
Debugging
Front-end debugging
Version 7.18



This documentation is provided under restrictions on use and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this documentation, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you
find any errors, please report them to us in writing.

© 2023 Creatio. All rights reserved.



4

4

4

5

5

10

13

Table of Contents

Front-end debugging

Integrated debugging tools

Scripts and breakpoints

Manage front-end debugging

Browser console actions

Front-end debugging mode isDebug

Debug the server code

Table of Contents | 3

© 2023 Creatio. All rights reserved.



Front-end debugging
 Advanced

Front-end debugging is debugging of Creatio front-end implemented in configuration element schemas of the
[ Client module ] type. Learn more in a separate article: Client module.

Integrated debugging tools
Debug the front-end from the browser directly. To do this, use integrated developer tools provided by all
supported browsers. All browsers provide similar debugging tools. Learn more in the official Google Chrome
documentation, official Microsoft Firefox documentation, official Microsoft Edge documentation, and official Apple
Safari documentation.

You can open the debugging tools in the following ways:

Scripts and breakpoints
The development tools let you view the complete list of scripts that are connected to the page and downloaded to
the client. You can set a breakpoint wherever you want the code to stop.

To set a breakpoint:

You can also set a conditional breakpoint which lets you set acondition that triggers the breakpoint.

Use the debugger  command to suspend the execution of a script directly from the code.

Example that suspends the execution of a script from the code

Press F12  or Ctrl+Shift+I  in Google Chrome

Press F12  in Microsoft Firefox

Press F12  in Microsoft Edge

Find the needed script file (you can do it by pressing Ctrl+O  or Ctrl+P ) and open it.1.

Go to the code line to set the breakpoint. For example, you can search for a method by name.2.

Set a breakpoint.

You can set a breakpoint in the following ways:

3.

click the line number

press F9

click [ Add breakpoint ] in the context menu

function customFunc (args) { 
    ... 
    debugger; // <-- Debugger stops here. 

Front-end debugging | 4

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15106
https://developers.google.com/web/tools/chrome-devtools/
https://developer.mozilla.org/en-US/docs/Tools/Tools_Toolbox
https://msdn.microsoft.com/library/bg182326(v=vs.85)
https://developer.apple.com/library/archive/documentation/AppleApplications/Conceptual/Safari_Developer_Guide/Introduction/Introduction.html


You can view the current values of the variables, execute commands, etc. after the code execution is suspended.

Manage front-end debugging
Check the values of the call stack variables after the code execution is suspended. Then, trace code for
fragments where the actual program behavior differs from the expected.

View the browser debugger commands that let you navigate the code step by step in the table below.

Browser debugger commands

Command

Browser

Google Chrome Microsoft
Firefox

Microsoft
Edge

Pause script execution (1) + + +

Step over next function call
(2)

+ + +

Step into next function call (3) + + +

Step out of current function
(4)

+ + +

Deactivate breakpoints (5) + – –

Pause on exceptions (6) + – –

Learn more about the features and commands of the browser navigation bar in the official documentation.

Browser console actions
You can execute the following actions at the browser console:

    ... 
}

call JavaScript commands

display debugging information

display trace information

measure and profile code

Front-end debugging | 5

© 2023 Creatio. All rights reserved.



To do this, use the console  object.

Call JavaScript commands

Display debugging information
The console can display the following debugging information:

To display debugging information, use the corresponding methods of the console  object listed in the table
below.

Methods of the console  object

Method Description

Browser

Google
Chrome

Microsoft
Firefox

Microsoft
Edge

console.log(objectconsole.log(object
[, object, ...])[, object, ...])

Displays comma-separated
parameters at the console.
Required to display various
general-purpose messages.

+ + +

console.info(objectconsole.info(object
[, object, ...])[, object, ...])

Similar to the log()  method,
but displays messages in a

different format. This focuses
attention on their importance.

+ + +

console.warn(objectconsole.warn(object
[, object, ...])[, object, ...])

Displays a warning at the
console.

+ + +

console.error(objectconsole.error(object
[, object, ...])[, object, ...])

Displays an error message at
the console.

+ + + (8+)

The console applies a unique style to each message type.

Open the browser console. To do this, open the [ Console ] tab. To open the [ Console ] tab besides the
debugger, click Esc .

1.

Enter JavaScript commands at the console.2.

Press Enter  to execute the commands.3.

information messages

warnings

error messages

Front-end debugging | 6

© 2023 Creatio. All rights reserved.



The methods of the console  object let you format console messages. You can use special control sequences
(templates) in the message text. The templates are replaced by the corresponding values when displayed. The
values are also transferred to the function in order of appearance.

View the formatting templates for the methods of the console  object in the table below.

Formatting templates for the methods of the console  object

Template Data type Use case

%s%s String console.log("%s is one of the base Creatio products %s",
"Creatio sales", "Creatio");

%d%d , %i%i Number console.log("%s application was originally released in %d",
"Creatio", 2011);

%f%f Float console.log("Pi character is equal to %f", Math.PI);

%o%o DOM element (not
supported by

Microsoft Edge)

console.log("DOM-View of item <body/>: %o",
document.getElementsByTagName("body")[0]);

%O%O JavaScript object
(not supported by
Microsoft Edge,

Microsoft Firefox)

console.log("Object: %O", {a:1, b:2});

%c%c CSS style (not
supported by

Microsoft Edge)

console.log("%cGreen text, %cRed Text on a blue background,
%cCapital letters, %cPlain text", "color:green;", "color:red;

background:blue;", "font-size:20px;", "font:normal;
color:normal; background:normal");

Display trace information
View the browser console methods that let you trace and verify expressions in the table below.

Front-end debugging | 7

© 2023 Creatio. All rights reserved.



Browser console methods that trace and verify expressions

Method Description

Browser

Google
Chrome

Microsoft
Firefox

Microsoft
Edge

console.trace()console.trace() Displays the call stack
from the breakpoint

and calls the method.
The call stack contains

file names, line
numbers, and a count

of trace()  method
calls from the same

breakpoint.

+ + + (11+)

console.assert(expression[,console.assert(expression[,
object, ...])object, ...])

Checks the expression
passed as the 

expression  parameter.
If the expression is
invalid, the console

displays the error along
with the call stack (
console.error() ).

Otherwise, it displays
nothing. This ensures

the code rules are
followed and lets you
verify that the actual

results of code
execution are as

expected. The method
lets you test the

code. If the execution
result is false, an

exception is thrown.

+ + (28+) +

Example that uses the console.assert()console.assert()  method to test results

Measure and profile code
View the browser console methods that let you measure code execution time in the table below.

var a = 1, b = "1"; 
console.assert(a === b, "A is not equal to B");

Front-end debugging | 8

© 2023 Creatio. All rights reserved.



Browser console methods that measure code execution time

Method Description

Browser

Google
Chrome

Microsoft
Firefox

Microsoft
Edge

console.time(label)console.time(label) Activates a millisecond
counter that has the label

tag.

+ + + (11+)

console.timeEnd(label)console.timeEnd(label) Stops the millisecond
counter that has the label
tag and displays the results

at the console.

+ + + (11+)

Example that uses the console.time()console.time()  and console.timeEnd()console.timeEnd()  methods

View the browser console methods that let you profile code and display the profiling stack in the table below. The
profiling stack contains detailed information about the time it takes the browser to execute the operation.

var myArray = new Array(); 
/* Activate the counter with Initialize myArray tag. */ 
console.time("Initialize myArray"); 
myArray[0] = myArray[1] = 1; 
for (i = 2; i<10; i++) { 
    myArray[i] = myArray[i-1] + myArray[i-2]; 
} 
/* Deactivate the counter with Initialize myArray tag. */ 
console.timeEnd("Initialize myArray");

Front-end debugging | 9

© 2023 Creatio. All rights reserved.



Browser console methods that measure code execution time

Method Description

Browser

Google
Chrome

Microsoft
Firefox

Microsoft
Edge

console.profile(label)console.profile(label) Runs a JavaScript
profiler, then displays the

result using the label
tag.

+ + (if the
DevTools
panel is
open)

+ (10+)

console.profileEnd(label)console.profileEnd(label) Stops the JavaScript
profiler.

+ + (if the
DevTools
panel is
open)

+ (10+)

The profiling results are displayed in the following browser tabs:

Front-end debugging mode isDebug
The front-end debugging mode isDebug  lets you retrieve detailed information about Creatio errors and track
them in the code.

Browser minifies code in regular mode. This means client scripts are assembled in the all-combined.js  file. The
file is assembled when the assembly is created and contains the entire functionality. If you enable isDebug  mode,
the assembly and minification of *.js files are turned off. Client scripts are displayed as separate files.

Note. Front-end debugging mode affects Creatio performance. For example, it increases the time it takes
to open pages.

To configure front-end debugging mode:

[ Profiles ] in Google Chrome

[ Performance ] in Microsoft Firefox

[ Profiler ] in Microsoft Edge

Identify the current status of the front-end debugging mode. To do this, press F12  or Ctrl+Shift+I  in Google
Chrome.

Besides the status of the front-end debugging mode, the console displays a code to activate or deactivate it.

1.

Front-end debugging | 10

© 2023 Creatio. All rights reserved.

https://en.wikipedia.org/w/index.php?title=Minification_(programming)&oldid=1113989255


Creatio displays a Debug  indicator next to the version number after you turn on front-end debugging mode.

View the examples that display error information in the console when isDebug  mode is turned on and off on the
figures below.

Enable front-end debugging mode.

You can enable front-end debugging mode in the following ways:

2.

Run code below at the browser console:

Terrasoft.SysSettings.postPersonalSysSettingsValue("IsDebug", true)

Change the value of the [ Debug mode ] ( isDebug  code) system setting.

Refresh the page or press F5  to apply the changes.3.

Front-end debugging | 11

© 2023 Creatio. All rights reserved.



Error information ( isDebug  is turned off)

Error information ( isDebug  is turned on)

Front-end debugging | 12

© 2023 Creatio. All rights reserved.



Debug the server code
 Easy

To check the current status of the client debugging mode, open the browser console by pressing the F12 key or
pressing Ctrl+Shift+I. Aside from the current status of the client debugging mode, the console will display the
code to enable or disable debugging.

Debug the server code | 13

© 2023 Creatio. All rights reserved.



You can enable the client debugging mode using the following methods:

To apply the changes, refresh the page or hit F5.

Upon activating the client debugging mode, you will see the Debug indicator next to the site’s version number.

Note. Enabling the client debugging mode will affect site performance. For instance, it can increase the
time needed for the pages to load.

Execute the following code in the browser console

Terrasoft.SysSettings.postPersonalSysSettingsValue("IsDebug", true)

Change the value of the [Debug mode] system setting.

Debug the server code | 14

© 2023 Creatio. All rights reserved.



The figures below show examples of errors displayed in the console with the ‘isDebug’ mode disabled and
enabled.

Displaying an error (‘isDebug’ disabled)

Displaying an error (‘isDebug’ enabled)

Debug the server code | 15

© 2023 Creatio. All rights reserved.



Debug the server code | 16

© 2023 Creatio. All rights reserved.


	Table of Contents
	Front-end debugging
	Integrated debugging tools
	Scripts and breakpoints
	Manage front-end debugging
	Browser console actions
	Call JavaScript commands
	Display debugging information
	Display trace information
	Measure and profile code

	Front-end debugging mode isDebug

	Debug the server code

