message subscription example

In the address mode, the messageHandler method returns the object, which is processed as the result of
message publishing. In broadcasting mode, the messageHandler method does not return a value.

Methods(methods)
To implement a method, use the methods property.The property contains a collection of methods that form the
schema business logic and affect the view model. By default, the scope of methods is the scope of view model.

The purpose of the methods property.

Business rules (rules and businessRules)
Business rules are Creatio mechanisms that let you customize the behavior of fields on a page or detail. To

/* GetColumnsValues is the message name.
messageHandler is the message handler function.
context is the execution scope of the handler function.
key is an array of message filtering tags. */
this.sandbox.subscribe("GetColumnsValues", messageHandler, context, ["key"]);

messageHandler method (address mode)

methods: {
 messageHandler: function(args) {
 /* Return an object to process as a message publishing result. */
 return { };
 }
}

messageHandler method (broadcast mode)

methods: {
 messageHandler: function(args) {
 }
}

Create new methods.1.

Extend the basic methods of parent schemas.2.

Client schema | 11

© 2023 Creatio. All rights reserved.

implement business rules, use the rules and businessRules properties. Use the businessRules property for
business rules created or modified in the Section Wizard or the Detail Wizard.

The purposes of business rules:

Creatio implements the business rule functionality in the BusinessRuleModule client module. To use the business
rule functionality, add BusinessRuleModule to the list of schema dependencies.

Example that adds BusinessRuleModuleBusinessRuleModule to the dependency list

The RuleType enumeration of the BusinessRuleModule module defines business rule types.

Specifics of business rules
Specifics of business rule declaration:

Business rules defined in the businessRules property have the following features:

Hide or show fields.

Lock or unlock fields for editing.

Make fields required or optional.

Filter lookup fields based on values in other fields.

define("CustomPageModule", ["BusinessRuleModule"],
 function(BusinessRuleModule) {
 return {
 /* Implement the client module. */
 };
 });

Describe business rules in the rules schema property.

Apply business rules to view model columns and not to controls.

Name each business rule.

Set business rule parameters in the configuration object.

They are generated by the Section or Detail Wizards.

When you create a new business rule, the corresponding Wizard generates the name and adds the rule to the
client schema of the record page view model.

Creatio does not use the BusinessRuleModule enumerations when describing generated business rules.

The /**SCHEMA_BUSINESS_RULES*/ marker comments are required since they are necessary for the operation of
the Wizards.

They have a higher priority during runtime.

When a business rule is disabled, Creatio sets the enabled property of the configuration object to false .

When a business rule is removed, the configuration object remains in the client schema of the record page

Client schema | 12

© 2023 Creatio. All rights reserved.

Attention. We do not recommend editing the businessRules property of the client schema.

Edit an existing business rule
After a Wizard edits a manually created business rule, the business rule‘s configuration object in the rules
property of the record page view model remains unchanged. At the same time, a new version of the business
rule configuration object with the same name is created in the businessRules property.

When Creatio processes a business rule during runtime, the business rule defined in the businessRules property
takes precedence. Subsequent changes to this business rule in the rules property will not affect Creatio in any
way.

Note. Changes made to the configuration object of the businessRules property take precedence when
you delete or disable a business rule.

Modules (modules)
To implement modules, use the modules property. Its configuration object declares and configures modules and
details loaded on the page. The / ** SCHEMA_MODULES * / marker comments are required since they are
necessary for the operation of the Wizards.

Note. The details property loads a detail to a page. Since a detail is also a module, we recommend using
the modules property instead.

Example that uses the modulesmodules property

view model, but Creatio sets the removed property to true .

modules: /**SCHEMA_MODULES*/{
 /* Load the module.
 Module title. Must be the same as the name property in the diff array. */
 "TestModule": {
 /* Optional. The ID of the module to load. If not specified, Creatio will generate it automatically.*/
 "moduleId": "myModuleId",.
 /* If no parameter is specified, Creatio will use BaseSchemaModuleV2 for loading. */
 "moduleName": "MyTestModule",
 /* Configuration object. When the module is loaded, the object is passed as instanceConfig. The object stores a set of initial parameter values for the module. */
 "config": {
 "isSchemaConfigInitialized": true,
 "schemaName": "MyTestSchema",
 "useHistoryState": false,
 /* Additional module parameters. */
 "parameters": {

Client schema | 13

© 2023 Creatio. All rights reserved.

Array of modifications (diff)
To implement an array of modifications, use the diff property, which contains an array of configuration objects.
The purpose of the array of modifications is to build a representation of the module in the Creatio interface.
Each element in the array represents metadata from which Creatio generates various interface controls. The
/**SCHEMA_DIFF*/ marker comments are required since they are necessary for the operation of the Wizards.

The alias mechanism
When developing new versions, you sometimes need to move page elements to new zones. In situations where
users have customized the record page, such changes can have unpredictable consequences. The alias
mechanism interacts with the diff builder to provide partial backward compatibility when changing the UI in
new product versions. The builder is the json-applier class that merges base schema and client extension
schema parameters.

The alias property contains data about the previous name of the element. Creatio creates the diff array of
modifications based on that data, considering not only elements with a new name but also with the name
specified in alias . In essence, alias is a configuration object that links the new and old elements. When
creating a diff array of modifications, the alias configuration object can disallow application of some
properties and operations to the element where it is declared. You can add the alias object to any element in the
diff array of modifications.

Relationship between a view and model
The purpose of the bindTo property is to indicate the relationship between a view model attribute and a view

 /* Parameters passed to the schema during the initialization. */
 "viewModelConfig": {
 masterColumnName: "PrimaryContact"
 }
 }
 }
 },

 /* Load the detail.
 Detail name. */
 "Project": {
 /* Detail schema name. */
 "schemaName": "ProjectDetailV2",
 "filter": {
 /* The column of the section object schema. */
 "masterColumn": "Id",
 /* The column of a detail object schema. */
 "detailColumn": "Opportunity"
 }
 }
}/**SCHEMA_MODULES*/

Client schema | 14

© 2023 Creatio. All rights reserved.

object property.

Declare the property in the values property of the configuration objects in the diff array of modfications.

View an example that uses the bindTo property below.

Example that uses the bindTobindTo property

Tabs are objects that contain the tabs value in their propertyName property.

Creatio implements an alternative way to use the bindTo property for tab titles.

Alternative way to use the bindTobindTo property

diff: [
 {
 "operation": "insert",
 "parentName": "CombinedModeActionButtonsCardLeftContainer",
 "propertyName": "items",
 "name": "MainContactButton",
 /* Properties passed to the component’s constructor. */
 "values": {
 /* Set the type of the added element to button. */
 "itemType": Terrasoft.ViewItemType.BUTTON,
 /* Bind the button title to the localizable schema string. */
 "caption": {bindTo: "Resources.Strings.OpenPrimaryContactButtonCaption"},
 /* Bind the button click handler method. */
 "click": {bindTo: "onOpenPrimaryContactClick"},
 /* The display style of the button. */
 "style": Terrasoft.controls.ButtonEnums.style.GREEN,
 /* Bind the button availability property. */
 "enabled": {bindTo: "ButtonEnabled"}
 }
 }
]

...
{
 "operation": "insert",
 "name": "GeneralInfoTab",
 "parentName": "Tabs",
 /* Imply that the object is a tab. */
 "propertyName": "tabs",
 "index": 0,
 "values": {
 /* $ replaces usage of bindTo: {...}. */
 "caption": "$Resources.Strings.GeneralInfoTabCaption",
 "items": []

Client schema | 15

© 2023 Creatio. All rights reserved.

diff property declaration rules

 }
},
...

Best use of converters.

A converter is a function executed in the viewModel environment. A converter accepts the values of the
viewModel property and returns a result of the corresponding type. To ensure that Wizards operate correctly,
format the diff property value in JSON. Therefore, the value of the converter must be the name of the view
model method rather than an inline function.

Correct use of the converter

methods: {
 someFunction: function(val) {
 /* ... */
 }
},

diff: /**SCHEMA_DIFF*/[
 {
 /* ... */
 "bindConfig": {
 "converter": "someFunction"
 }
 /* ... */
 }
]/**SCHEMA_DIFF*/

Incorrect use of the converter

diff: /**SCHEMA_DIFF*/[
 {
 /* ... */
 "bindConfig": {
 "converter": function(val) {
 /* ... */
 }
 }
 }
]/**SCHEMA_DIFF*/

Client schema | 16

© 2023 Creatio. All rights reserved.

Correct use of the generator

methods: {
 someFunction: function(val) {
 /* ... */
 }
},

diff: /**SCHEMA_DIFF*/[
 {
 /* ... */
 "values": {
 "generator": "someFunction"
 }
 /* ... */
 }
]/**SCHEMA_DIFF*/

Incorrect use of the generator

diff: /**SCHEMA_DIFF*/[
 {
 /* ... */
 "values": {
 "generator": function(val) {
 /* ... */
 }
 }
 }
]/**SCHEMA_DIFF*/

Parent element.

The parent element (container) is the DOM element where the module renders its view. To ensure that the
Wizards operate as intended, place a single child element in the parent container.

Example of the correct placement of a view in the parent element

<div id="OpportunityPageV2Container" class="schema-wrap one-el" data-item-marker="OpportunityPageV2Container">
 <div id="CardContentWrapper" class="card-content-container page-with-left-el" data-item-marker="EntityLoaded"></div>
</div>

Client schema | 17

© 2023 Creatio. All rights reserved.

When you add, change, move an element (insert , merge , move operations), specify the parentName
property (the parent element’s name) in the diff property.

If the parentName property is missing, the Wizard will be unable to configure the page. Creatio will display a
corresponding error message.

The value of the parentName property must match the name of the parent element in the corresponding base
page schema. For example, this is CardContentContainer for record pages.

If you specify the name of a non-existent container element as the parent element in the parentName property,
a "Schema cannot have more than one root object" error will occur, since the added element will be placed
in the root container.

Example of incorrect placement of a view in the parent element

<div id="OpportunityPageV2Container" class="schema-wrap one-el" data-item-marker="OpportunityPageV2Container">
 <div id="CardContentWrapper" class="card-content-container page-with-left-el" data-item-marker="EntityLoaded"></div>
 <div id="DuplicateContainer" class="DuplicateContainer"></div>
</div>

Example of the correct definition of the view element in the diff property

{
 "operation": "insert",
 "name": "SomeName",
 "propertyName": "items",
 "parentName": "SomeContainer",
 "values": {}
}

Example of incorrect definition of the view element in the diff property

{
 "operation": "insert",
 "name": "SomeName",
 "propertyName": "items",
 "values": {}
}

Unique names.

Each element in the diff array must have a unique name.

Example of the correct addition of elements to a diff array

Client schema | 18

© 2023 Creatio. All rights reserved.

{
 "operation": "insert",
 "name": "SomeName",
 "values": { }
},
{
 "operation": "insert",
 "name": "SomeSecondName",
 "values": { }
}

Example of incorrect addition of elements to a diff array

{
 "operation": "insert",
 "name": "SomeName",
 "values": { }
},
{
 "operation": "insert",
 "name": "SomeName",
 "values": { }
}

Placement of view elements.

To ensure the view elements are customizable and changeable, place them on the layout grid. In Creatio,
each row of the layout grid has 24 cells (columns). Use the layout property to place elements on the grid.

Grid element properties:

Example that places elements

column . The index of the left column.

row . The index of the top row.

colSpan . The number of spanned columns.

rowSpan . The number of spanned rows.

{
 "operation": "insert",
 "parentName": "ParentContainerName",
 "propertyName": "items",
 "name": "ItemName",
 "values": {

Client schema | 19

© 2023 Creatio. All rights reserved.

Properties (properties)
To implement properties, use the properties property, which contains a JavaScript object.

View an example that uses the properties property in the SectionTabsSchema schema of the NUI package
below.

Example that uses the propertiesproperties property

 /* Element placement. */
 "layout": {
 /* Start at column zero. */
 "column": 0,
 /* Place in the fifth row of the grid. */
 "row": 5,
 /* Span 12 columns wide. */
 "colSpan": 12,
 /* Occupy one row. */
 "rowSpan": 1
 },
 "contentType": Terrasoft.ContentType.ENUM
 }
}

Number of operations.

If you change the client schema without a Wizard, we recommend adding no more than one operation per
schema element to ensure that the Wizard operates as intended.

define("SectionTabsSchema", [],
 function() {
 return {
 ...
 /* Declare the properties property. */
 properties: {
 /* The parameters property. Array. */
 parameters: [],
 /* modulesContainer property. Entity. */
 modulesContainer: {}
 },
 methods: {
 ...
 /* Initialization method. Always executed first. */
 init: function(callback, scope) {
 ...
 /* Call the method uses the view model properties. */
 this.initContainers();
 ...
 },

Client schema | 20

© 2023 Creatio. All rights reserved.

Overload a mixin method
 Beginner

Example. Connect the ContentImageMixin mixin to the custom schema, override the mixin method.

1. Create a mixin

 ...
 /* The method where to use the properties. */
 initContainers: function() {
 /* Use the modulesContainer property. */
 this.modulesContainer.items = [];
 ...
 /* Use the parameters property. */
 this.Terrasoft.each(this.parameters, function(config) {
 config = this.applyConfigs(config);
 var moduleConfig = this.getModuleContainerConfig(config);
 var initConfig = this.getInitConfig();
 var container = viewGenerator.generatePartial(moduleConfig, initConfig)[0];
 this.modulesContainer.items.push(container);
 }, this);
 },
 ...
 },
 ...
 }
 });

Go to the [Configuration] section and select a custom package to add the schema.1.

Click [Add] → [Module] on the section list toolbar.2.

Overload a mixin method | 21

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15101&anchor=title-1188-1
https://academy.creatio.com/documents?id=15121

Fill out the schema properties in the Schema Designer.

Click [Apply] to apply the properties.

3.

Set [Code] to "UsrExampleMixin."

Set [Title] to "ExampleMixin."

Add the source code in the Schema Designer.

Module source code

4.

Overload a mixin method | 22

© 2023 Creatio. All rights reserved.

2. Connect the mixin

/* Define the module. */
define("ContentImageMixin", [ContentImageMixinV2Resources], function() {
 /* Define the ContentImageMixin class. */
 Ext.define("Terrasoft.configuration.mixins.ContentImageMixin", {
 /* Alias (shorthand for the class name). */
 alternateClassName: "Terrasoft.ContentImageMixin",
 /* Mixin functionality. */
 getImageUrl: function() {
 var primaryImageColumnValue = this.get(this.primaryImageColumnName);
 if (primaryImageColumnValue) {
 return this.getSchemaImageUrl(primaryImageColumnValue);
 } else {
 var defImageResource = this.getDefaultImageResource();
 return this.Terrasoft.ImageUrlBuilder.getUrl(defImageResource);
 }
 }
 });
 return Ext.create(Terrasoft.ContentImageMixin);
});

Click [Save] on the Designer toolbar.5.

Go to the [Configuration] section and select a custom package to add the schema.1.

Click [Add] → [Page view model] on the section list toolbar.2.

Fill out the schema properties in the Schema Designer.3.

Set [Code] to "UsrExampleSchema."

Set [Title] to "ExampleSchema."

Set [Parent object] to "BaseProfileSchema."

Overload a mixin method | 23

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15101&anchor=title-1188-1
https://academy.creatio.com/documents?id=15121

To use the mixin, enable it in the mixins block of the ExampleSchema custom schema.

3. Overload the mixin method
Add the source code in the Schema Designer. In the method block, override the getReadImageURL() mixin
method. Use the overridden function in the diff block.

Module source code

Click [Apply] to apply the properties.

/* Declare the module. Include as a dependency the ContentImageMixin module, in which the mixin class is declared. */
define("UsrExampleSchema", ["ContentImageMixin"], function() {
 return {
 entitySchemaName: "ExampleEntity",
 mixins: {
 /* Connect the mixin to the schema. */
 ContentImageMixin: "Terrasoft.ContentImageMixin"
 },
 details: /**SCHEMA_DETAILS*/{}/**SCHEMA_DETAILS*/,
 diff: /**SCHEMA_DIFF*/[
 {
 "operation": "insert",

Overload a mixin method | 24

© 2023 Creatio. All rights reserved.

Click [Save] on the Designer toolbar.

Method declaration example
 Medium

Example. Add the [Email] column validation logic to the logic of the setValidationConfig method located
in the Terrasoft.configuration.BaseSchemaViewModel class.

 "parentName": "AddRightsItemsHeaderImagesContainer",
 "propertyName": "items",
 "name": "AddRightsReadImage",
 "values": {
 "classes": {
 "wrapClass": "rights-header-image"]
 },
 "getSrcMethod": "getReadImageUrl",
 "imageTitle": resources.localizableStrings.ReadImageTitle,
 "generator": "ImageCustomGeneratorV2.generateSimpleCustomImage"
 }
 }]/**SCHEMA_DIFF*/,
 methods: {
 getReadImageUrl: function() {
 /* Custom implementation. */
 console.log("Contains custom logic");
 /* Call the mixin method. */
 this.mixins.ContentImageMixin.getImageUrl.apply(this, arguments);
 }
 },
 rules: {}
 };
});

Protected method example

methods: {
 /* Method name. */
 setValidationConfig: function() {
 /* Call the setValidationConfig method of the parent schema. */
 this.callParent(arguments);
 /* Set up validation for the [Email] column. */
 this.addColumnValidator("Email", EmailHelper.getEmailValidator);
 }
}

Method declaration example | 25

© 2023 Creatio. All rights reserved.

Array of modifications usage example
 Medium

New method example

methods: {
 /* Method name. */
 getBlankSlateHeaderCaption: function() {
 /* Get the value of the MasterColumnInfo column. */
 var masterColumnInfo = this.get("MasterColumnInfo");
 /* Return the result value of the method. */
 return masterColumnInfo ? masterColumnInfo.caption : "";
 },
 /* Method name. */
 getBlankSlateIcon: function() {
 /* Return the result value of the method. */
 return this.Terrasoft.ImageUrlBuilder.getUrl(this.get("Resources.Images.BlankSlateIcon"));
 }
}

diff: /**SCHEMA_DIFF*/[
 {
 "operation": "insert",
 "name": "CardContentWrapper",
 "values": {
 "id": "CardContentWrapper",
 "itemType": Terrasoft.ViewItemType.CONTAINER,
 "wrapClass": "card-content-container"],
 "items": []
 }
 },
 {
 "operation": "insert",
 "name": "CardContentContainer",
 "parentName": "CardContentWrapper",
 "propertyName": "items",
 "values": {
 "itemType": Terrasoft.ViewItemType.CONTAINER,
 "items": []
 }
 },
 {

Array of modifications usage example | 26

© 2023 Creatio. All rights reserved.

Example of using the alias mechanism for
repeated schema replacement

 Medium

The diff array of modifications has an initial "Name" element with a set of properties. The element is located in the
Header container. This schema is replaced several times. The "Name" element is modified and moved freely.

 "operation": "insert",
 "name": "HeaderContainer",
 "parentName": "CardContentContainer",
 "propertyName": "items",
 "values": {
 "itemType": Terrasoft.ViewItemType.CONTAINER,
 "wrapClass": ["header-container-margin-bottom"],
 "items": []
 }
 },
 {
 "operation": "insert",
 "name": "Header",
 "parentName": "HeaderContainer",
 "propertyName": "items",
 "values": {
 "itemType": Terrasoft.ViewItemType.GRID_LAYOUT,
 "items": [],
 "collapseEmptyRow": true
 }
 }
]/**SCHEMA_DIFF*/

diff property of the base schema

diff: /**SCHEMA_DIFF*/ [
 {
 /* Insert operation. */
 "operation": "insert",
 /* The name of the parent element into which to insert the element. */
 "parentName": "Header",
 /* The name of the parent element property on which to operate. */
 "propertyName": "items",
 /* The name of the element. */
 "name": "Name",
 /* The object of element property values. */
 "values": {

Example of using the alias mechanism for repeated schema replacement | 27

© 2023 Creatio. All rights reserved.

 /* Layout. */
 "layout": {
 /* Column number. */
 "column": 0,
 /* The row number. */
 "row": 1,
 /* The number of combined columns. */
 "colSpan": 24
 }
 }
 }
] /**SCHEMA_DIFF*/

diff property after the first replacement of the base schema

diff: /**SCHEMA_DIFF*/ [
 {
 /* The operation that combines the properties of two elements. */
 "operation": "merge",
 "name": "Name",
 "values": {
 "layout": {
 "column": 0,
 /* The row number. The element has been moved. */
 "row": 8,
 "colSpan": 24
 }
 }
 }
] /**SCHEMA_DIFF*/

diff property after the second replacement of the base schema

diff: /**SCHEMA_DIFF*/ [
 {
 /* Move operation. */
 "operation": "move",
 "name": "Name",
 /* The name of the parent element where the move operation is done. */
 "parentName": "SomeContainer"
 }
] /**SCHEMA_DIFF*/

Example of using the alias mechanism for repeated schema replacement | 28

© 2023 Creatio. All rights reserved.

In the new version, the element named "Name" has been moved from the SomeContainer element to the
ProfileContainer element and must remain there despite the client customization. To enforce this, the element
gets a new name "NewName" and the alias configuration object is added to it.

The new element now has alias . The parent element changed, as is its location on the record page. The
excludeProperties property stores a set of properties that will be ignored when the delta is applied, while
excludeOperations stores a set of operations that will not be applied to this element from the replacements.

In this example, the layout properties of all "Name" descendants are excluded, and the remove and move
operations are also prohibited. This means that the "NewName" element will contain only the root layout property

diff: /**SCHEMA_DIFF*/ [
 {
 /* Insert operation. */
 "operation": "insert",
 /* The name of the parent element into which to insert the element. */
 "parentName": "ProfileContainer",
 /* The name of the parent element property on which to operate. */
 "propertyName": "items",
 /* New name. */
 "name": "NewName",
 /* The object of element property values. */
 "values": {
 /* Bind to the property or function value. */
 "bindTo": "Name",
 /* Layout. */
 "layout": {
 /* Column number. */
 "column": 0,
 /* The row number. */
 "row": 0,
 /* The number of combined columns. */
 "colSpan": 12
 }
 },

 /* alias configuration object. */
 "alias": {
 /* The old name of the element. */
 "name": "Name",
 /* An array of custom replacing properties to ignore. */
 "excludeProperties": "layout"],
 /* An array of custom replacing operations to ignore. */
 "excludeOperations": ["remove", "move"]
 }
 }
] /**SCHEMA_DIFF*/

Example of using the alias mechanism for repeated schema replacement | 29

© 2023 Creatio. All rights reserved.

and all properties of the "Name" element from the replacements except Layout . The same applies to operations.

Result for the builder of the diffdiff array of modifications

attributes property
 Beginner

The attributes property of the client schema contains a configuration object with its properties.

Primary properties

The attribute data type. Creatio will use it when generating the view. The Terrasoft.DataValueType enumeration
represents the available data types.

Available values (DataValueType)

diff: /**SCHEMA_DIFF*/ [
 {
 /* Insert operation. */
 "operation": "insert",
 /* The name of the parent element into which to insert the element. */
 "parentName": "ProfileContainer",
 /* The name of parent element property on which to operate. */
 "propertyName": "items",
 /* New name. */
 "name": "NewName",
 /* The object of element property values. */
 "values": {
 /* Bind to the property or function value. */
 "bindTo": "Name",
 /* Layout. */
 "layout": {
 /* Column number. */
 "column": 0,
 /* The row number. */
 "row": 0,
 /*/ The number of combined columns. */
 "colSpan": 12
 },
 }
 },
] /**SCHEMA_DIFF*/

JS

dataValueType

attributes property | 30

© 2023 Creatio. All rights reserved.

GUID 0

TEXT 1

INTEGER 4

FLOAT 5

MONEY 6

DATE_TIME 7

DATE 8

TIME 9

LOOKUP 10

ENUM 11

BOOLEAN 12

BLOB 13

IMAGE 14

CUSTOM_OBJECT 15

IMAGELOOKUP 16

COLLECTION 17

COLOR 18

LOCALIZABLE_STRING 19

ENTITY 20

ENTITY_COLLECTION 21

ENTITY_COLUMN_MAPPING_COLLECTION 22

HASH_TEXT 23

SECURE_TEXT 24

FILE 25

attributes property | 31

© 2023 Creatio. All rights reserved.

FILE 25

MAPPING 26

SHORT_TEXT 27

MEDIUM_TEXT 28

MAXSIZE_TEXT 29

LONG_TEXT 30

FLOAT1 31

FLOAT2 32

FLOAT3 33

FLOAT4 34

LOCALIZABLE_PARAMETER_VALUES_LIST 35

METADATA_TEXT 36

STAGE_INDICATOR 37

Column type. An optional parameter BaseViewModel uses internally. The Terrasoft.ViewModelColumnType
enumeration represents the available column types.

Available values (ViewModelColumnType)

ENTITY_COLUMN 0

CALCULATED_COLUMN 1

VIRTUAL_COLUMN 2

RESOURCE_COLUMN 3

Attribute value. Creatio sets the view model value to this parameter when the view model is created. The
value attribute accepts numeric, string, and boolean values. If the attribute type implies the use of a lookup

type

value

attributes property | 32

© 2023 Creatio. All rights reserved.

type value (array, object, collection, etc.), initialize its initial value using a method.

Use example

Example that uses basic attribute properties

Additional properties

Attribute title.

The flag that marks the attribute as required.

Dependency on another attribute of the model. For example, set an attribute based on the value of another
attribute. Use the property to create calculated fields.

The property that manages the lookup field properties. Learn more about using this parameter in a separate
article: Filter the lookup field. This is a configuration object that can contain optional properties.

Optional properties

attributes: {
 /* Attribute name. */
 "NameAttribute": {
 /* Data type. */
 "dataValueType": this.Terrasoft.DataValueType.TEXT,
 /* Column type. */
 "type": this.Terrasoft.ViewModelColumnType.VIRTUAL_COLUMN,
 /* The default value. */
 "value": "NameValue"
 }
}

caption

isRequired

dependencies

lookupListConfig

attributes property | 33

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15530
https://academy.creatio.com/documents?id=15530

columns An array of column names to add to a request in addition to the [Id] column and the
primary display column.

orders An array of configuration objects that determine the data sorting.

filter The method that returns an instance of the Terrasoft.BaseFilter class or its
descendant that will be applied to the request. Cannot be used combined with the
filters property.

filters An array of filters (methods that return collections of the Terrasoft.FilterGroup
class). Cannot be used combined with the filter property.

Use example

Example that uses additional attribute properties

attributes: {
 /* Attribute name. */
 "Client": {
 /* Attribute title. */
 "caption": { "bindTo": "Resources.Strings.Client" },
 /* The attribute is required. */
 "isRequired": true
 },

 /* Attribute name. */
 "ResponsibleDepartment": {
 lookupListConfig: {
 /* Additional columns. */
 columns: "SalesDirector",
 /* Sorting column. */
 orders: [{ columnPath: "FromBaseCurrency" }],
 /* Filter definition function. */
 filter: function()
 {
 /* Return a filter by the [Type] column, which equals the Competitor constant. */
 return this.Terrasoft.createColumnFilterWithParameter(
 this.Terrasoft.ComparisonType.EQUAL,
 "Type",
 ConfigurationConstants.AccountType.Competitor);
 }
 }
 },
 /* Attribute name. */
 "Probability": {
 /* Define the column dependency. */

attributes property | 34

© 2023 Creatio. All rights reserved.

messages property
 Medium

The messages property of the client schema contains a configuration object with its properties.

Properties

Message mode. The Terrasoft.MessageMode enumeration represents the available modes.

Available values (MessageMode)

PTP Address.

BROADCAST Broadcasting.

 "dependencies": [
 {
 /* Depends on the Stage] column. */
 "columns": ["Stage"],
 /* The name of the [Stage] column’s change handler method.
 The setProbabilityByStage() method is defined in the methods property of the schema object. */
 "methodName": "setProbabilityByStage"
 }
]
 }
},
methods: {
 /* [Stage] column’s change handler method. */
 setProbabilityByStage: function()
 {
 /* Get the value of the [Stage] column. */
 var stage = this.get("Stage");
 /* Condition for changing the [Probability] column. */
 if (stage.value && stage.value ===
 ConfigurationConstants.Opportunity.Stage.RejectedByUs)
 {
 /* Set the value of the [Probability] column. */
 this.set("Probability", 0);
 }
 }
}

JS

mode

messages property | 35

© 2023 Creatio. All rights reserved.

Message direction. The Terrasoft.MessageDirectionType enumeration represents the available modes.

Available values (MessageDirectionType)

PUBLISH Publishing.

SUBSCRIBE Subscription.

BIDIRECTIONAL Bidirectional.

rules and businessRules properties
 Beginner

The rules and businessRules properties of the client schema contain a configuration object with its own
properties.

Primary properties

Rule type. Defined by the BusinessRuleModule.enums.RuleType enumeration value.

Available values (BusinessRuleModule.enums.RuleType)

BINDPARAMETER Business rule type. Use this rule type to link properties of a column to values of
different parameters. For example, set up the visibility of a column or enable a
column depending on the value of another column.

FILTRATION Business rule type. Use the FILTRATION rule to set up filtering of values in view
model columns. For example, filter a LOOKUP column depending on the current
status of a page.

Use for the BINDPARAMETER business rule type. Control property. Set by the
BusinessRuleModule.enums.Property enumeration value.

Available values (BusinessRuleModule.enums.Property)

direction

JS

ruleType

property

rules and businessRules properties | 36

© 2023 Creatio. All rights reserved.

VISIBLE Whether visible.

ENABLED Whether available.

REQUIRED Whether required.

READONLY Whether read-only.

Use for the BINDPARAMETER business rule type. Condition array for rule application. Each condition is a
configuration object.

Properties of the configuration object

conditions

rules and businessRules properties | 37

© 2023 Creatio. All rights reserved.

leftExpression Expression of the left side of the condition. Represented by a configuration
object.
Properties of the configuration object

The expression type. Set by the BusinessRuleModule.enums.ValueType
enumeration value.

Available values (BusinessRuleModule.enums.ValueType)

CONSTANT A constant.

ATTRIBUTE The value of the view model column.

SYSSETTING System setting.

SYSVALUE A system value. The list element of the
Terrasoft.core.enums.SystemValueType system
values.

Name of the model column.

Meta-path to the lookup schema column

Comparison value.

comparisonType Type of comparison. Set by the Terrasoft.core.enums.ComparisonType
enumeration value.

rightExpression Expression of the right side of the condition. Similar to leftExpression .

Use for the BINDPARAMETER business rule type. The logical operation that combines the conditions from the
conditions property. Set by the Terrasoft.LogicalOperatorType enumeration value.

type

attribute

attributePath

value

logical

rules and businessRules properties | 38

© 2023 Creatio. All rights reserved.

Use for the FILTRATION business rule type. Reverse filtering flag. Can be true or false .

Use for the FILTRATION business rule type. The flag that enables automated value cleanup when the column
by which to filter changes. Can be true or false .

Use for the FILTRATION business rule type. Meta-path to the lookup schema column that will be used for
filtering. Apply the feedback principle when building the column path, similar to EntitySchemaQuery . Generate
the path relative to the schema to which the model column links.

Use for the FILTRATION business rule type. Type of comparison operation. Set by the
Terrasoft.ComparisonType enumeration value.

Use for the FILTRATION business rule type. The value type for comparison baseAttributePatch . Set by the
BusinessRuleModule.enums.ValueType enumeration value.

Use for the FILTRATION business rule type. The name of the view model column. Describe this property if the
ATTRIBUTE value type is indicated.

Use for the FILTRATION business rule type. Meta-path to the object schema column. Apply the feedback
principle when building the column path, similar to EntitySchemaQuery . Generate the path relative to the
schema to which the model column link.

Use for the FILTRATION business rule type. Filtration value. Describe this property if the ATTRIBUTE value type
is indicated.

Additional properties

autocomplete

autoClean

baseAttributePatch

comparisonType

type

attribute

attributePath

value

rules and businessRules properties | 39

© 2023 Creatio. All rights reserved.

Use additional properties only for the businessRules property.

Unique rule ID. The "GUID" type value.

Enabling flag. Can be true or false .

The flag that indicates whether the rule is removed. Can be true or false .

The flag that indicates whether the rule is valid. Can be true or false .

Use examples

uId.

enabled

removed

invalid

Example of a BINDPARAMETER business rule created by the Wizard

define("SomePage", [], function() {
 return {
 /* ... */
 businessRules: /**SCHEMA_BUSINESS_RULES*/{
 /* A set of rules for the Type column of the view model. */
 "Type": {
 /* The rule code the Wizard generates. */
 "ca246daa-6634-4416-ae8b-2c24ea61d1f0": {
 /* Unique rule ID. */
 "uId": "ca246daa-6634-4416-ae8b-2c24ea61d1f0",
 /* Enabling flag. */
 "enabled": true,
 /* The flag that indicates whether the rule is removed. */
 "removed": false,
 /* The checkbox that indicates whether the rule is valid. */
 "invalid": false,
 /* Rule type. */
 "ruleType": 0,
 /* The code for the property that controls the rule. */
 "property": 0,
 /* A logical relationship between several rule conditions. */
 "logical": 0,
 /* An array of conditions that trigger the rule.

rules and businessRules properties | 40

© 2023 Creatio. All rights reserved.

 Compare the Account.PrimaryContact.Type value to the Type column value. */
 "conditions": [
 {
 /* Type of comparison operation. */
 "comparisonType": 3,
 /* Expression of the left side of the condition. */
 "leftExpression": {
 /* The expression type is a column (attribute) of a view model. */
 "type": 1,
 /* The name of the view model column. */
 "attribute": "Account",
 /* Path to the column in the Account lookup schema, whose value to compare in the expression. */
 "attributePath": "PrimaryContact.Type"
 },
 /* Expression of the right side of the condition. */
 "rightExpression": {
 /* The expression type is a column (attribute) of a view model. */
 "type": 1,
 /* The name of the view model column. */
 "attribute": "Type"
 }
 }
]
 }
 }
 }/**SCHEMA_BUSINESS_RULES*/
 /* ... */
 };
});

Example of a FILTRATION business rule created by the Wizard

define("SomePage", [], function() {
 return {
 /* ... */
 businessRules: /**SCHEMA_BUSINESS_RULES*/{
 /* A set of rules for the Type column of the view model. */
 "Account": {
 /* The rule code the Wizard generates. */
 "a78b898c-c999-437f-9102-34c85779340d": {
 /* Unique rule ID. */
 "uId": "a78b898c-c999-437f-9102-34c85779340d",
 /* Enabling flag. */
 "enabled": true,
 /* The flag that indicates whether the rule is removed. */
 "removed": false,
 /* The flag that indicates whether the rule is valid. */

rules and businessRules properties | 41

© 2023 Creatio. All rights reserved.

diff property
 Medium

The diff property of the client schema contains an array of configuration objects with their properties.

Properties

Operation on elements.

Available values

set Setsthe schema element to the value determined by the values parameter.

merge Merges the values from the parent, replaced, and replacing schemas. The properties
from the values parameter of the last descendant override the other values.

remove Deletes the element from the schema.

move Moves the element to a different parent element.

insert Adds the element to the schema.

 "invalid": false,
 /* Rule type. */
 "ruleType": 1,
 /* Path to the column for filtering in the Account lookup schema referenced in the Type column of the edit page view model. */
 "baseAttributePatch": "PrimaryContact.Type",
 /* The comparison type in the filter. */
 "comparisonType": 3,
 /* Expression type is a column (attribute) of a view model. */
 "type": 1,
 /* Name of the view model column, by which to filter the records. */
 "attribute": "Type"
 }
 }
 }/**SCHEMA_BUSINESS_RULES*/
 /* ... */
 };
});

JS

operation

diff property | 42

© 2023 Creatio. All rights reserved.

The name of the schema element on which the operation is run.

The name of the parent schema element where to place the element during the insert operation, or to which
to move the element during the move operation.

The name of the parent element parameter for the insert operation. Also used in the remove operation when
only certain element parameters must be removed rather than the entire element.

The index to which to move or add the parameter. Use the parameter with the insert and move operations.
If the parameter is not specified, then insert is the last element of the array.

An object whose properties to set or combine with the properties of the schema element. Use with set ,
merge and insert operations.

The Terrasoft.ViewItemType enumeration represents the set of basic elements that can be displayed on the
page

Available values (ViewItemType)

GRID_LAYOUT 0 A grid element that includes the placement of other controls.

TAB_PANEL 1 A set of tabs.

DETAIL 2 Detail

MODEL_ITEM 3 View model element.

MODULE 4 Module.

BUTTON 5 Button.

LABEL 6 Caption.

CONTAINER 7 Containers.

MENU 8 Drop-down list.

name

parentName

propertyName

index

values

diff property | 43

© 2023 Creatio. All rights reserved.

MENU_ITEM 9 Drop-down list element.

MENU_SEPARATOR 10 Drop-down list separator.

SECTION_VIEWS 11 Section views.

SECTION_VIEW 12 Section view.

GRID 13 List.

SCHEDULE_EDIT 14 Scheduler.

CONTROL_GROUP 15 Element group.

RADIO_GROUP 16 Switcher group.

DESIGN_VIEW 17 Configurable view.

COLOR_BUTTON 18 Color.

IMAGE_TAB_PANEL 19 A set of tabs with icons.

HYPERLINK 20 Hyperlink.

INFORMATION_BUTTON 21 Info button that has a tooltip.

TIP 22 Tooltip.

COMPONENT 23 Component.

PROGRESS_BAR 30 Indicator.

Configuration object.

alias object properties

alias

diff property | 44

© 2023 Creatio. All rights reserved.

name The name of the element to which the new element is connected. Creatio
will use this name to locate the elements in the replaced schemas and to
connect the elements with the new element. The name property of the
diff revision array element cannot equal the alias.name property.

excludeProperties An property array of the values object of the element from the diff
modification array. The properties will not be applied when building diff .

excludeOperations An array of operations that must not be applied to this element when
building the diff array of modifications.

Use example

Example that uses the aliasalias object

/* diff array. */
diff: /**SCHEMA_DIFF*/ [
 {
 /* The operation to perform on the element. */
 "operation": "insert",
 /* New name. */
 "name": "NewElementName",
 /* Element value. */
 "values": {
 /* ... */
 },
 /* alias configuration object. */
 "alias": {
 /* The previous name of the element. */
 "name": "OldElementName",
 /* An array of excluded properties. */
 "excludeProperties": "layout", "visible", "bindTo"],
 /* An array of ignored operations. */
 "excludeOperations": ["remove", "move", "merge"]
 }
 },
 /* ... */
]

diff property | 45

© 2023 Creatio. All rights reserved.

	Table of Contents
	Client schema
	Develop a client schema
	Client schema properties
	Schema name (entitySchemaName)
	Mixins (mixins)
	Create a mixin
	Assign a name to the mixin
	Connect the namespace
	Implement the mixin functionality
	Use the mixin

	Attributes (attributes)
	Messages (messages)
	Message publication
	Message subscription

	Methods(methods)
	Business rules (rules and businessRules)
	Specifics of business rules
	Edit an existing business rule

	Modules (modules)
	Array of modifications (diff)
	The alias mechanism
	Relationship between a view and model
	diff property declaration rules

	Properties (properties)

	Overload a mixin method
	1. Create a mixin
	2. Connect the mixin
	3. Overload the mixin method

	Method declaration example
	Array of modifications usage example
	Example of using the alias mechanism for repeated schema replacement
	attributes property
	Primary properties
	Additional properties

	messages property
	Properties

	rules and businessRules properties
	Primary properties
	Additional properties

	diff property
	Properties

