Creafio Acodemy

Back-end development

Custom web services

Version 8.0

This documentation is provided under restrictions on use and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this documentation, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you
find any errors, please report them to us in writing.

© 2023 Creatio. All rights reserved.

Table of Contents

Table of Contents | 3

Custom web services 4
Develop a custom web service 5
Call a custom web service 9
Migrate an existing custom web service to .NET Core 10

Develop a custom web service that uses cookie-based authentication 12
1. Create a Source code schema 12
2. Create a service class 13
3. Implement the class method 13
Outcome of the example 15

Develop a custom web service that uses anonymous authentication 16
1. Create a Source code schema 16
2. Create a service class 17
3. Implement the class method 17
4 Register the custom web service that uses anonymous authentication 19
5. Enable both HTTP and HTTPS support for the custom web service that uses anonymous authentication 19
6. Enable all users to access the custom web service that uses anonymous authentication 20
7. Restart Creatio in IIS 21
Outcome of the example 21

Call a custom web service from the front-end 22
1. Create a custom web service 22
2. Create a replacing contact record page 23
3. Add the button to the contact record page 24
Outcome of the example 26

Call a custom web service from Postman 27
1. Create a request collection 27
2.Set up an authentication request 28
3. Execute the authentication request 31
4 Set up the request to the custom web service that uses cookie-based authentication 32
5. Execute the request to the custom web service that uses cookie-based authentication 34
Outcome of the example 34

© 2023 Creatio. All rights reserved.

Custom web services | 4

Custom web services

A web service is software reachable via a unique URL, which enables interaction between applications. The
purpose of a web service is to integrate Creatio with external applications and systems.

Based on the custom business logic, Creatio will generate and send a request to the web service, receive the
response and extract the needed data. Use this data to create or update records in the Creatio database, as well
as for custom business logic or automation.

Creatio supports the following web service types:

e External REST and SOAP services that you can integrate with low-code tools. Read more in the following
user documentation article block: Web services.

e System web services.

e System web services that use cookie-based authentication.

e System web services that use anonymous authentication.
e Custom web services.

e Custom web services that use cookie-based authentication.

e Custom web services that use anonymous authentication.

.NET Framework system web services use the WCF technology and are managed at the IIS level. .NET Core
system web services use the ASP.NET Core Web API technology.

Learn more about the authentication types Creatio provides for web services in a separate article: Authentication.
We recommend using authentication based on the OAuth 2.0 open authorization protocol. Learn more about
OAuth-based authentication in the user documentation: Set up OAuth 2.0 authorization for integrated
applications.

Creatio system web services that use cookie-based authentication include:

e odata that executes OData 4 external application requests to the Creatio database server. Learn more about
using the OData 4 protocol in Creatio in a separate article: OData.

e EntityDataService.svc that executes OData 3 external application requests to the Creatio database server.
Learn more about using the OData 3 protocol in Creatio in a separate article: OData.

e ProcessEngineService.svc that enables external applications to run Creatio business processes. Learn more
about the web service in a separate article: Business process service.

Creatio system web services that use anonymous authentication include:

e AuthService.svc that executes Creatio authentication requests. Learn more about the web service in a
separate article: Authentication.

This article covers custom web services. Learn more about system web services in a separate guide: Integrations
& API.

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/docs/user/no_code_customization/web_services
https://docs.microsoft.com/en-us/dotnet/framework/wcf/
https://docs.microsoft.com/en-us/aspnet/core/web-api/?view=aspnetcore-5.0
https://academy.creatio.com/docs/developer/integrations_and_api/authentication/overview
https://academy.creatio.com/docs/user/on_site_deployment/deployment_additional_setup/oauth_2.0_authorization/set_up_oauth20_authorization_for_integrated_applications
https://academy.creatio.com/docs/developer/integrations_and_api/data_services/odata/overview#title-1398-1
https://academy.creatio.com/docs/developer/integrations_and_api/data_services/odata/overview#title-1398-2
https://academy.creatio.com/docs/developer/integrations_and_api/business_process_service/overview
https://academy.creatio.com/docs/developer/integrations_and_api/authentication/overview
https://academy.creatio.com/docs/developer/integrations_and_api

Custom web services | 5

Develop a custom web service

A custom web service is a RESTful service that uses the WCF (for .NET Framework) or ASP .NET Core (for
.NET Core) technology. Unlike system web services, custom web services let you solve unique integration
problems.

The web service development procedure differs for each Creatio deployment framework. View the unique
features of the custom web service development for the .NET Framework and .NET Core frameworks below.

Develop a custom web service that uses cookie-based authentication

1. Create a[Source code] schema. Learn more about creating schemas in a separate article: Develop
configuration elements.

2. Create a service class.
a. Add the Terrasoft.Configuration namespace or any of its nested namespaces in the Schema Designer.
You can name the namespace arbitrarily.
b. Add the namespaces the data types of which to utilize in the class using the using directive.

C. Usethe Terrasoft.Web.Http.Abstractions namespace if you want the custom web service to support both
.NET Framework and .NET Core. If you develop the web service using the system.web namespace and have
to run it on .NET Core, adapt the web service.

d. Add the class name that matches the schema name (the [Code] property).
e. Specify the Terrasoft.Nui.ServiceModel.WebService.BaseService Class as a parent class.

f. Add the [ServiceContract] and [AspNetCompatibilityRequirement] class attributes that contain the needed
parameters. Learn more about the [ServiceContract] attribute in the official Microsoft documentation.
Learn more about the [AspNetCompatibilityRequirements] attribute in the official Microsoft documentation.

3. Implement the class methods that correspond to the web service endpoints.

Add the [OperationContract] and [WebInvoke] method attributes that contain the needed parameters. Learn
more about the [0OperationContract] attribute in the official Microsoft documentation. Learn more about the
[WebInvoke] attribute in the official Microsoft documentation.

4. Implement additional classes whose instances will receive or return the web service methods (optional).
Required to pass data of complex types. For example, object instances, collections, arrays, etc.

Add the [DatacContract] attribute to the class and the [DataMember] attribute to the class fields. Learn more
about the [DataContract] attribute in the official Microsoft documentation. Learn more about the
[DataMember] attribute in the official Microsoft documentation.

5. Publish the source code schema.

As a result, you will be able to call the custom web service that uses cookie-based authentication from the source
code of configuration schemas, as well as from external applications.

Develop a custom web service that uses anonymous authentication

Custom web services that use anonymous authentication do not require the user to pre-authenticate,
i. e., you can use them anonymously.

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/docs/7-17/developer/development_tools/creatio_ide/develop_configuration_elements/overview#title-2123-8
https://academy.creatio.com/docs/7-16/developer/back_end_development/web_services/overview#title-1243-7
https://docs.microsoft.com/en-us/dotnet/api/system.servicemodel.servicecontractattribute?view=dotnet-plat-ext-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.servicemodel.activation.aspnetcompatibilityrequirementsattribute?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.servicemodel.operationcontractattribute?view=dotnet-plat-ext-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.servicemodel.web.webinvokeattribute?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.serialization.datacontractattribute?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.serialization.datamemberattribute?view=net-5.0

Custom web services | 6

Attention. We do not recommend using anonymous authentication in custom web services. It is insecure
and can hurt performance.

Develop a custom web service that uses anonymous authentication for .NET Framework

1. Take steps 1-5 in the Develop a custom web service that uses cookie-based authentication instruction.

2. Add the systemUserConnection Ssystem connection when creating a service class.

3. Specify the user on whose behalf to process the HTTP request when creating a class method. To do this, call
the SessionHelper.SpecifyWebOperationIdentity method of the Terrasoft.Web.Common namespace after
retrieving SystemUserConnection . This method enables business processes to manage the database entity (

Entity) from the custom web service that uses anonymous authentication.

Terrasoft.Web.Common.SessionHelper.SpecifyWebOperationIdentity(HttpContextAccessor.GetInstanc

4. Register the custom web service that uses anonymous authentication:

a. Go to the ..\Terrasoft.WebApp\ServiceModel directory.

b. Create an *.svc file whose name matches the web service name. Add the following record to the file.

Registration template for a custom web service that uses anonymous authentication

<% @ServiceHost
Service

"Service, ServiceNamespace"
Factory = "Factory, FactoryNamespace"
Debug = "Debug"

Language = "Language"

CodeBehind = "CodeBehind"

Example that registers a custom web service that uses anonymous authentication

<% @ServiceHost
Service = "Terrasoft.Configuration.UsrAnonymousConfigurationServiceNamespace.UsrAnonym
Debug = "true"
Language = "C#"

%>

The service attribute must contain the full name of the web service class and specify the namespace.

Learn more about the @serviceHost WCF directive in the official Microsoft documentation.

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/docs/7-16/developer/back_end_development/web_services/overview#title-1243-2
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/wcf-directive/servicehost

Custom web services | 7

5. Enable both HTTP and HTTPS support for the custom web service that uses anonymous authentication:

a. Open the ..\Terrasoft.WebApp\ServiceModel\http\services.config file and add the following record to it.

Example of changes to the ..\Terrasoft.WebApp\ServiceModel\http\services.config file

<services>

<service name="Terrasoft.Configuration.[Custom namespace].[Service name]">
<endpoint name="[Service name]EndPoint"
address=""
binding="webHttpBinding"
behaviorConfiguration="RestServiceBehavior"
bindingNamespace="http://Terrasoft.WebApp.ServiceModel"
contract="Terrasoft.Configuration.[Custom namespace].[Service name]" />
</service>

</services>

The <services> element contains the list of Creatio web service configurations (the <service> nested
elements).

The name attribute contains the name of the type (class or interface) that implements the web service
contract.

The <endpoint> nested element contains the address, binding, and interface that defines the contract of
the web service specified in the name attribute of the <service> element.

Learn more about the web service configuration elements in the official Microsoft documentation.

b. Add an identical record to the ..\Terrasoft.WebApp\ServiceModel\https\services.config file.

6. Enable all users to access the custom web service that uses anonymous authentication:

a. Open the ..\Terrasoft.WebApp\Web.config file.

b. Add the <location> element that defines the relative path and access permissions to the web service.

Example of changes to the ..\Terrasoft.WebApp\Web.config file

<configuration>

<location path="ServiceModel/[Service name].svc">
<system.web>
<authorization>
<allow users="*" />
</authorization>
</system.web>
</location>

</configuration>

© 2023 Creatio. All rights reserved.

https://docs.microsoft.com/en-us/dotnet/framework/wcf/configuring-services-using-configuration-files

Custom web services | 8

c. Add the relative web service path to the value attribute of the AllowedLocations key in the <appSettings>
element.

Example of changes to the ..\Terrasoft.WebApp\Web.config file

<configuration>
;;épSettings>
<add key="AllowedLocations" value="[Previous values];ServiceModel/[Service name].s\
;};ppSettings>

</configuration>

7. Restart Creatio in IIS.

As a result, you will be able to call the custom web service that uses anonymous authentication from the source
code of configuration schemas, as well as from external applications. You can access the web service both with
and without pre-authentication.

Develop a custom web service that uses anonymous authentication for .NET Core

1. Take steps 1-5 in the Develop a custom web service that uses cookie-based authentication instruction.

2. Enable all users to access the custom web service that uses anonymous authentication:

Example of changes to the ..\Terrasoft.WebHost\appsettings.json file

"Terrasoft.Configuration.[Service name]": [
"/ServiceModel/[Service name].svc"

a. Open the ..\Terrasoft.WebHost\appsettings.json configuration file.

b. Add the web service details to the AnonymousRoutes file block.
3. Restart Creatio.

As a result, you will be able to call the custom web service that uses anonymous authentication from the source
code of configuration schemas, as well as from external applications. You can access the service both with or
without pre-authentication.

Attention. Reconfigure the web service after updating Creatio. The existing configuration files are
overwritten as part of the update.

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/docs/7-16/developer/back_end_development/web_services/overview#title-1243-5

Custom web services | 9

Call a custom web service

You can call a custom web service from the browser or front-end.

Call a custom web service from the browser

Call a custom web service that uses cookie-based authentication from the browser

To call a .NET Framework custom web service that uses cookie-based authentication from the browser:

1. Retrieve the authentication cookies using the AuthsService.svc system web service.

2. Call a custom web service using the address bar:

URL template for a custom web service that uses cookie-based authentication

[Creatio application URL]/@/rest/[Custom web service name]/[Custom web service endpoint]?[Opt

URL example of a custom web service that uses cookie-based authentication

http://mycreatio.com/0/rest/UsrCustomConfigurationService/GetContactIdByName?Name=Userl

The procedure to call a .NET Core custom web service that uses cookie-based authentication is identical. That
said, the /e prefix is not required.

Call a custom web service that uses anonymous authentication from the browser

Call a .NET Framework custom web service that uses anonymous authentication using the address bar:

URL template for a custom web service that uses anonymous authentication

[Creatio application URL]/@/ServiceModel/[Custom web service name]/[Custom web service endpoint]

URL example of a custom web service that uses anonymous authentication

http://mycreatio.com/0/ServiceModel/UsrCustomConfigurationService.svc/GetContactIdByName?Name=Us

The procedure to call a .NET Core custom web service that uses anonymous authentication is identical. That
said, the /e prefix is not required.

© 2023 Creatio. All rights reserved.

Custom web services | 10

Call a custom web service from the front-end

1. Add the serviceHelper module as a dependency to the module of the page from which to call the service. This
module provides a convenient interface to execute server requests via the Terrasoft.AjaxProvider request
provider implemented in the client core.

2. Call a custom web service from the ServiceHelper module.

You can call a custom web service in several ways:

e Callthe callservice(serviceName, serviceMethodName, callback, serviceData, scope) method.
e Callthe callservice(config) method, where config is a configuration object that has the following
properties:
serviceName is the name of the custom web service.
methodName is the name of the custom web service method to call.
callback is the callback function that processes the web service response.

data is the object that contains the initialized incoming parameters for the service method.

scope is the context of the request execution.

Attention. The serviceHelper module supports only pPosT requests. As such, add the [WebInvoke]
attribute that contains the Method = "PosT" parameter to the custom web service method.

Migrate an existing custom web service to .NET Core

You can migrate a .NET Framework custom web service that retrieves the context without inheriting the
Terrasoft.Web.Common.BaseService base class to .NET Core. To do this, adapt the custom web service.

The HttpContextAccessor property of the Terrasoft.Web.Common.BaseService provides unified access to context (
HttpContext) both in .NET Framework and .NET Core. The UserConnection and AppConnection properties let you
retrieve the user connection object and the connection object on the application level. This lets you omit the
HttpContext.Current property of the System.web library.

Example that uses the properties of the Terrasoft.wWeb.Common.BaseService parent class.

namespace Terrasoft.Configuration.UsrCustomNamespace

{

using Terrasoft.Web.Common;

[ServiceContract]
[AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.ReqL
public class UsrCustomConfigurationService: BaseService
{
/* The web service method. */
[OperationContract]
[WebInvoke(Method = "GET", RequestFormat = WebMessageFormat.Json, BodyStyle = WebMessage

© 2023 Creatio. All rights reserved.

Custom web services | 11

ResponseFormat = WebMessageFormat.Json)]
public void SomeMethod() {

/* UserConnection is the BaseService property. */

var currentUser = UserConnection.CurrentUser;

/* AppConnection is the BaseService property. */

var sdkHelpUrl = AppConnection.SdkHelpUrl;

/* HttpContextAccessor is the BaseService property. */
var httpContext = HttpContextAccessor.GetInstance();

Creatio supports the following context retrieval options for web services developed without inheriting the

Terrasoft.Web.Common.BaseService class:

e Via IHttpContextAccessor registered in DI (ClassFactory)

This option lets you view the explicit class dependencies for thorough automated testing and debugging.
Learn more about using the class factory in a separate article: Replace configuration elements.

e via the HttpContext.Current static property

Add the Terrasoft.Web.Http.Abstractions namespace to the source code using the using directive. The
HttpContext.Current static property implements unified access to HttpContext . To adapt the web service
code to .NET Core, replace the system.web namespace using Terrasoft.Web.Http.Abstractions .

Attention. Do not use specific access implementations to request context peculiar to .NET Framework
(the system.web library) or .NET Core (the Microsoft.AspNetCore.Http library) in the configuration.

Example that adapts the web service to .NET Core

namespace Terrasoft.Configuration.UsrCustomNamespace
{

/* Use instead of System.Web. */

using Terrasoft.Web.Http.Abstractions;

[ServiceContract]
[AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.ReqL
public class UsrCustomConfigurationService
{
/* The web service method. */
[OperationContract]
[WebInvoke(Method = "GET", RequestFormat = WebMessageFormat.Json, BodyStyle = WebMessage
ResponseFormat = WebMessageFormat.Json)]
public void SomeMethod() {

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/docs/developer/back_end_development/replacing_class_factory/overview

Develop a custom web service that uses cookie-based authentication | 12

var httpContext = HttpContext.Current;

Develop a custom web service that uses
cookie-based authentication

. Medium

Example. Create a custom web service that uses cookie-based authentication. The service must execute a
Creatio request to return the contact information by the specified name. Creatio must return the following

data:

e |f the contact is found, return the contact ID.

e |f several contacts are found, return the ID of the first contact only.

e |f no contacts are found, return an empty string.

1. Create a [Source code] schema

1. Go to the [Configuration] section and select a custom package to add the schema.

2. Click [Add 1 - [Source code] on the section list toolbar.

4+ Add - = Type =

& Object

&) Replacing object

5 Filters = Q, Search §op

Base entity page

& source code

Ohbject

B Module

3. Go to the Schema Designer and fill out the schema properties:

e Set[Code]to "UsrCustomConfigurationService."

e Set[Title] to "CustomConfigurationService."

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/docs/7-17/developer/development_tools/creatio_ide/develop_in_creatio_ide/development_in_creatio_ide#title-1188-1
https://academy.creatio.com/docs/7-18/developer/development_tools/packages/packages_basics/overview

Develop a custom web service that uses cookie-based authentication | 13

Source code

UsrCustomConfigurationService

CustomConfigurationService

sdkCustomWebServicePackage

CANCE APPLY

Click [Apply 1 to apply the properties.

2. Create a service class

1. Go to the Schema Designer and add the namespace nested into Terrasoft.Configuration . YOU Can use an
arbitrary name. For example, UsrCustomConfigurationServiceNamespace .

Add the namespaces the data types of which to utilize in the class using the using directive.

Add a class name that matches the schema name (the [Code] property).

Specify the Terrasoft.Nui.ServiceModel.WebService.BaseService class as a parent class.

ok wnN

Add the [ServiceContract] and
[AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Required)]
attributes to the class.

3. Implement the class method

Go to the Schema Designer and add the public string GetContactIdByName(string Name) class method that
implements the endpoint of the custom web service. The method executes database queries using
EntitySchemaQuery . Depending on the value of the Name parameter in the query string, the response body will

contain:

e The ID of the contact (string type) if the contact is found.
e The ID of the first found contact (string type) if several contacts are found.

e The empty string if no contacts are found.

View the source code of the usrcustomConfigurationService custom web service below.

UsrCustomConfigurationService

© 2023 Creatio. All rights reserved.

namespace

{
using
using
using
using
using
using
using

Develop a custom web service that uses cookie-based authentication | 14

Terrasoft.Configuration.UsrCustomConfigurationServiceNamespace

System;

System.ServiceModel;
System.ServiceModel.Web;
System.ServiceModel.Activation;
Terrasoft.Core;
Terrasoft.Web.Common;
Terrasoft.Core.Entities;

[ServiceContract]

[AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.ReqL

public class UsrCustomConfigurationService: BaseService

{

/* The method that returns the contact ID by the contact name. */
[OperationContract]

[WebInvoke(Method = "GET", RequestFormat = WebMessageFormat.Json, BodyStyle = WebMessage

ResponseFormat = WebMessageFormat.Json)]

public string GetContactIdByName(string Name) {

/* The default result. */

var result = "";

/* The EntitySchemaQuery instance that accesses the Contact database table. */
var esq = new EntitySchemaQuery(UserConnection.EntitySchemaManager, "Contact");
/* Add columns to the query. */

var colld = esq.AddColumn("Id");

var colName = esq.AddColumn("Name");

/* Filter the query data. */

var esqFilter = esq.CreateFilterWithParameters(FilterComparisonType.Equal, "Name", N
esq.Filters.Add(esqFilter);

/* Retrieve the query results. */

var entities = esq.GetEntityCollection(UserConnection);

/* If the service receives data. */

if (entities.Count > 9)

{
/* Return the "Id" column value of the first query result record. */
result = entities[@].GetColumnValue(colId.Name).ToString();
/* You can also use this option:
result = entities[0].GetTypedColumnValue<string>(colId.Name); */
}

// Return the results.
return result;

Click [Save] then [Publish] on the Designer's toolbar.

© 2023 Creatio. All rights reserved.

Develop a custom web service that uses cookie-based authentication | 15

Outcome of the example

As a result, Creatio will add the custom UsrCustomConfigurationService REST web service that has the
GetContactIdByName endpoint.
Access the GetContactIdByName endpoint of the web service from the browser and pass the contact name in the

Name parameter.

Request string that contains the name of the existing contact

http://mycreatio.com/0/rest/UsrCustomConfigurationService/GetContactIdByName?Name=Andrew%20Baker

If you access the web service without preauthorization, an error will occur.

= O X
@ 401 - Unauthorized: Access is de X + [}

« = C @ http://mycreatio.com/0/rest/UsrCustomConfigurationService/GetContactldByNa... _r'. D N :

Server Error

401 - Unauthorized: Access is denied due to invalid credentials.

You do not have permission to view this directory or page using the credentials that you supplied.

Log in to Creatio and execute the request once more. If Creatio finds the contact from the name parameter in the
database, the GetContactIdByNameResult property will return the contact ID value.

@ mycreatio.com/0/rest/UsrCust X =+ o

& = C @ httpy//mycreatio.com/0/rest/UsrCustomConfigurationService/GetContactld... f". 2 » :

{"GetContactIdByMNameResult™: "c4ed336c-3e0b-40fe-8b82-5632476472b4"

If Creatio finds no contacts from the name parameter in the database, the GetContactIdByNameResult property will

return an empty string.

Request string that contains the name of a non-existing contact

http://mycreatio.com/0/rest/UsrCustomConfigurationService/GetContactIdByName?Name=Andrew%20Bake

© 2023 Creatio. All rights reserved.

Develop a custom web service that uses anonymous authentication | 16

@ mycreatio.com/0/rest/UsrCust X + o

&< C @ hitp://mycreatio.com/SalesEnterpriseENU_MKysla/0/rest/UsrCustomConfig... ,". N

{"GetContactIdByMNameResult™:""}

Develop a custom web service that uses
anonymous authentication

. Medium

Example. Create a custom web service that uses anonymous authentication. The service must execute a
Creatio request to return the contact information by the specified name. Creatio must return the following
data:

e If the contact is found, return the contact ID.

e If several contacts are found, return the ID of the first contact only.

e If no contacts are found, return an empty string.

1. Create a [Source code] schema

1. Go to the [Configuration] section and select a custom package to add the schema.

2. Click [Add] - [Source code] on the section list toolbar.

4+ Add - = Type = % Filters = O Search 4%
&) Object .

&) Replacing object ,
S Base entity page

E Source code

Object

B Module

3. Go to the Schema Designer and fill out the schema properties:

e Set[Code]to "UsrAnonymousConfigurationService."

e Set[Title] to "AnonymousConfigurationService."

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/docs/7-17/developer/development_tools/creatio_ide/develop_in_creatio_ide/development_in_creatio_ide#t1itle-1188-1
https://academy.creatio.com/docs/7-18/developer/development_tools/packages/packages_basics/overview

Develop a custom web service that uses anonymous authentication | 17

Source code

UsranonymousConfigurationService

AnonymousConfigurationService

sdkAnonymousWebServicePackage

CANCE APPLY

Click [Apply 1to apply the properties.

2. Create a service class

1. Go to the Schema Designer and add the namespace nested into Terrasoft.Configuration . YOU can use an
arbitrary name. For example, UsrAnonymousConfigurationServiceNamespace .

Add the namespaces the data types of which to utilize in the class using the using directive.

Add the class name that matches the schema name (the [Code] property).

Specify the Terrasoft.Nui.ServiceModel.WebService.BaseService class as a parent class.

vk W N

Add the [ServiceContract] and
[AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Required)]
attributes to the class.

6. Add the systemUserConnection System connection to enable anonymous access to the custom web service.

3. Implement the class method

Go to the Schema Designer and add the public string GetContactIdByName(string Name) class method that

implements the endpoint of the custom web service. The method executes database queries using
EntitySchemaQuery . Depending on the value of the nName parameter in the query string, the response body will

contain:

e The ID of the contact (string type) if the contact is found.
e The ID of the first found contact (string type) if Creatio several contacts are found.

e The empty string if Creatio no contacts are found.

Specify the user on whose behalf to process the HTTP request. To do this, call the
SessionHelper.SpecifyWebOperationIdentity method of the Terrasoft.Web.Common namespace after retrieving

© 2023 Creatio. All rights reserved.

Develop a custom web service that uses anonymous authentication | 18

SystemUserConnection . This method enables business processes to manage the database entity (Entity) from
the custom web service that uses anonymous authentication.

Terrasoft.Web.Common.SessionHelper.SpecifyWebOperationIdentity(HttpContextAccessor.GetInstance()

View the source code of the UsrAnonymousConfigurationService custom web service below.

UsrAnonymousConfigurationService

/* The custom namespace. */
namespace Terrasoft.Configuration.UsrAnonymousConfigurationServiceNamespace
{

using System;

using System.ServiceModel;

using System.ServiceModel.Web;

using System.ServiceModel.Activation;

using Terrasoft.Core;

using Terrasoft.Web.Common;

using Terrasoft.Core.Entities;

[ServiceContract]
[AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.ReqL
public class UsrAnonymousConfigurationService: BaseService
{

/* The link to the UserConnection instance required to access the database. */

private SystemUserConnection _systemUserConnection;

private SystemUserConnection SystemUserConnection {

get {
return _systemUserConnection ?? (_systemUserConnection = (SystemUserConnection)?

/* The method that returns the contact ID by the contact name. */
[OperationContract]
[WebInvoke(Method = "GET", RequestFormat = WebMessageFormat.Json, BodyStyle = WebMessage
ResponseFormat = WebMessageFormat.Json)]
public string GetContactIdByName(string Name){
/* Specify the user on whose behalf to process the HTTP request. */
SessionHelper.SpecifyWebOperationIdentity(HttpContextAccessor.GetInstance(), Systeml
/* The default result. */
var result = "";
/* The EntitySchemaQuery instance that accesses the Contact database table. */
var esq = new EntitySchemaQuery(SystemUserConnection.EntitySchemaManager, "Contact")
/* Add columns to the query. */
var colId = esq.AddColumn("Id");
var colName = esq.AddColumn("Name");

© 2023 Creatio. All rights reserved.

Develop a custom web service that uses anonymous authentication | 19

/* Filter the query data. */

var esqFilter = esq.CreateFilterWithParameters(FilterComparisonType.Equal, "Name", N
esq.Filters.Add(esqFilter);

/* Retrieve the query results. */

var entities = esq.GetEntityCollection(SystemUserConnection);

/* If the service receives data. */

if (entities.Count > 9)

{
/* Return the "Id" column value of the first query result record. */
result = entities[@].GetColumnValue(colId.Name).ToString();
/* You can also use this option:
result = entities[@].GetTypedColumnValue<string>(colId.Name); */
}

/* Return the results. */

return result;

Click [Save] then [Publish] on the Designer's toolbar.

4 Register the custom web service that uses anonymous
authentication

1. Go to the ..\Terrasoft.WebApp\ServiceModel directory.

2. Create a UsrAnonymousConfigurationService.svc file and add the following record to it.

<% @ServiceHost
Service = "Terrasoft.Configuration.UsrAnonymousConfigurationServiceNamespace.UsrAnonymous
Debug = "true"
Language = "C#"

%>

The service attribute contains the full name of the web service class and specifies the namespace.

5. Enable both HTTP and HTTPS support for the custom web
service that uses anonymous authentication

1. Open the ..\Terrasoft.WebApp\ServiceModel\http\services.config file and add the following record to it.

..\Terrasoft.WebApp\ServiceModel\http\services.config file

<services>

© 2023 Creatio. All rights reserved.

Develop a custom web service that uses anonymous authentication | 20

<service name="Terrasoft.Configuration.UsrAnonymousConfigurationServiceNamespace.UsrAnony
<endpoint name="[Service name]EndPoint"

address=
binding="webHttpBinding"
behaviorConfiguration="RestServiceBehavior"
bindingNamespace="http://Terrasoft.WebApp.ServiceModel"
contract="Terrasoft.Configuration.UsrAnonymousConfigurationServiceNamespace.UsrAn
</service>
</services>

2. Add an identical record to the ..\Terrasoft.WebApp\ServiceModel\https\services.config file.

6. Enable all users to access the custom web service that uses
anonymous authentication

1. Open the ..\Terrasoft.WebApp\Web.config file.

2. Add the <location> element that defines the relative path and access permissions to the web service.

..\Terrasoft.WebApp\Web.config file

<configuration>
<location path="ServiceModel/UsrAnonymousConfigurationService.svc">
<system.web>
<authorization>
<allow users="*" />
</authorization>
</system.web>

</location>

</configuration>

3. Add the relative web service path to the value attribute of the AllowedLocations key in the <appSettings>
element.

..\Terrasoft.WebApp\Web.config file

<configuration>
;;épSettings>
<add key="AllowedLocations" value="[Previous values];ServiceModel/UsrAnonymousConfigu
;};ppSettings>

© 2023 Creatio. All rights reserved.

Develop a custom web service that uses anonymous authentication | 21

</configuration>

7. Restart Creatio in lIS

Restart Creatio in 11S to apply the changes.

Outcome of the example

As a result, Creatio will add the custom UsrAnonymousConfigurationservice REST web service that has the
GetContactIdByName endpoint. You can access the web service from the browser, with or without pre-

authentication.
Access the GetContactIdByName endpoint of the web service from the browser and pass the contact name in the

Name parameter.

Request string that contains the name of the existing contact

http://mycreatio.com/0/ServiceModel/UsrAnonymousConfigurationService/GetContactIdByName?Name=Anc

If Creatio finds the contact from the name parameter in the database, the GetContactIdByNameResult property wil

return the contact ID value.

— O X
@ mycreatio.com/0/ServiceModel/S X =+ (v]

< C @ http://mycreatio.com/0/ServiceModel/UsrAnonymousConfig... /. QR :

{"GetContactIdByNameResult":"cd4ed336c-329b-40Te-8b82-5632476472b4"}

If Creatio finds no contacts from the name parameter in the database, the GetContactIdByNameResult property will

return an empty string.

Request string that contains the name of a non-existing contact

http://mycreatio.com/0/ServiceModel/UsrAnonymousConfigurationService/GetContactIdByName?Name=Anc

© 2023 Creatio. All rights reserved.

Call a custom web service from the front-end | 22

@ mycreatio.com/0/ServiceModel/S X =+ (v

& C @ http://mycreatio.com/0/ServiceModel/UsrAnonymousConfig... f. Qo R :

{"GetContactIdByMameResult™:""}

Call a custom web service from the front-
end

Example. Add a button that calls a custom web service to the contact add page. Display the response
returned by the web service in a dialog box.

1. Create a custom web service
This example uses the usrCustomConfigurationService custom web service. Learn more about developing the
service in a separate article: Develop a custom web service that uses cookie-based authentication.

Change the Method parameter of the webInvoke attribute in the usrCustomConfigurationService custom web
service to PoST .

View the source code of the custom web service the example uses below.

UsrCustomConfigurationService

namespace Terrasoft.Configuration.UsrCustomConfigurationServiceNamespace
{

using System;

using System.ServiceModel;

using System.ServiceModel.Web;

using System.ServiceModel.Activation;

using Terrasoft.Core;

using Terrasoft.Web.Common;

using Terrasoft.Core.Entities;

[ServiceContract]
[AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Reql
public class UsrCustomConfigurationService: BaseService

{

/* The method that returns the contact ID by the contact name. */
[OperationContract]

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/docs/7-16/developer/back_end_development/web_services/overview#case-1239

Call a custom web service from the front-end | 23

[WebInvoke(Method = "POST", RequestFormat = WebMessageFormat.Json, BodyStyle = WebMessag
ResponseFormat = WebMessageFormat.Json)]
public string GetContactIdByName(string Name) {
/* The default result. */
var result = "";
/* The EntitySchemaQuery instance that accesses the Contact database table. */
var esq = new EntitySchemaQuery(UserConnection.EntitySchemaManager, "Contact");
/* Add columns to the query. */
var colld = esq.AddColumn("Id");
var colName = esq.AddColumn("Name");
/* Filter the query data. */
var esqFilter = esq.CreateFilterWithParameters(FilterComparisonType.Equal, "Name", N
esq.Filters.Add(esqFilter);
/* Retrieve the query results. */
var entities = esq.GetEntityCollection(UserConnection);
/* If the service receives data. */
if (entities.Count > 9)

{
/* Return the "Id" column value of the first query result record. */
result = entities[@].GetColumnValue(colId.Name).ToString();
/* You can also use this option:
result = entities[0].GetTypedColumnValue<string>(colId.Name); */
}

/* Return the results. */

return result;

2. Create a replacing contact record page

1. Go to the [Configuration] section and select a custom package to add the schema.

2. Click [Add] = [Replacing view model] on the section list toolbar.

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/docs/7-17/developer/development_tools/creatio_ide/develop_in_creatio_ide/development_in_creatio_ide#title-1188-2
https://academy.creatio.com/docs/7-18/developer/development_tools/packages/packages_basics/overview

-+ Add - 8% User task = ' Filters =
&) Object

& Replacing object

B source code

B Module

B Page view model

B section view mode!

@ Detail (list) view model

@ Detail (fields) view model

@ Replacing view mode

Call a custom web service from the front-end | 24

Q. search dob

3. Select the contactPagev2 package's [Display schema — Contact card] view model schema to replace in the

[Parent object] property. After you confirm the parent object, Creatio will populate the other properties.

Module X
éc-j;actPagevz

;)i-sial;.ay schema - Contact card X
D-ISF-]|E}'SCI'IEF;E - Contact card (ContactPagevz) -

sdkCustomWebServicePackage

CANCEL APPLY

4. Enable the serviceHelper module as a dependency in the declaration of the record page module. Learn more
about the module dependencies in a separate article: AMD concept. Module definition.

3. Add the button to the contact record page

1. Click the ™ button in the [Localizable strings] block of the properties panel and fill out the localizable string

properties:

e Set[Code]to "GetServiceInfoButtonCaption."

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/docs/developer/front_end_development/modules/amd_concept_module_definition/overview

Call a custom web service from the front-end | 25

e Set[Value]to "Call service."

2. Add the button handler.

Call the web service using the callservice() method of the ServiceHelper module. Pass the following
parameters of the callservice() function:

e UsrCustomConfigurationService , the name of the custom web service class

e GetContactIdByName , the name of the custom web service method to call

the callback function in which to process the service output

e serviceData, the object that contains the initialized incoming parameters for the custom web service
method

the execution context

View the source code of the contactPagev2 replacing view model below.

ContactPageV2

define("ContactPageVv2", ["ServiceHelper"],
function(ServiceHelper) {
return {
/* The name of the record page object's schema. */
entitySchemaName: "Contact",
details: /**SCHEMA_DETAILS*/{}/**SCHEMA DETAILS*/,
/* The methods of the record page's view model. */
methods: {
/* Check if the [Full name] page field is filled out. */
isContactNameSet: function() {
return this.get("Name") ? true : false;
s
/* The button click handler method. */
onGetServiceInfoClick: function() {
var name = this.get("Name");
/* The object that initializes the incoming parameters for the service method
var serviceData = {
/* The name of the property matches the name of the service method's inco
Name: name
s
/* Call the web service and process the outcome. */
ServiceHelper.callService("UsrCustomConfigurationService", "GetContactIdByNam
function(response) {
var result = response.GetContactIdByNameResult;
this.showInformationDialog(result);
}, serviceData, this);

}s
diff: /**SCHEMA DIFF*/[

/* The metadata to add the custom button to the page. */

© 2023 Creatio. All rights reserved.

Call a custom web service from the front-end | 26

/* Add the element to the page. */
"operation": "insert",
/* The name of the parent control to add the button. */
"parentName": "LeftContainer",
/* Add the button to the control collection of the parent whose metaname is s
"propertyName": "items",
/* The name of the button to add. */
"name": "GetServiceInfoButton",
/* The additional field properties. */
"values": {
/* Set the type of the added element to button. */
itemType: Terrasoft.ViewItemType.BUTTON,
/* Bind the button caption to the localizable schema string. */
caption: {bindTo: "Resources.Strings.GetServiceInfoButtonCaption"},
/* Bind the button click handler method. */
click: {bindTo: "onGetServiceInfoClick"},
/* Bind the button availability property. */
enabled: {bindTo: "isContactNameSet"},
/* Set up the field location. */

"layout": {"column": 1, "row": 6, "colSpan": 2, "rowSpan": 1}

}
]1/**SCHEMA_DIFF*/

13
s

3. Click [Save] on the Designer's toolbar.

Outcome of the example

As a result, Creatio will display the [Call service] button on the contact page after you refresh the Creatio web
page. Click the button to call the GetcContactIidByName method of the UsrcCustomConfigurationService custom web
service. The method returns the ID of the current contact.

© 2023 Creatio. All rights reserved.

Andrew Baker

CLOSE ACTIONS « L 4

Dashboards u_100%

Employees

Contacts

Accounts Andrew Baker
Full job title
Activities Spedialist
Mobile phone

Feed +1 6172215187

Call a custom web service from Postman | 27

What can | do for you?

A
Creatio (50

VIEW ~ #

CALL SERVICE

l cded336c-3e9b-40fe-8b82-5632476472b4

(7

above to add a ta:

AMCWT CTCRE (00

r 41
) |
n

You don't have any tasks y

Press

CONTACT INFO CONNECTED TO MAINTEN/

T';.u pe Cu.. Owner

Title Mr. Gender

Call a custom web service from Postman

. Medium

Integrate external applications with custom Creatio web services via HTTP requests to the services. Editing and
debugging tools, such as Postman or Fiddler, help to understand the request creation principles.

Postman is a request testing toolset. The purpose of Postman is to send test requests from the client to the
server and receive the server's responses. The example in this article calls a custom web service that uses

cookie-based authentication from Postman.

Example. Call a custom web service that uses cookie-based authentication from Postman.

This example uses the usrCustomConfigurationService custom web service. Learn more about developing the
service in a separate article: Develop a custom web service that uses cookie-based authentication.

Since this custom web service uses cookie-based authentication, authorize in Creatio first. Do this by calling the
AuthService.svc system web service. Learn more about authentication in a separate article: Authentication.

1. Create a request collection

1. Go to the [Collections] tab on the Postman request toolbar and click [+ New Collection 1.

© 2023 Creatio. All rights reserved.

https://www.postman.com/
http://www.telerik.com/fiddler
https://academy.creatio.com/documents?id=15263
https://academy.creatio.com/documents?id=15402

Call a custom web service from Postman | 28

Collections

4+ New Collection Trash

2. Fill out the request collection fields:

e Set[Name]to "Test configuration web service."

CREATE A NEW COLLECTION

Name

Test configuration web service

Description Authorization Pre-request Scripts Tests Variables

This description will show in your collection’s documentation, along with the descriptions of its folders and requests.

Descriptions support Markdown

3. Click [Create] to create a request collection.

2. Set up an authentication request

1. Go to the request working area in Postman and right-click the name of the Test configuration web service
collection - [Add request].

2. Fill out the request fields:

e Set [Request name] to "Authentication."

© 2023 Creatio. All rights reserved.

Call a custom web service from Postman | 29

SAVE REQUEST

Requests in Postman are saved in collections (a group of requests).

Ledarm more about creg

Request name

Authentication

Request description (Qptional)

Descriptions support Markdown

Select a collection or folder o save to:

Q

Cance Save to Test configuration web se...

3. Click [Save to Test configuration web service] to add the request to the collection.

4. Select the posT request method in the drop-down list of the Postman workspace toolbar.

E o m Save)

| GET Body Prereq. Tests Settings Cook
POST @ m

es Code

5. Enter the string of the authentication service request in the Postman workspace toolbar.

Template of the AuthService.svc service URL

[Creatio application URL]/ServiceModel/AuthService.svc/Login

Example of the AuthService.svc service URL

http://mycreatio.com/creatio/ServiceModel/AuthService.svc/Login

6. Set the request data format:

© 2023 Creatio. All rights reserved.

Call a custom web service from Postman | 30

a. Go to the[Body] tab.
b. Set the "raw" option.

C. Select the "JSON" type.

o)
=

5 Untitled Request
oo

° Creatio Environment v e =z
Untitled Request T

Params Authorization Headers (8) Body Pre-request Script Tests Settings Cookies Code
Query Params @
KEY VALUE DESCRIPTION *** Bulk Edit
Hit Send to get a response
Q Find and Replace BJ Conscle =" Bootcamp Build Browse [als] @

7. Go to the [Body] tab in the Postman workspace and fill out the body of the posT request. The body is a
JSON object that contains the login credentials.

Body of the posT request

"UserName": "Userel",
"UserPassword":"Userol"

© 2023 Creatio. All rights reserved.

http://mycreatio.com/Service... @

POST

Params

none

Bow e

ooo

Untitled Request

- http://myCreatio.com/ServiceModel/AuthService.svc/Login

Authorization Headers (9) Body @ Pre-request Script Tests Settings
form-data x-www-form-urlencoded ® raw binary GraphQL JSON

"UserMame™: "User@l”,
"UserPassword”: "Useral"”

3. Execute the authentication request

Click [Send] in the Postman workspace toolbar to execute the request from Postman.

Call a custom web service from Postman | 31

Creatio Environment

As a result, Postman will receive a response that contains a JSON object. View the response body on the

Postman Body tab.

Body

Pretty

- T T T

Q, Find and Replace

Cookies (4)

"RedirectUrl”: null

= Bootcamp

o Conscle

The indicators of a successfully executed request are as follows:

e The server returns the ¢ 200 OK status code.

e The code parameter of the response body contains "0."

Headers (14) Test Results @ Ststus 2000K Time: 79ms Size: 1.42KB Save Response v
Rawy Preview Visualize JSON 5 m Q
"Code": @,
"Mescage": ""
"Exception”: null,
"PasswordChangeUrl™: null,

uild Browse

20 @

The response also contains BPMLOADER , .ASPXAUTH , BPMCSRF , and UserName cookies. Postman displays them on

the cookies and Headers tab.

© 2023 Creatio. All rights reserved.

Call a custom web service from Postman | 32

Body (Cockies (4) Headers (14) TestResults @ status 2000K Time: 79ms Size: 1.42 KB Save Response v
Name Value Domain Path Expires HttpOnly Secure
EPMLOADER mycreatio.com creatio Session trus false
mycreatio.com creatio Session ue false

m
:
P
.
;
1T
=
£
iy

Q, Find and Replace 5 i Bootcamp

Use these cookies in further requests to Creatio services that use cookie-based authentication.

If you enabled the CSRF attack protection, always use the BPMCSRF cookie for request methods (PosT, PUT,
DELETE) that modify (add, change, or delete) the entity. If you do not use the BPMCSRF cookie, the server returns
the ¢ 403 Forbidden status code. Creatio does not check for the BpPMCSRF cookie for GET requests. You do not
have to use the BPMcSRF cookie with Creatio demo sites since they have CSRF attack protection disabled by
default.

The request fails if it contains errors in the string or the body.

The indicators of an unsuccessfully executed request are as follows:

e The code parameter of the response body contains "1."

e The Message parameter of the response body contains the reason for the authentication failure.

Body Coockies (4) Headers (12) TestResults @ sStatus: 2000K Time: 108ms Size: 257 KB Save Response v
Pretty Raw Preview Visualize JSON - 5 I'_. Q
1k |
2 "Code": 1,
3 "Message”: "Invalid username or password specified. Verify that you have entered correct data or contact your system administrator. A
system administrator can change the password on the user page”,
4 "Exception": {
5 "HelpLink™: null,
[“InnerException”: null,
7 "Message": "Invelid username or password specified. Verify that vou have entered correct datz or contact your system
administrator. A system administrator can change the password on the user page”,
8 "StackTrace™: "™,
9 "Type™: "System.Security.SecurityException®
1e ta
11 "PasswordChangeUrl”: null,
12 "RedirectUrl": null
13 B
Q Find and Replace E Conscle =" Bootcamp Build Browse [a]s]

4 Set up the request to the custom web service that uses
cookie-based authentication

The UsrCustomConfigurationService custom web service accepts GET requests only.

To set up the request to the custom web service that uses cookie-based authentication:

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15402&anchor=title-1391-1
https://www.creatio.com/trial/creatio

Call a custom web service from Postman | 33

. Go to the request working area in Postman and right-click the name of the Test configuration web service
collection » [Add request].

. Fill out the request fields:

e Set [Request name] to "Configuration web service."

SAVE REQUEST

Requests in Postman are saved in collections (a group of requests).

[
F
i

Request name

Configuration web service

Request description (Qptional)

Descriptions support Markdown

Select a collection or folder to save to:

Cance Save to Test configuration web se...

3. Click [Save to Test configuration web service] to add the request to the collection.

4. Postman selects the GeT method by default. Enter the string of the uUsrCustomConfigurationService custom

web service request in the request field of the Postman workspace toolbar.

Template of the custom web service's URL

[Creatio application URL]/@/rest/UsrCustomConfigurationService/GetContactIdByName?Name=[Conta

Example of the custom web service's URL

http://mycreatio.com/creatio/0/rest/UsrCustomConfigurationService/GetContactIdByName?Name=And

5. Go to the [Headers] tab in the Postman workspace and add the cookies received as a result of the

authorization request to the headers of the custom web service request. Add the cookie name to the [Key]
field and copy the corresponding cookie value to the [Value] field.

© 2023 Creatio. All rights reserved.

Call a custom web service from Postman | 34

£

_— §)) Creatio Environment A & ==
B Authentication L] GET Configuration web service L] T ooo

o » Configuration web service

Examples 0 ¥
[=]=)

GET v http:/{mycreatio.com/creatio/0/rest/UsrCustomConfigurationService/GetContactldByName?Name=Andrev m Save ¥

Params @ Authorization Headers (11) Eody Pre-request Script Tests Settings

Headers @ 7 hidden

KEY VALUE DESCRIPTION *** BulkEd Presets -
BPMLOADER dgnu3suigkotugmyqd30hmlw

ASPXAUTH B2B9181BF4568C4C6FI8960C82CE43200BB2A5C...

UserMName B3W7CN7H7CT12%7C101%7C114%7C118%7C1 0.

BPMCSRF wédzrCxpurkdUfF2As2cpkbe

Q, Find and Replace Fd Console = Bootcamp Build Brows

=
&
B

5. Execute the request to the custom web service that uses
cookie-based authentication

Click [Send] on the workspace toolbar to execute a request from Postman.

Outcome of the example

As a result, Postman will receive a response that contains a JSON object. View the response body on the
Postman Body tab.

If Creatio finds the contact from the name parameter in the database, the GetContactIdByNameResult property wil
return the contact ID value.

© 2023 Creatio. All rights reserved.

L)

E Authentication L] GET Configuration web service L] - oo
o » Configuration web service

<[]

Call a custom web service from Postman | 35

Creatio Environment

BuD | & &

Examples 0 ~

v hup://mycreatio.com/creatio/0/rest/UsrCustomConfigurationService/GetContactldByName?Name=Andr m Save -

GET
Params @ Authorization Headers (11) Body Pre-request Script Tests Settings Cookies Code
Query Params
KEY VALUE DESCRIPTION *** Bulk Edit
MName Andrew¥20Baker
Body (Cookies (5) Headers (9) Test Results @ Status: 200 0K Time: 12635 Size: 3646 Save Response v
Pretty Raw Preview Visualize J50N - 5 m Q
1 il I
2 "GetlontactIdByNameResult": “"cded336c-3edb-4@fe-8b82-5632470472b4"
3 I
Q, Find and Replace] Console =" Bootcamp Build Browse lE‘ ':?:'

If Creatio finds no contacts from the nName parameter in the database, the
return an empty string.

© 2023 Creatio. All rights reserved.

GetContactIdByNameResult property wil

	Table of Contents
	Custom web services
	Develop a custom web service
	Develop a custom web service that uses cookie-based authentication
	Develop a custom web service that uses anonymous authentication
	Develop a custom web service that uses anonymous authentication for .NET Framework
	Develop a custom web service that uses anonymous authentication for .NET Core

	Call a custom web service
	Call a custom web service from the browser
	Call a custom web service that uses cookie-based authentication from the browser
	Call a custom web service that uses anonymous authentication from the browser

	Call a custom web service from the front-end

	Migrate an existing custom web service to .NET Core

	Develop a custom web service that uses cookie-based authentication
	1. Create a Source code schema
	2. Create a service class
	3. Implement the class method
	Outcome of the example

	Develop a custom web service that uses anonymous authentication
	1. Create a Source code schema
	2. Create a service class
	3. Implement the class method
	4 Register the custom web service that uses anonymous authentication
	5. Enable both HTTP and HTTPS support for the custom web service that uses anonymous authentication
	6. Enable all users to access the custom web service that uses anonymous authentication
	7. Restart Creatio in IIS
	Outcome of the example

	Call a custom web service from the front-end
	1. Create a custom web service
	2. Create a replacing contact record page
	3. Add the button to the contact record page
	Outcome of the example

	Call a custom web service from Postman
	1. Create a request collection
	2. Set up an authentication request
	3. Execute the authentication request
	4 Set up the request to the custom web service that uses cookie-based authentication
	5. Execute the request to the custom web service that uses cookie-based authentication
	Outcome of the example

