
Telephony integration (CTI)
Version 7.18

This documentation is provided under restrictions on use and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this documentation, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you
find any errors, please report them to us in writing.

© 2021 Creatio. All rights reserved.

4

4

6

9

9

14

14

15

16

16

17

17

18

18

18

20

Table of Contents

Telephony integration basics

Phone integration methods in Creatio

Interaction between the phone connectors and Creatio

Integration with Oktell

Oktell.js

Integration with Webitel

Interaction of components

Examples of CtiPanel, CtiModel and WebitelCtiProvider interaction

Webitel list of ports

Webitel events

Integration with Asterisk

Set up the configuration file of the Messaging Service to integrate Asterisk to Creatio

Ports for Asterisk integration with Creatio

The Terrasoft Messaging Service for Asterisk integration with Creatio

Example of CtiModel, Terrasoft Messaging Service and Asterisk Manager API interaction

Asterisk events

Table of Contents | 3

© 2021 Creatio. All rights reserved.

Telephony integration basics
 Advanced

Creatio can be integrated with a number of automatic telephone exchanges (Private Branch Exchange, PBX),
which enables users to manage calls directly in Creatio UI. Phone integration functions are available in the form of
a CTI (Computer Telephony Integration) panel, as well as the [Calls] section. Standard CTI panel functions:

All calls made or received are stored in the [Calls] section. In this section, you can view when a call was started,
when it ended and how long the call was; as well as the list of system records connected to the call.

By default, Creatio cloud has a function for making calls between system users without using any additional
software.

Depending on the integrated phone system and specifics of its API (Application Programming Interface), different
architectural mechanisms are used. The API also affects available phone integration functions. For example, the
call playback function is not available for all phone systems, the web phone is available when integrating with
Webitel, etc. Regardless of the phone integration mechanism being used, the CTI panel interface remains the
same for all Creatio users.

Phone integration methods in Creatio
There are two types of integration methods: first party and third party integrations.

In a first party integration each user has a separate integration connection. Phone system events are handled
as part of that connection.

For a third party integration, a single connection to the prone system server is used for handling phone system
events for all users. In a third party integration an intermediate Messaging Service link is used for distributing
information streams for all users.

JavaScript adapter on the client side
When integrating with JavaScript adapter on the client side, the work with the prone system is done directly from
a web browser. Interactions with the phone system and JavaScript-library, usually supplied by the prone system
manufacturer, is done through the phone system API. The library broadcasts events and accepts execution
commands using JavaScript. In the context of this integration, the Creatio page interacts with the application
server for authentication using the HTTP(S) protocol.

Displaying incoming calls with contact/account identification by the subscriber's phone number.

One-click calls initiated from Creatio UI.

Call management (reply, place on hold, end or transfer call).

Displaying call history for managing connections of calls to various system records and call follow-up.

Telephony integration basics | 4

© 2021 Creatio. All rights reserved.

https://en.wikipedia.org/wiki/Telephone_exchange#Early_automatic_exchanges
https://en.wikipedia.org/wiki/Business_telephone_system#Private_branch_exchange
https://en.wikipedia.org/wiki/Computer_telephony_integration
https://en.wikipedia.org/wiki/Application_programming_interface

This integration method can be used with a first party phone system API, such as Webitel, Oktell, Finesse. Webitel
and Oktell connectors use WebSocket as connection protocol, while the Finesse connector uses long-polling http
queries.

The advantage of the first party integration method is that it does not require any additional nodes, such as
Messaging Service. Using an integration library, the CTI panel connects directly to the phone system server API
from a browser on the user's PC.

For incoming calls the phone server passes the new call start event and call parameters through WebSocket to
the client integration library. When receiving a new call command, the library generates the RingStarted event
that is passed to the application page.

For incoming calls, client part generates the call start command that is passed through WebSocket to the phone
integration server.

Terrasoft Messaging Service on the server side
If integrating with Terrasoft Messaging Service (TMS) on the server side, all phone integration events pass
through TMS, which interacts with the phone system through the manufacturer's library. The library interacts
with the phone system through the API. TMS also interacts with the Creatio application server for executing
query for saving call information in the database using HTTP(S). Interaction with a client application, such as
passing events and receiving commands, is done via WebSocket. In case of integration with JavaScript adapter
on the client side, Creatio page interacts with the application server for authentication, using HTTP(S).

Telephony integration basics | 5

© 2021 Creatio. All rights reserved.

https://en.wikipedia.org/wiki/WebSocket
https://www.pubnub.com/blog/2014-12-01-http-long-polling/

This integration method applies to third party phone system API (TAPI, TSAPI, New Infinity protocol, WebSocket
Oktell). This integration type requires Messaging Service – a Windows proxy service that works with the phone
system adapter library. The Messaging Service is a universal phone system library hoster, such as Asterisk,
Avaya, Callway, Ctios, Infinity, Infra, Tapi. When receiving client messages, the Messaging Service automatically
connects used Creatio library and initiates connection to phone system. The Messaging Service is essentially a
functional wrapper for those phone integration connectors that do not support client integration for interacting
with phone functions in browsers (event generation and handling, data transfer). A user's PC conducts two types
of communication:

For incoming calls the phone system passes the new call start event and call parameters through the adapter
library. When receiving a new call command, the Messaging Service generates the RingStarted event that is
passed to the client.

For an outgoing calls, the client generates a call start command, which is passed via WebSocket to the Messaging
Service, which generates an outgoing call message for the phone system.

Interaction between the phone connectors and Creatio
All connectors interact with configuration through the CtiModel class. It handles the events received from the
connector.

HTTP connection with Creatio application server for authentication with host on which the Messaging Service is
installed;

WebSocket connection for working directly with phone integration.

Telephony integration basics | 6

© 2021 Creatio. All rights reserved.

The list of supported class events is provided in table.

Supported events of the CtiModel class

Telephony integration basics | 7

© 2021 Creatio. All rights reserved.

Event Description

initialized Triggered on completion of provider initialization.

disconnected Triggered on provider disconnection.

callStarted Triggered at the start of a new call.

callFinished Triggered after call completion.

commutationStarted Triggered after establishing call connection.

callBusy Triggered on changing call status to "busy" (TAPI only).

hold Triggered after placing call on hold.

unhold Triggered after resuming a call.

error is triggered on errors.

lineStateChanged Triggered after changing available operations for a line or a call.

agentStateChanged Triggered on changing the agent status.

activeCallSnapshot Triggered on updating the list of active calls.

callSaved Triggered after creating or updating a call in the database.

rawMessage Generic provider event. Triggered on any provider event.

currentCallChanged Triggered on changing the main call. For example, primary call ends during a
consultation.

callCentreStateChanged Triggered if an agent enters or exits Call center mode.

callInfoChanged Triggered on modifying a call data by database Id.

dtmfEntered Triggered if Dtmf signals were sent to the phone line.

webRtcStarted Triggered on a webRtc session start.

webRtcVideoStarted Triggered on a webRtc video stream session start.

webRtcDestroyed Triggered on a webRtc session end.

Telephony integration basics | 8

© 2021 Creatio. All rights reserved.

Integration with Oktell
 Advanced

Oktell integration with Creatio is implemented on the client level using the oktell.js library. The oktell.js source code
is located in the OktellModule configuration schema of the CTIBase package.

The Oktell server communicates with phones and with the end clients (browsers). With this integration method
Creatio does not requires its own WebSocket server. Each client connects via the WebSocket Protocol directly to
the Oktell server. The Creatio application server creates pages and provides data from the application database.
There is no direct relationship between Creatio and Oktell server. Access is not required, so customers process
and combine the data of the two systems independently. The Oktell web client and the oktell.js plugin, embedded
in other projects, are implemented according to this principle.

Oktell.js
Oktell.js is a javascript library for embedding the functionality of the call control in a CRM system. Oktell.js uses
the Oktell WebSocket Protocol to connect to the Oktell server. The advantage of this Protocol is the establishing
of a permanent asynchronous connection to the server, which enables you to receive events from the server
Oktell and execute certain commands. Because the Oktell WebSocket protocol is quite complicated to implement,
the Oktell.js wraps the WebSocket Protocol methods inside itself thus providing simple management functionality.

Voice transmission between subscribers

Integration with Oktell | 9

© 2021 Creatio. All rights reserved.

In a conversation between the oktell and Creatio operators, voice is transmitted via the Session Initiation Protocol
(SIP). This requires that either the VoIP phone or the Softphone operator be installed on your computer.

Interaction of components
The interaction with the oktell.js library is executed via the OktellCtiProvider class, which is a link between CtiModel
and OktellModule that contains the oktell.js code. The OktellCtiProvider class implements the BaseCtiProvider
interface class.

Examples of interaction between CtiModel, OktellCtiProvider and OktlellModule:

Operator outgoing call to a subscriber: putting a call on hold, putting off hold by a subscriber and finishing the call by the operator

Integration with Oktell | 10

© 2021 Creatio. All rights reserved.

https://en.wikipedia.org/w/index.php?title=Session_Initiation_Protocol&oldid=964300808
https://en.wikipedia.org/w/index.php?title=VoIP_phone&oldid=963383604
https://en.wikipedia.org/w/index.php?title=Softphone&oldid=963028570
https://academy.creatio.com/jscoresdk/#!/api/Terrasoft.integration.telephony.oktell.OktellCtiProvider

Incoming call of a subscriber 1 to an operator with a consultation call to subscriber 2 with the subsequent connection of the subscriber 1
and subscriber 2 by the operator

Integration with Oktell | 11

© 2021 Creatio. All rights reserved.

The list of supported oktell.js class library events is listed in table.

The list of supported oktell.js class library events

Integration with Oktell | 12

© 2021 Creatio. All rights reserved.

Event Description

connect Successful connection to server event.

connectError Connection to server error in the connect method event. Error codes are the
same as for the callback function of the connect method.

disconnect Server connection closing event. The object describing the reason of the
disconnection is passed to the callback function.

statusChange Agent status change event. Two string parameters are passed to the callback
function — the new and previous state.

ringStart Incoming call start event.

ringStop Incoming call stop event.

backRingStart Returning call start event.

backRingStop Returning call stop event.

callStart Outgoing call start event.

callStop Call UUID change event.

talkStart Conversation start event.

talkStop Conversation stop event.

holdAbonentLeave Caller hold leave event The abonent object is passed to the callback function with
information on the caller.

holdAbonentEnter Caller hold enter event The abonent object is passed to the callback function with
information on the caller.

holdStateChange Hold status change event. The information on the hold is passed to the hold
function.

stateChange Line status change event.

abonentsChange Current abonents list change event.

flashstatechanged Hold status change low-level event.

userstatechanged User status change low-level event.

Integration with Oktell | 13

© 2021 Creatio. All rights reserved.

Integration with Webitel
 Advanced

Webitel integration is implemented in the form of separate Creatio modules. Modules in the integration include:

The WebitelCore package — modules that contain low-level interactions with Webitel using the Verto module and
the CTI panel on the Creatio application page.

The WebitelCollaborations package implements basic interfaces for working with Webitel in Creatio. The package
contains the WebitelCtiProvider module, the WebitelCtiProvider class, Webitel connector, the connection
parameters settings page, the lookup to edit Webitel users directly in Creatio.

Detailed information about Webitel architecture can be found in the documentation.

Interaction of components
The WebitelCtiProvider class (the heir of the Terrasoft.BaseCtiProvider class) implements the required
interaction between CtiModel and the Webitel low-level global object (the WebitelCore.WebitelModule.js module).

The integration is as follows. If a user has set the system setting of the Webitel integration library,
CtiProviderInitializer loads the WebitelCtiProvider module. Next, it calls the init method in WebitelCtiProvider ,
which carries out the user login in the telephony session (the LogInMsgServer of the MsgUtilService.svc service).
If the login was successful, the connect method is invoked, which verifies that you don't have an existing
connection (the this.isConnected property is set to false and this.webitel — to empty). After that, the
connect method requests the connection settings to Webitel that are stored in the system settings of the
webitelConnectionString and webitelWebrtcConnectionString.

Integration with Webitel | 14

© 2021 Creatio. All rights reserved.

http://webitel.com/
https://docs.webitel.com/pages/viewpage.action?pageId=9961512

After receiving the system settings, the user settings are received from the [Webitel users] lookup by using the
GetUserConnection method of the WUserConnectionService customer service. After receiving the user settings,
the WebitelModule and WebitelVerto are loaded if the [Use web phone] checkbox is selected in the user settings.
Next, the onConnected method is called that creates the Webitel global object, in which properties are populated
with the connection settings. The subscription to Webitel object events occurs and the connect method is
invoked, which performs connection via WebSocket, authorization of Webitel and other low-level connection
operations. When the onConnect event occurs, the connection is considered successful and the user can work
with calls. During the connector operation, WebitelCtiProvider reacts to Webitel object events, processes
them, and optionally generates connector events described in the Terrasoft.BaseCtiProvider class. To manage
calls, WebitelCtiProvider implements abstract methods of the Terrasoft.BaseCtiProvider class by using the
Webitel object methods.

Examples of CtiPanel, CtiModel and WebitelCtiProvider
interaction
Outgoing call to a subscriber: putting a call on hold, taking a call off hold by a subscriber and finishing a call.

Integration with Webitel | 15

© 2021 Creatio. All rights reserved.

Webitel list of ports

Webitel events

871 — the WebSocket port for the Webitel server and receiving events.

5060 and 5080 — signal ports for SIP phones and telephony providers.

5066 — the port for the Web phone and WebRTC signal port.

4004 — the port for receiving call records.

Integration with Webitel | 16

© 2021 Creatio. All rights reserved.

Event Description

onNewCall New call start event.

onAcceptCall Accept call event.

onHoldCall Call hold event.

onUnholdCall Call Unhold event.

onDtmfCall Tone dialing event.

onBridgeCall Connection to channel event.

onUuidCall Call UUID change event.

onHangupCall Call stop event.

onNewWebRTCCall New WebRTC session event.

Integration with Asterisk
 Advanced

Use AMI (Asterisk Manager Interface) to interact with the Asterisk server. The API enables client programs to
connect to Asterisk server by using TCP/IP protocol. The Application Programming Interface enables you to
process events in the digital multiplex system (DMS), and send commands to control calls.

Note. Currently the integration of Creatio with Asterisk is supported up to version 13.

A client uses a simple text protocol for communication between the Asterisk and the connected Manager API:
"parameter: value". The end of a string is determined by the sequence of Carriage Return and Line Feed (CRLF).

Note.In the future, for a set of strings like "parameter: value", followed by a blank line containing only a
CRLF, for simplicity the term "package" will be used.

Set up the configuration file of the Messaging Service to
integrate Asterisk to Creatio
For integration to work with Creatio, you need to install Terrasoft Messaging Service (TMS) on a dedicated
computer that will be used as the integration server. You must set the following parameters for Asterisk in the
Terrasoft.Messaging.Service.exe.config configuration file:

Integration with Asterisk | 17

© 2021 Creatio. All rights reserved.

https://wiki.asterisk.org/wiki/pages/viewpage.action?pageId=4817239
http://www.asterisk.org/
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Carriage_return

Parameters for Asterisk

Ports for Asterisk integration with Creatio

The Terrasoft Messaging Service for Asterisk integration with
Creatio
The integration part of the Messaging Service is implemented in the main Creatio solution kernel in the
Terrasoft.Messaging.Asterisk library.

Library main classes:

Example of CtiModel, Terrasoft Messaging Service and
Asterisk Manager API interaction
Operator outgoing call to a subscriber: putting a call on hold, putting off hold by a subscriber and finishing the
call by the operator.

The order of events during a call for the current example:

<asterisk filePath="" url="Name_or_address_of_Asterisk_server" port="Asterisk_server_port"
 userName="Asterisk login" secret="Asterisk password" originateContext="Originate context" parkingLotContext="Parking lot context"
 autoPauseOnCommutationStart="true" queueExtensionFormat="Local/{0}@from-queue/n" asyncOriginate="true" sendRingStartedOnRingingState="true"
 traceQueuesState="false" packetInfoConfig="Additional package parameters to be processed in configuration" />

TMS accepts WebSocket connection to the 2013 port via TCP.

TMS connects to the Asterisk server by default via the 5038 port.

AsteriskAdapter — an Asterisk class that transforms events to the top-level call model events used in Creatio
integration.

AsteriskManager — a class that creates and deletes user connections to the Asterisk server.

AsteriskConnection — a class that represents the user connection for integration with Asterisk.

AsteriskClient — a class used to send commands to the Asterisk server.

Integration with Asterisk | 18

© 2021 Creatio. All rights reserved.

The table shows an example of event processing including how the event data is interpreted by TMS and which
values from the listed events are used when processing an incoming call.

Asterisk log TMS Action Client

A channel is created and added to
a collection

Search for the channel by
<unique_id> and generate an
event by using the fireEvent
method.

PutHoldAction Processing the
PutHoldAction and
displaying the call on
hold.

{
 Event: newchannel
 Channel: <channel_name>
 UniqueID: <unique_id>
}

new AsteriskChannel({
 Name: <channel_name>,
 UniqueId: <unique_id>
});

{
 Event: Hold
 UniqueID: <unique_id>
 Status: "Off"
}

Integration with Asterisk | 19

© 2021 Creatio. All rights reserved.

Search for the channel by
<unique_id> and generate an
event by using the fireEvent
method.

EndHoldAction Processing the
EndHoldAction and
displaying the call on
hold.

Search for the channel by
<unique_id> and generate an
event by using the fireEvent
method.

RingFinished Processing event and
displaying the call end.

Search for the channel by
<unique_id>, fill in the data and
generate an event by using the
fireEvent method.

RingStarted Processing the
RingStarted

and displaying it on
the outgoing call
panel.

Search for the channel by
<unique_id> and generate an
event by using the fireEvent
method.

CommutationStarted Processing the
CommunicationStarted
event and displaying
the communication.

 Clicking the "Answer"
button initiates a new
event in Asterisk.

Asterisk log TMS Action Client

Asterisk events
A detail list of events and information about their parameters is described in the Asterisk documentation.

}

{
 Event: Hangup
 UniqueID: <unique_id>
}

{
 Event: Dial
 SubEvent: Begin
 UniqueID: <unique_id>
}

{

Event: Dial

SubEvent: Begin

UniqueID: <unique_id>

}

{
 Event: Bridge
 UniqueID: <unique_id>
}

Integration with Asterisk | 20

© 2021 Creatio. All rights reserved.

https://wiki.asterisk.org/wiki/display/AST/Asterisk%2011%20AMI%20Events

Integration with Asterisk | 21

© 2021 Creatio. All rights reserved.

	Table of Contents
	Telephony integration basics
	Phone integration methods in Creatio
	JavaScript adapter on the client side
	Terrasoft Messaging Service on the server side

	Interaction between the phone connectors and Creatio

	Integration with Oktell
	Oktell.js
	Voice transmission between subscribers
	Interaction of components

	Integration with Webitel
	Interaction of components
	Examples of CtiPanel, CtiModel and WebitelCtiProvider interaction
	Webitel list of ports
	Webitel events

	Integration with Asterisk
	Set up the configuration file of the Messaging Service to integrate Asterisk to Creatio
	Ports for Asterisk integration with Creatio
	The Terrasoft Messaging Service for Asterisk integration with Creatio
	Example of CtiModel, Terrasoft Messaging Service and Asterisk Manager API interaction
	Asterisk events

