
Page customization
Version 8.0

This documentation is provided under restrictions on use and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this documentation, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you
find any errors, please report them to us in writing.

© 2023 Creatio. All rights reserved.

6

6

7

7

7

10

12

13

14

15

17

18

18

19

19

20

20

21

23

23

24

26

27

27

30

32

33

33

33

34

35

35

38

40

41

41

Table of Contents

Freedom UI page customization basics

Page customization procedure

Close the WebSocket when destroying the View of the model

Manage the system setting values on a page

1. Set up page UI

2. Manage system setting values

Outcome of the example

Change where the query handler is invoked on the page

1. Set up page UI

2. Change the origin of the query handler call

Outcome of the example

Customize page fields

Customize the field display condition

Set up a condition that locks the field

Set up a field population condition

Set up a field requirement condition

Implement field value validation

Implement field value conversion

Set up the display condition of a field on a page

1. Set up the page UI

2. Set up the field display condition

Outcome of the example

Set up the condition that locks the field on a page

1. Set up the page UI

2. Set up the condition that locks the field

Outcome of the example

Set up the condition that populates a field on a page

1. Set up the page UI

2. Set up the condition that populates the field

Outcome of the example

Set up the requirement condition of a field on a page

1. Set up the page UI

2. Set up the condition that makes the field required

Outcome of the example

Implement the field value validation on a page

1. Set up the page UI

Table of Contents | 3

© 2023 Creatio. All rights reserved.

41

43

43

44

44

45

45

46

47

48

50

51

52

52

53

55

56

56

57

57

58

59

60

61

61

62

63

64

65

65

66

66

67

70

71

71

71

73

74

2. Set up the field validation

Outcome of the example

Implement the field value conversion on a page

1. Set up the page UI

2. Set up the field value conversion

Outcome of the example

Display the value of a system variable

Display the values of system variables on a page

1. Set up the page UI

2. Set up the retrieval of system variable values

Outcome of the example

Send a web service request and handle the response

Send a request to an external web service and handle its result on a page

1. Set up the page UI

2. Send the web service request and handle its results

Outcome of the example

Hide functionality on a page

Hide functionality during development

Hide functionality due to insufficient access permissions

Hide a feature at the development stage on a page

1. Set up the page UI

2. Hide the feature at the development stage

Outcome of the example

Hide the feature on a page due to insufficient access permissions

1. Set up the page UI

2. Hide the feature if the user lacks permission to access it

Outcome of the example

Open a page from a custom handler

Open a record page from a custom handler

Open a Freedom UI page from a custom handler

Open a record page from a custom handler

1. Set up the UI of the pages

2. Set up the way record pages open

Outcome of the example

Open a Freedom UI page from a custom handler

1. Set up the page UI

2. Set up the way the Freedom UI page opens

Outcome of the example

Custom UI component based on a classic Creatio page element

Table of Contents | 4

© 2023 Creatio. All rights reserved.

74

75

76

77

78

82

83

84

85

86

1. Create a custom component

2. Add the custom component to the Freedom UI page

Implement a custom component based on a classic Creatio page

1. Create an app

2. Create a custom web component

3. Add the custom web component to the Freedom UI page

Outcome of the example

Set up a custom action menu for list and list records

Set up a custom action menu

Close the WebSocket when destroying the View of the model

Table of Contents | 5

© 2023 Creatio. All rights reserved.

Freedom UI page customization basics
 Beginner

Configure the business logic of Freedom UI pages in the validators , converters , and handlers sections of the
client schemas. We recommend using no-code tools to set up business logic. Learn more in the user
documentation: Freedom UI Designer. If no-code tools are not sufficient to implement your customization, we
recommend setting up business logic in the source code of the Freedom UI page schema. Learn more about
creating a Freedom UI page in a separate article: Client module.

For example, you can use a Freedom UI page to implement the following business logic:

Learn more about pages in a separate article: Freedom UI page.

Page customization procedure

Query handlers are the preferred way to customize the page. Query handlers are items of the HandlerChain
mechanism that lets you describe business logic as an action request and chain of handlers. You can manage
data sources using the handlers schema section. Query examples: page readiness, data load and save, business
process launch.

Creatio 8 Atlas lets you organize query handlers in event chains. For example, trigger the base Creatio save
handler first and execute the custom page logic later upon the page saver query.

element visibility

element locking

element requirement

element filtering

field population

Creatio data querying

HTTP request sending

page navigation

Set up an app page.1.

Create a custom app. To do this, follow the procedure in the user documentation: Create a custom app.a.

Add one or more elements whose business logic to set up. To do this, follow the procedure in the user
documentation: Set up the app UI.

b.

Set up the business logic of a page item.

Configure the business logic in the client schema of the Freedom UI page. To open the client module
schema, click the button on the action panel of the Freedom UI Designer on the corresponding page.

The source code of the Freedom UI page opens after you save the page settings. Perform the setup in the
corresponding client schema sections of the Freedom UI page Learn more in a separate article: Client schema.

2.

Freedom UI page customization basics | 6

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=2376
https://academy.creatio.com/documents?id=15106&anchor=title-3028-10
https://academy.creatio.com/documents?id=15346
https://academy.creatio.com/documents?id=2377
https://academy.creatio.com/documents?id=2379&anchor=title-3712-2
https://academy.creatio.com/documents?id=15342

To limit the scope of a query handler, fill out the scopes property of the client module with the names of the
client schemas for which the handler must work.

View detailed examples of handler invocation in a separate block: Examples.

Close the WebSocket when destroying the View of the model
To close the WebSocket when destroying the View of the model, add a custom implementation of the
crt.HandleViewModelDestroyRequest system query handler to the handlers schema section. The handler is
executed when the View of the model is destroyed (for example, when you open another page). Designed to
destroy resources. We do not recommend writing asynchronous code in the handler (server calls, timeouts, etc.)
except for reading the value of attributes.

View an example of the crt.HandleViewModelDestroyRequest query handler that closes the custom SomeWebSocket
WebSocket below.

handlers schema section

Manage the system setting values on a
page

 Medium

Example. Display the following on the record page of the [Requests] custom section:

Use the values of custom system settings.

1. Set up page UI

User’s city.

The number of the last created record in the [Requests] section, increased by 1. Increase the number
when creating a new request or copying an existing one.

Create a custom Requests app based on the [Records & business processes] template. To do this, follow the
procedure in the user documentation: Create a custom app.

1.

Add a system setting that stores the request number.2.

Click [Run app] on the Requests app page.a.

Click to open the System Designer. Click [System settings] in the [System setup] block.b.

Click [Add setting] on the section toolbar.c.

Fill out the system setting properties:d.

Set [Name] to "Request number."

Set [Code] to "UsrRequestLastNumber."

Manage the system setting values on a page | 7

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/docs/developer/front_end_development_freedom_ui/page/page_customization
https://academy.creatio.com/documents?id=2377

Select "Integer" in the [Type] property.

Set [Default value] to "0."

Add a system setting that stores the city name.3.

Click [Add setting] on the section toolbar.a.

Fill out the system setting properties:b.

Set [Name] to "City."

Set [Code] to "UsrDefaultCity."

Select "Lookup" in the [Type] property.

Select "City" in the [Lookup] property.

Select "New York" in the [Default value] property.

Go to the Requests app page and open the [Requests form page] page in the workspace.

The [Requests form page] page includes the [Name] field by default.

4.

Add a request number label.5.

Add a [Label] component to the Freedom UI Designer’s workspace.a.

Click the button on the Freedom UI Designer’s action panel and fill out the title’s properties in the

setup area:

b.

Set [Text] to "Request number."

Manage the system setting values on a page | 8

© 2023 Creatio. All rights reserved.

Select "Caption" in the [Style] property.

Select the grey color in the [Text color] property.

Add the following labels the same way:

View the label properties to add in the table below.

6.

The value of the system setting that stores the request number.

Cities.

The value of the city system setting.

Manage the system setting values on a page | 9

© 2023 Creatio. All rights reserved.

2. Manage system setting values
Configure the business logic in the Client Module Designer. In this example, configure how to manage system
settings values.

Label property values

Element Property Property
value

A label that contains the value of the system setting that
stores the request number.

[Text] "Request
number
(value)"

[Style] Select "Body
text"

City label

[Text] "City"

[Style] Select
"Caption"

[Text
color]

Select the
grey color

A label that contains the value of the city system setting.

[Text] "City
(value)"

[Style] Select "Body
text"

Click the button on the Freedom UI Designer’s action bar. The source code of the Freedom UI page

opens after you save the page settings.

7.

Enable the sdk.SysSettingsService system setting service. To do this, add the @creatio-devkit/common
dependency to the AMD module.

AMD module dependencies

1.

/* AMD module declaration. */
define("UsrAppRequests_FormPage", /**SCHEMA_DEPS*/["@creatio-devkit/common"] /**SCHEMA_DEPS*/, function/**SCHEMA_ARGS*/(sdk)/**SCHEMA_ARGS*/ {
 return {
 ...
 };
});

Manage the system setting values on a page | 10

© 2023 Creatio. All rights reserved.

Add the following attributes to the viewModelConfig schema section:

viewModelConfigviewModelConfig schema section

2.

UsrDefaultCity . Stores data about the value of the UsrDefaultCity system setting.

UsrRequestLastNumber . Stores data about the value of the UsrRequestLastNumber system setting.

viewModelConfig: /**SCHEMA_VIEW_MODEL_CONFIG*/{
 "attributes": {
 ...,
 /* The attribute that stores the value of the UsrDefaultCity system setting. */
 "UsrDefaultCity": {},
 /* The attribute that stores the value of the UsrRequestLastNumber system setting. */
 "UsrRequestLastNumber": {}
 }
}/**SCHEMA_VIEW_MODEL_CONFIG*/,

Change the following property values in the viewConfigDiff schema section:

viewConfigDiffviewConfigDiff schema section

3.

caption property for the RequestNumberValue element. Bind the property to the value of the
$UsrRequestLastNumber attribute. The caption property is responsible for the text that the element
contains.

caption property for the CityValue element. Bind the property to the value of the $UsrDefaultCity
attribute.

viewConfigDiff: /**SCHEMA_VIEW_CONFIG_DIFF*/[
 ...,
 {
 "operation": "insert",
 "name": "RequestNumberValue",
 "values": {
 ...,
 /* The property responsible for the text that the element contains. Bound to the UsrRequestLastNumber attribute. */
 "caption": "$UsrRequestLastNumber",
 ...
 },
 ...
 },
 ...,
 {
 "operation": "insert",
 "name": "CityValue",
 "values": {
 ...,

Manage the system setting values on a page | 11

© 2023 Creatio. All rights reserved.

Outcome of the example
To view the outcome of the example when creating a new request:

As a result, the record page of the [Requests] custom section will display:

 /* The property responsible for the text that the element contains. Bound to the UsrDefaultCity attribute. */
 "caption": "$UsrDefaultCity",
 ...
 },
 ...
 }
]/**SCHEMA_VIEW_CONFIG_DIFF*/,

Add a custom implementation of the system query handler to the handlers schema section. Execute the
handler when the View model is initialized.

For Creatio version 8.0.6 and later

For Creatio version 8.0-8.0.5

4.

Instantiate the system value service from @creatio-devkit/common .a.

Retrieve the value of the UsrDefaultCity system setting and write it to the UsrDefaultCity attribute.b.

Retrieve the page state.c.

Retrieve the value of the UsrRequestLastNumber system setting.d.

When creating a new record or copying an existing record, send a query to update the value of the
UsrRequestLastNumber system setting (increase it by 1).

e.

Update the value of the UsrRequestLastNumber attribute.f.

Click [Save] on the Client Module Designer’s toolbar.5.

Go to the Requests app page and click [Run app].1.

Click [New] on the Requests app toolbar.2.

User’s city. The default value of the [City] (UsrDefaultCity code) system setting is used.

The number of the last created record in the [Requests] section, increased by 1. The value of the [Request
number] (UsrRequestLastNumber code) system setting is used. It is increased by 1 when a new request is
created.

Manage the system setting values on a page | 12

© 2023 Creatio. All rights reserved.

To view the outcome of the example when copying an existing request:

As a result, the page of the copied record of the [Requests] custom section will display:

Change where the query handler is invoked
on the page

 Medium

Example. Display the number of the newest section record on the record page of the [Requests] custom
section. Set the number to the custom system setting. Increment the number by 1 after saving the
request page.

Add a [Request’s name] request first.1.

Click → [Copy] in the [Request’s name] request’s row in the record list.2.

User’s city. The default value of the [City] (UsrDefaultCity code) system setting is used.

The number of the last created record in the [Requests] section, increased by 1. The value of the [Request
number] (UsrRequestLastNumber code) system setting is used. It is increased by 1 when an existing request is
copied.

Change where the query handler is invoked on the page | 13

© 2023 Creatio. All rights reserved.

1. Set up page UI
Create a custom Requests app based on the [Records & business processes] template. To do this, follow the
procedure in the user documentation: Create a custom app.

1.

Add a system setting that stores the request number.2.

Click to open the System Designer. Click [System settings] in the [System setup] block.a.

Click [Add setting] on the section toolbar.b.

Fill out the system setting properties:c.

Set [Name] to "Request number."

Set [Code] to "UsrRequestLastNumber."

Select "Integer" in the [Type] property.

Set [Default value] to "1."

Open the [Requests form page] page in the workspace of the Requests app page.

The [Requests form page] page includes the [Name] field by default.

3.

Add a [2 columns] component to the Freedom UI Designer workspace.4.

Add a request number label.5.

Add a component of the [Label] type to the first column of the [2 columns] component of the Freedom
UI Designer.

a.

Click the button on the Freedom UI Designer’s action panel and fill in the label’s properties in the

setup area:

b.

Set [Title] to "Create request."

Select "Caption" in the [Style] property.

Select the gray color in the [Text color] property.

Change where the query handler is invoked on the page | 14

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=2377

2. Change the origin of the query handler call
Configure the business logic in the Client Module Designer. In this example, change the origin of the query
handler call.

Add a title that contains the value of the system setting with the request number.6.

Add a component of the [Label] type to the second column of the [2 columns] component of the
Freedom UI Designer.

a.

Click the button on the Freedom UI Designer’s action panel and fill in the title’s properties in the

setup area:

b.

Set [Title] to "Request number (value)."

Select "Body text" in the [Style] property.

Click the button on the Freedom UI Designer’s action bar. The source code of the Freedom UI page

opens after you save the page settings.

7.

Enable the sdk. SysSettingsService system variable service. To do this, add the @creatio-devkit/common
dependency to the AMD module.

1.

Change where the query handler is invoked on the page | 15

© 2023 Creatio. All rights reserved.

AMD module dependencies

/* AMD module declaration. */
define("UsrAppRequests_FormPage", /**SCHEMA_DEPS*/["@creatio-devkit/common"] /**SCHEMA_DEPS*/, function/**SCHEMA_ARGS*/(sdk)/**SCHEMA_ARGS*/ {
 return {
 ...
 };
});

Add the UsrRequestLastNumber attribute to the viewModelConfig schema section. The attribute stores the value
of the UsrRequestLastNumber system setting.

viewModelConfigviewModelConfig schema section

2.

viewModelConfig: /**SCHEMA_VIEW_MODEL_CONFIG*/{
 "attributes": {
 ...,
 /* The attribute that stores the value of the UsrRequestLastNumber system setting. */
 "UsrRequestLastNumber": {}
 }
}/**SCHEMA_VIEW_MODEL_CONFIG*/,

Bind the caption property of the RequestNumberValue element to the $UsrRequestLastNumber model attribute in
the viewConfigDiff schema section. The caption property is responsible for the text that the element
contains.

viewConfigDiffviewConfigDiff schema section

3.

viewConfigDiff: /**SCHEMA_VIEW_CONFIG_DIFF*/[
 ...,
 {
 "operation": "insert",
 "name": "RequestNumberValue",
 "values": {
 ...,
 /* The property responsible for the text that the element contains. Bound to the UsrRequestLastNumber attribute. */
 "caption": "$UsrRequestLastNumber",
 ...
 },
 ...
 }
]/**SCHEMA_VIEW_CONFIG_DIFF*/,

Add a custom implementation of the crt.SaveRecordRequest system query handler to the handlers schema
section. The handler is called by clicking the [Save] button on the request page toolbar.

4.

Change where the query handler is invoked on the page | 16

© 2023 Creatio. All rights reserved.

Outcome of the example
To view the outcome of the example:

handlershandlers schema section

Complete source code of the page schema

Implement waiting for the execution of the next handler. In this example, it is the handler that saves the
record.

Instantiate the system value service from @creatio-devkit/common after saving the record.

Get the value of the UsrRequestLastNumber system setting.

Send a query to update the value of the UsrRequestLastNumber system setting (increases it by 1).

Update the value of the UsrRequestLastNumber attribute.

Return the result of the saving.

handlers: /**SCHEMA_HANDLERS*/[
 {
 request: "crt.SaveRecordRequest",
 /* Implement the custom query handler. */
 handler: async (request, next) => {
 /* Wait for the next handler (in this case, the handler that saves the record) to execute. */
 const saveResult = await next.handle(request);
 /* Instantiate the system value service from @creatio-devkit/common after saving the record. */
 const sysSettingsService = new sdk.SysSettingsService();
 /* Retrieve the value of the UsrRequestLastNumber system setting. */
 const requestLastNumber = await sysSettingsService.getByCode('UsrRequestLastNumber');
 /* Send a query to update the value of the UsrRequestLastNumber system setting. */
 await sysSettingsService.update({
 code: 'UsrRequestLastNumber',
 /* The new value is larger than the previous one by 1. */
 value: ++requestLastNumber.value
 });
 /* Update the value of the UsrRequestLastNumber attribute. */
 request.$context.UsrRequestLastNumber = requestLastNumber.value;
 /* Return the result of the saving. */
 return saveResult;
 }
 }
] /**SCHEMA_HANDLERS*/,

Click [Save] on the Client Module Designer’s toolbar.5.

Go to the Requests app page and click [Run app]1.

Change where the query handler is invoked on the page | 17

© 2023 Creatio. All rights reserved.

As a result, when you click the [Save] button on the request page toolbar, Creatio will display the number of the
last record created in the [Requests] section, increased by 1. The value is taken from the [Request number] (
UsrRequestLastNumber code) system setting.

Customize page fields
 Beginner

Creatio 8 Atlas provides the following page customization actions:

Customize the field display condition

Click [New] on the Requests app toolbar.2.

Set up a field display condition.

Set up a condition that locks the field.

Set up a field population condition.

Set up a field requirement condition.

Implement field value validation.

Implement field value conversion.

Add a page field to set the display condition at step 1 of the Freedom UI page customization procedure if
needed.

1.

Set up the display condition of the field on the page at step 2 of the Freedom UI page customization
procedure.

2.

Add an attribute that stores data to the viewModelConfig schema section.

Example that adds the SomeAttributeName attribute to the client module schema of the Freedom UI page.

viewModelConfig schema section

a.

Bind the visible property to the corresponding model attribute in the viewConfigDiff schema section.
The value of this attribute controls whether the page displays or hides the field. Describe the business logic
that changes an attribute value in the handlers schema section. The visible property is responsible for

b.

Customize page fields | 18

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15370&anchor=title-3836-1
https://academy.creatio.com/documents?id=15370&anchor=title-3836-1

View a detailed example that sets up the field display condition in a separate article: Set up the display condition of
a field on a page.

Set up a condition that locks the field
This section covers the procedure for setting up a condition that locks the page field in the app’s front-end. To
set up a condition that locks the field in the back-end, follow the procedure in the user documentation:
Access management.

To set up a condition that locks the field in the front-end:

View a detailed example that sets up a condition that locks the field in a separate article: Set up the condition that
locks the field on a page.

Set up a field population condition

the visibility of the field.

View an example that binds the visible property to the $SomeAttributeName attribute below.

viewConfigDiff schema section

Add a custom implementation of the crt.HandleViewModelAttributeChangeRequest system query handler to
the handlers schema section. The handler runs when the value of any attribute changes, including when
loading attribute values from a data source. Depending on the attribute value (true or false), the handler
executes different business logic.

View an example of a crt.HandleViewModelAttributeChangeRequest query handler, whose logic depends on
the SomeAttributeName attribute, below.

handlers schema section

c.

Add a page field to set up a condition that locks it at step 1 of the Freedom UI page customization procedure
if needed.

1.

Set up the condition that locks the field on the page at step 2 of the Freedom UI page customization
procedure.

2.

Add an attribute that stores data to the viewModelConfig schema section. Add the attribute the same way
as in the setup procedure for the field display condition.

a.

Bind the readonly property to the appropriate model attribute in the viewConfigDiff schema section.
Property binding is similar to that described in the setup procedure for the field display condition. Instead
of the visible property, use the readonly property that locks the field from editing.

b.

Add a custom implementation of the crt.HandleViewModelAttributeChangeRequest system query handler to
the handlers schema section. The implementation of the handler is similar to that described in the setup
procedure for the field display condition.

c.

Add a page field to configure the population condition at step 1 of the Freedom UI page customization
procedure if needed.

1.

Set up the field population condition at step 2 of the Freedom UI page customization procedure. To do2.

Customize page fields | 19

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15359
https://academy.creatio.com/docs/user/setup_and_administration/user_and_access_management/access_management
https://academy.creatio.com/documents?id=15370&anchor=title-3836-1
https://academy.creatio.com/documents?id=15370&anchor=title-3836-1
https://academy.creatio.com/documents?id=15358
https://academy.creatio.com/documents?id=15370&anchor=title-3836-1
https://academy.creatio.com/documents?id=15370&anchor=title-3836-1

View a detailed example that sets up a field population condition in a separate article: Set up the condition that
populates a field on a page.

Set up a field requirement condition

View a detailed example that sets up a field requirement condition on a page in a separate article: Set up a field
requirement condition on a page.

Implement field value validation
Validators are functions that check whether the value of the ViewModel attribute is correct. For example, they
can check the value of a record field for compliance with specified conditions. To implement a validator, use the
validators section of the Freedom UI page schema. Learn more about creating a Freedom UI page in a separate
article: Client module.

Creatio applies validators to the ViewModel attributes rather than visual elements, but validators can get the
validity status data by using CrtControl . Validator examples: MaxLengthValidator , MinLengthValidator ,
RequiredValidator .

To implement field value validation on the page:

this, add a custom implementation of the crt.HandleViewModelAttributeChangeRequest system query handler to
the handlers schema section. The implementation of the handler is similar to that described in the setup
procedure for the field display condition.

Add a page field to set the requirement condition at step 1 of the Freedom UI page customization procedure if
needed.

1.

Set up the field requirement condition on the page at step 2 of the Freedom UI page customization
procedure.

2.

Bind the crt.Required type validator to the model attribute in the viewModelConfig schema section. The
validator checks that the attribute value is populated.

View an example that binds a crt.Required type validator to a model attribute below.

viewModelConfig schema section

a.

Add a custom implementation of the crt.HandleViewModelAttributeChangeRequest system query handler to
the handlers schema section. The handler runs when the value of any attribute changes, including when
loading attribute values from a data source. Depending on the value of the attribute (true or false), the
handler executes different business logic.

View an example of a crt.HandleViewModelAttributeChangeRequest query handler, whose logic depends on
the SomeAttributeName attribute, below.

handlers schema section

b.

Add a page field whose value to validate at step 1 of the Freedom UI page customization procedure if needed.1.

Implement field value validation on the page at step 2 of the Freedom UI page customization procedure.2.

Customize page fields | 20

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15357
https://academy.creatio.com/documents?id=15370&anchor=title-3836-1
https://academy.creatio.com/documents?id=15370&anchor=title-3836-1
https://academy.creatio.com/documents?id=15356
https://academy.creatio.com/documents?id=15106&anchor=title-3028-10
https://academy.creatio.com/documents?id=15370&anchor=title-3836-1
https://academy.creatio.com/documents?id=15370&anchor=title-3836-1

To disable a validator, set the disabled property of the corresponding validator to true (disabled: true).

View a detailed example that uses a validator in a separate article: Implement the field value validation on a page.

Implement field value conversion
A converter is a function that converts the value of the ViewModel attribute bound to the property of the visual
component to another value. Converters provided by Creatio 8 Atlas work similarly to Angular filters. Read more
in the official Angular documentation. To implement converters, use the converters section of the Freedom UI
page schema. Learn more about creating a Freedom UI page in a separate article: Client module. Converter
examples: crt.invertBooleanValue , crt.toBoolean .

Converters have the following special features:

Implement a custom validator in the validators schema section.

The validators schema section lets you declare:

View an example that declares a custom usr.SomeValidatorName validator below.

validators schema section

message is a property that lets you set a custom error message.

a.

validator

validator function (function (config))

validator parameters ("params")

whether the validator is asynchronous (async flag)

Bind the validator to an attribute or multiple model attributes by setting different parameters for each of
the attributes in the viewModelConfig schema section. To do this, specify the validators key with the
validator’s name and its parameters in the corresponding attribute of the viewModelConfig schema section.

View an example that binds the usr.SomeValidatorName validator to the SomeAttributeName1 and
SomeAttributeName2 attributes of the model below.

viewModelConfig schema section

The priority of the message parameter of the attribute configuration object is higher than the priority of the
corresponding validator parameter. I. e., for attributes with a message parameter set, Creatio generates
the error message from the parameter, not from the validator body.

If an error is caught, the value of the SomeAttributeName1String localized string specified in the
SomeAttributeName1 attribute is displayed for the attribute, and the Some message. value specified in the
validator body is displayed for the SomeAttributeName2 attribute.

f.

applicable only in the RunTime mode

not applicable to constants

only work in one direction, cannot be used with CrtControl

Customize page fields | 21

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15361
https://angular.io/guide/pipes
https://academy.creatio.com/documents?id=15106&anchor=title-3028-10

To implement field value conversion on the page:

Converters are not available for the following binding types:

View a detailed example that uses a converter in a separate article: Implement field value conversion on a page.

Add a page field whose value to convert at step 1 of the Freedom UI page customization procedure if needed.1.

Implement field value conversion on the page at step 2 of the Freedom UI page customization procedure.2.

Implement a custom converter in the converters schema section.

View an example that declares the usr.SomeConverterName converter below.

converters schema section

a.

Append the pipe character and the converter type to the name of the attribute to apply the converter in
the viewConfigDiff schema section.

View an example that applies the usr.SomeConverterName converter to the $SomeAttributeName attribute
below.

viewConfigDiff schema section

Besides simple converters, Creatio 8 Atlas provides chains of converters. A converter chain comprises
multiple converters that are applied to an attribute in a single property.

View an example that applies a chain of converters (crt.ToBoolean and crt.InvertBooleanValue) to the
$SomeAttributeName attribute below.

viewConfigDiff schema section

Creatio lets you set converter parameters. You can use the same converter several times by setting
different parameter values. To set the converter parameters, specify the parameter value with the :
prefix after the converter type. Place the colon character in front of each converter parameter value.

Available values of converter parameters:

View an example that applies the exmpl.Concat converter with a SomeParameter string parameter to the
SomeAttributeName attribute below. Note that exmpl.Concat is an example converter and is not available for
solving actual business problems.

viewConfigDiff schema section

b.

String. Enclose a string value in single quotes.

Number.

true or false .

A binding to another attribute.

binding to resource attribute

function binding

binding an event to a model method

Customize page fields | 22

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15370&anchor=title-3836-1
https://academy.creatio.com/documents?id=15370&anchor=title-3836-1
https://academy.creatio.com/documents?id=15360

Set up the display condition of a field on a
page

 Medium

Example. Set up the display condition for the [Sick leave, days left] field on the record page of the
custom [Requests] section. Display the field for requests that originate from employees, i. e., requests
whose [Originator type] field is set to "Employee."

1. Set up the page UI
Create a custom Requests app based on the [Records & business processes] template. To do this, follow the
guide in the user documentation: Create a custom app.

1.

Open the [Requests form page] page in the working area of the Requests app page.

The [Requests form page] page includes the [Name] field by default.

2.

Add a field that contains the request originator type.3.

Add a [Dropdown] type field to the working area of the Freedom UI Designer.a.

Click in the action panel of the Freedom UI Designer and fill out the field properties in the setup

area.

b.

Set [Title] to "Originator type."

Set [Code] to "UsrOriginatorType."

Select "Contact type" in the [Lookup] property.

Add a field that contains the number of sick days left.4.

Add a [Number] type field to the working area of the Freedom UI Designer.a.

Set up the display condition of a field on a page | 23

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=2377

2. Set up the field display condition
Configure the business logic in the Client Module Designer. For this example, set up the field display condition.

Click in the action panel of the Freedom UI Designer and fill out the field properties in the setup

area.

b.

Set [Title] to "Sick leave, days left."

Set [Code] to "UsrSickDaysLeft."

Click in the action panel of the Freedom UI Designer. After you save the page settings, Creatio opens

the source code of the Freedom UI page.

5.

Add an IsRequestFromEmployee attribute that stores data about the contact type from which the request
originates to the viewModelConfig schema section.

viewModelConfigviewModelConfig schema section

1.

viewModelConfig: /**SCHEMA_VIEW_MODEL_CONFIG*/{
 "attributes": {
 ...,
 /* The attribute that stores the request originator type. */
 "IsRequestFromEmployee": {}
 }
}/**SCHEMA_VIEW_MODEL_CONFIG*/,

Bind the visible property of the UsrSickDaysLeft element to the IsRequestFromEmployee model attribute in
the viewConfigDiff schema section. If the request originates from an [Employee] type contact, display the
[Sick leave, days left] field. Hide the field for other contact types.

viewConfigDiffviewConfigDiff schema section

2.

Set up the display condition of a field on a page | 24

© 2023 Creatio. All rights reserved.

viewConfigDiff: /**SCHEMA_VIEW_CONFIG_DIFF*/[
 ...,
 {
 "operation": "insert",
 "name": "UsrSickDaysLeft",
 "values": {
 ...,
 /* The property that flags the field as visible. Bound to the IsRequestFromEmployee attribute. */
 "visible": "$IsRequestFromEmployee"
 },
 ...
 }
]/**SCHEMA_VIEW_CONFIG_DIFF*/,

Add a custom implementation of the crt.HandleViewModelAttributeChangeRequest system query handler to the
handlers schema section. Run the handler when the value of any attribute changes, including changes made
after loading the attribute values from the data source. The handler checks the UsrOriginatorType attribute
value. If the new attribute value refers to the "Employee" value of the [Contact type] lookup, set the
IsRequestFromEmployee attribute value to true , otherwise set it to false . The unique ID of the [Employee]
type contact set as the employeeOriginatorTypeId constant is stored in the corresponding string of the
[Contact type] lookup record. In this example, the ID of the [Employee] type contact is "60733efc-f36b-
1410-a883-16d83cab0980."

handlershandlers schema section

Complete source code of the page schema

3.

handlers: /**SCHEMA_HANDLERS*/[
 {
 request: "crt.HandleViewModelAttributeChangeRequest",
 /* The custom implementation of the system query handler. */
 handler: async (request, next) => {
 /* Check the request originator type. */
 if (request.attributeName === 'UsrOriginatorType') {
 const employeeOriginatorTypeId = '60733efc-f36b-1410-a883-16d83cab0980';
 const selectedOriginatorType = await request.$context.UsrOriginatorType;
 const selectedOriginatorTypeId = selectedOriginatorType?.value;
 /* If the request originates from an employee, set the IsRequestFromEmployee to true. */
 request.$context.IsRequestFromEmployee = selectedOriginatorTypeId === employeeOriginatorTypeId;
 }
 /* Call the next handler (if it exists) and return its result. */
 return next?.handle(request);
 }
 }
]/**SCHEMA_HANDLERS*/,

Set up the display condition of a field on a page | 25

© 2023 Creatio. All rights reserved.

Outcome of the example
To view the outcome of the example:

As a result, Creatio will display the [Sick leave, days left] field on the page of the request that originates from an
[Employee] type contact.

Creatio will not display the [Sick leave, days left] field for requests that originate from other contact types, e. g.,
[Customer].

Click [Save] on the Client Module Designer's toolbar.4.

Open the Requests app page and click [Run app].1.

Click [New] on the Requests app toolbar.2.

Enter "Sick leave" in the [Name] field.3.

Select "Employee" in the [Originator type] field.4.

Set up the display condition of a field on a page | 26

© 2023 Creatio. All rights reserved.

Set up the condition that locks the field on
a page

 Medium

This example is implemented in the front-end. Learn more about the back-end implementation in the user
documentation guide: Access management.

Example. Set up the condition that locks the [Applicant] field on the record page of the custom
[Requests] section. Lock the field if the request is completed, i. e., the [Status] field is set to "Completed."

1. Set up the page UI
Create a custom Requests app based on the [Records & business processes] template. To do this, follow the
guide in the user documentation: Create a custom app.

1.

Open the [Requests form page] page in the working area of the Requests app page.

The [Requests form page] page includes the [Name] field by default.

2.

Add an applicant field.3.

Add a [Dropdown] type field to the working area of the Freedom UI Designer.a.

Click in the action panel of the Freedom UI Designer and fill out the field properties in the setup

area.

b.

Set [Title] to "Applicant."

Set [Code] to "UsrApplicant."

Select "Contact " in the [Lookup] property.

Add a request status field.4.

Set up the condition that locks the field on a page | 27

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/docs/user/setup_and_administration/user_and_access_management/access_management
https://academy.creatio.com/documents?id=2377

Add a [Dropdown] type field to the working area of the Freedom UI Designer.a.

Click in the action panel of the Freedom UI Designer and fill out the field properties in the setup

area.

b.

Set [Title] "Status."

Set [Code] to "UsrStatus."

Click the button next to the [Lookup] property and fill out the lookup properties:

Click [Save] to add the lookup.

Set [Title] to "Request status."

Set [Code] to "UsrRequestStatusLookup."

Click [Save] on the Freedom UI Designer's toolbar.h.

Fill out the [Request status] lookup.5.

Open the Requests app page and click [Run app].a.

Click to open the System Designer. Go to the [System setup] block → [Lookups].b.

Set up the condition that locks the field on a page | 28

© 2023 Creatio. All rights reserved.

If you use Creatio 8.0.0, register the lookup. The lookup is registered automatically in Creatio 8.0.1 and
later.

c.

Click [New lookup] on the [Lookups] section toolbar and fill out the lookup properties:a.

Set [Name] to "Request status."

Select "Request status " in the [Object] property.

Click [Save] on the lookup setup page's toolbar.d.

Open the [Request status] toolbar.d.

Click [New] on the lookup setup page's toolbar and add the following lookup values:e.

"New"

"Under evaluation"

"In progress"

"Canceled"

"Completed"

Set up the condition that locks the field on a page | 29

© 2023 Creatio. All rights reserved.

2. Set up the condition that locks the field
Configure the business logic in the Client Module Designer. For this example, set up the condition that locks the
field.

Open the [Requests form page] page and click the button on the Freedom UI Designer's toolbar.

After you save the page settings, Creatio opens the source code of the Freedom UI page.

6.

Add an IsApplicantReadonly attribute that stores data about the contact's permission to edit the [Applicant]
field to the viewModelConfig schema section.

viewModelConfigviewModelConfig schema section

1.

viewModelConfig: /**SCHEMA_VIEW_MODEL_CONFIG*/{
 "attributes": {
 ...,
 /* The attribute that locks the [Applicant] field. */
 "IsApplicantReadonly": {}
 }
}/**SCHEMA_VIEW_MODEL_CONFIG*/,

Bind the readonly property of the UsrApplicant element to the IsApplicantReadonly model attribute in the
viewConfigDiff schema section. Lock the [Applicant] field if the request is completed. Keep the field editable
for other request statuses.

viewConfigDiffviewConfigDiff schema section

2.

viewConfigDiff: /**SCHEMA_VIEW_CONFIG_DIFF*/[

Set up the condition that locks the field on a page | 30

© 2023 Creatio. All rights reserved.

 ...,
 {
 "operation": "insert",
 "name": "UsrApplicant",
 "values": {
 ...,
 /* The property that locks the field from editing. Bound to the IsApplicantReadonly attribute. */
 "readonly": "$IsApplicantReadonly"
 },
 ...
 },
 ...
]/**SCHEMA_VIEW_CONFIG_DIFF*/,

Add a custom implementation of the crt.HandleViewModelAttributeChangeRequest system query handler to the
handlers schema section. Run the handler when the value of any attribute changes, including changes made
after loading the attribute values from the data source. The handler checks the UsrStatus attribute value. If
the new attribute value refers to the "Completed" value of the [Request status] lookup, set the
IsApplicantReadonly attribute value to true , otherwise set it to false . The unique status ID of the completed
request set as the completedStatusId constant is stored in the corresponding column of the [Request status
] lookup's record string. To display the [Id] column in the [Request status] lookup list, follow the guide in the
user documentation: Work with record lists. In this example, the status ID of the completed request is
"6d76b4e0-6507-4c34-902b-90e18df84153."

handlershandlers schema section

3.

handlers: /**SCHEMA_HANDLERS*/[
 {
 request: "crt.HandleViewModelAttributeChangeRequest",
 /* The custom implementation of the system query handler. */
 handler: async (request, next) => {
 /* Check the request status. */
 if (request.attributeName === 'UsrStatus') {
 const completedStatusId = '6d76b4e0-6507-4c34-902b-90e18df84153';
 const selectedStatus = await request.$context.UsrStatus;
 const selectedStatusId = selectedStatus?.value;
 const isRequestCompleted = selectedStatusId === completedStatusId;
 /* If the request status is [Completed], set the IsApplicantReadonly attribute to true and lock the [Applicant] field from editing. */
 request.$context.IsApplicantReadonly = isRequestCompleted;
 }
 /* Call the next handler (if it exists) and return its results. */
 return next?.handle(request);
 }
 }
]/**SCHEMA_HANDLERS*/,

Set up the condition that locks the field on a page | 31

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=1016&anchor=title-756-6

Outcome of the example
To view the outcome of the example:

As a result, Creatio will lock the [Applicant] field for completed requests.

The [Applicant] field will be editable for requests that have a different status. For example, "New."

Complete source code of the page schema

Click [Save] on the Client Module Designer's toolbar.4.

Open the Requests app page and click [Run app].1.

Click [New] on the Requests app toolbar.2.

Enter "Request's name" in the [Name] field.3.

Select "Bruce Clayton" in the [Applicant] field.4.

Select "Completed" in the [Status] field.5.

Set up the condition that locks the field on a page | 32

© 2023 Creatio. All rights reserved.

Set up the condition that populates a field
on a page

 Medium

Example. Set up the condition that populates the [Description] field on the record page of the custom
[Requests] section. If the [Name] and [Description] field values match, populate the [Description] field
with the new [Name] field value. Otherwise, leave the [Description] field value as is.

1. Set up the page UI

2. Set up the condition that populates the field

Create a custom Requests app based on the [Records & business processes] template. To do this, follow the
guide in the user documentation: Create a custom app.

1.

Open the [Requests form page] page in the working area of the Requests app page.

The [Requests form page] page includes the [Name] field by default.

2.

Add a request description field.3.

Add a [Text] type field to the working area of the Freedom UI Designer.a.

Click in the action panel of the Freedom UI Designer and fill out the field properties in the setup

area.

b.

Set [Title] to "Description."

Set [Code] to "UsrDescription."

Click in the action panel of the Freedom UI Designer. After you save the page settings, Creatio opens

the source code of the Freedom UI page.

4.

Set up the condition that populates a field on a page | 33

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=2377

Configure the business logic in the Client Module Designer. For this example, set up the condition that populates
the field.

Outcome of the example
To view the outcome of the example for the same [Name] and [Description] field values:

As a result, Creatio will set the [Description] field to the "Test," same as the [Name] field.

Add a custom implementation of the crt.HandleViewModelAttributeChangeRequest system query handler to the
handlers schema section. Run the handler when the value of any attribute changes, including changes made
after loading the attribute values from the data source. The handler checks the UsrName attribute value. If the
old attribute value matches the UsrDescription attribute value, set the UsrDescription attribute to the same
value as the new UsrName attribute value.

handlershandlers schema section

Complete source code of the page schema

1.

handlers: /**SCHEMA_HANDLERS*/[
 {
 request: "crt.HandleViewModelAttributeChangeRequest",
 /* The custom implementation of the system query handler. */
 handler: async (request, next) => {
 /* If the UsrName field changes, take the following steps. */
 if (request.attributeName === 'UsrName') {
 /* Check whether the old UsrName field value matches the UsrDescription field value. */
 const isFieldsShouldBeSynchronized = request.oldValue === await request.$context.UsrDescription;
 if (isFieldsShouldBeSynchronized) {
 /* Assign the new UsrName field value to the UsrDescription field. */
 request.$context.UsrDescription = await request.$context.UsrName;
 }
 }
 /* Call the next handler if it exists and return its result. */
 return next?.handle(request);
 }
 }
]/**SCHEMA_HANDLERS*/,

Click [Save] on the Client Module Designer's toolbar.2.

Open the Requests app page and click [Run app].1.

Click [New] on the Requests app toolbar.2.

Enter "Request's name" in the [Name] field.3.

Enter "Request's name" in the [Description] field.4.

Change the [Name] field value to "Test."5.

Set up the condition that populates a field on a page | 34

© 2023 Creatio. All rights reserved.

To view the outcome of the example for different [Name] and [Description] field values:

As a result, Creatio will leave the [Description] field value as is.

Set up the requirement condition of a field
on a page

 Medium

Example. Make the [Description] field on the record page of the custom [Requests] section required.
The field must be required if the request is new, i. e., the [Status] field is set to "New."

1. Set up the page UI

Change the [Description] field value to "Request's description."1.

Enter "Test" in the [Name] field.2.

Set up the requirement condition of a field on a page | 35

© 2023 Creatio. All rights reserved.

Create a custom Requests app based on the [Records & business processes] template. To do this, follow the
guide in the user documentation: Create a custom app.

1.

Open the [Requests form page] page in the working area of the Requests app page.

The [Requests form page] page includes the [Name] field by default.

2.

Add a request status field.3.

Add a [Dropdown] type field to the working area of the Freedom UI Designer.a.

Click in the action panel of the Freedom UI Designer and fill out the field properties in the setup

area.

b.

Set [Title] "Status."

Set [Code] to "UsrStatus."

Click the button next to the [Lookup] property and fill out the lookup properties:

Click [Save] to add the lookup.

Set [Title] to "Request status."

Set [Code] to "UsrRequestStatusLookup."

Set up the requirement condition of a field on a page | 36

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=2377

Click [Save] on the Freedom UI Designer's toolbar.h.

Fill out the [Request status] lookup.4.

Open the Requests app page and click [Run app].a.

Click to open the System Designer. Go to the [System setup] block → [Lookups].b.

If you use Creatio 8.0.0, register the lookup. The lookup is registered automatically in Creatio 8.0.1 and
later.

c.

Click [New lookup] on the [Lookups] section toolbar and fill out the lookup properties:a.

Set [Name] to "Request status."

Set [Object] to "Request status."

Click [Save] on the lookup setup page's toolbar.d.

Open the [Request status] toolbar.d.

Click [New] on the lookup setup page's toolbar and add the following lookup values:e.

"New"

"Under evaluation"

"In progress"

"Canceled"

"Completed"

Set up the requirement condition of a field on a page | 37

© 2023 Creatio. All rights reserved.

2. Set up the condition that makes the field required
Configure the business logic in the Client Module Designer. For this example, set up the condition that makes the

Add a request description field.5.

Open the [Requests form page] page and add a [Text] type field to the working area of the Freedom UI
Designer.

a.

Click in the action panel of the Freedom UI Designer and fill out the field properties in the setup

area.

b.

Set [Title] to "Description."

Set [Code] to "UsrDescription."

Click in the action panel of the Freedom UI Designer. After you save the page settings, Creatio opens

the source code of the Freedom UI page.

6.

Set up the requirement condition of a field on a page | 38

© 2023 Creatio. All rights reserved.

field required.

Bind the crt.Required type validator to the UsrDescription model attribute in the viewModelConfig schema
section. The validator checks the attribute value.

viewModelConfigviewModelConfig schema section

1.

viewModelConfig: /**SCHEMA_VIEW_MODEL_CONFIG*/{
 "attributes": {
 ...
 "UsrDescription": {
 ...,
 /* The property that enables validators in the attribute. */
 "validators": {
 /* Flag the field as required. */
 "required": {
 "type": "crt.Required"
 }
 }
 },
 ...
 }
}/**SCHEMA_VIEW_MODEL_CONFIG*/,

Add a custom implementation of the crt.HandleViewModelAttributeChangeRequest system query handler to the
handlers schema section. Run the handler when the value of any attribute changes, including changes made
after loading the attribute values from the data source. The handler checks the UsrStatus attribute value. If
the new attribute value refers to the "New" value of the [Request status] lookup, apply the validator, otherwise
do not apply it. The unique status ID of the new request set as the newStatusId constant is stored in the
corresponding column of the [Request status] lookup's record string. To display the [Id] column in the
[Request status] lookup list, follow the guide in the user documentation: Work with record lists. In this
example, the status ID of the new request is "3be636fa-12b4-40eb-a050-91b1d774a75f."

handlershandlers schema section

2.

handlers: /**SCHEMA_HANDLERS*/[
 {
 request: "crt.HandleViewModelAttributeChangeRequest",
 /* The custom implementation of the system query handler. */
 handler: async (request, next) => {
 if (request.attributeName === 'UsrStatus') {
 const newStatusId = '3be636fa-12b4-40eb-a050-91b1d774a75f';
 const selectedStatus = await request.$context.UsrStatus;
 const selectedStatusId = selectedStatus?.value;
 const isNewRequest = selectedStatusId === newStatusId;
 /* Check the request status. */
 if (isNewRequest) {

Set up the requirement condition of a field on a page | 39

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=1016&anchor=title-756-6

Outcome of the example
To view the outcome of the example:

As a result, Creatio will make the [Description] field required for new requests.

The [Description] field will not be required for requests that have other statuses. For example, "Completed."

Complete source code of the page schema

 /* If the request is new, apply the required validator to the UsrDescription attribute. */
 request.$context.enableAttributeValidator('UsrDescription', 'required');
 } else {
 /* Do not apply the required validator to the UsrDescription attribute for non-new requests. */
 request.$context.disableAttributeValidator('UsrDescription', 'required');
 }
 }
 /* Call the next handler if it exists and return its result. */
 return next?.handle(request);
 }
 }
]/**SCHEMA_HANDLERS*/,

Click [Save] on the Client Module Designer's toolbar.3.

Open the Requests app page and click [Run app].1.

Click [New] on the Requests app toolbar.2.

Enter "Request's name" in the [Name] field.3.

Select "New" in the [Status] field.4.

Set up the requirement condition of a field on a page | 40

© 2023 Creatio. All rights reserved.

Implement the field value validation on a
page

 Medium

Example. Add a validator that ensures the [Name] field does not contain the test value to the record
page of the custom [Validators] section.

1. Set up the page UI

2. Set up the field validation
Configure the business logic in the Client Module Designer. For this example, set up the field validation. Add a
validator to the [Name] field of the [Validators form page] page.

Create a custom Validators app based on the [Records & business processes] template. To do this, follow
the guide in the user documentation: Create a custom app.

1.

Open the [Validators form page] page in the working area of the Validators app page.

The [Validators form page] page includes the [Name] field by default.

2.

Click in the action panel of the Freedom UI Designer. After you save the page settings, Creatio opens

the source code of the Freedom UI page.

3.

Implement a custom usr.MyValidator validator in the validators schema section.

validatorsvalidators schema section

1.

validators: /**SCHEMA_VALIDATORS*/{
 /* The validator type must contain a vendor prefix.

Implement the field value validation on a page | 41

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=2377

 Format the validator type in PascalCase. */
 "usr.MyValidator": {
 "validator": function (config) {
 return function (control) {
 return control.value !== config.invalidName ? null: {
 "usr.MyValidator": { message: config.message }
 };
 };
 },
 "params": [
 {
 "name": "invalidName"
 },
 {
 "name": "message"
 }
],
 "async": false
 }
}/**SCHEMA_VALIDATORS*/

Bind the MyValidator validator to the UsrName model attribute in the viewModelConfig schema section. Specify
the "test" value in the invalidName property. If you enter this value, the app will display an error message
specified in the message property.

viewModelConfigviewModelConfig schema section

2.

viewModelConfig: /**SCHEMA_VIEW_MODEL_CONFIG*/{
 "attributes": {
 "UsrName": {
 ...,
 "validators": {
 /* Bind the custom validator to the attribute. */
 "MyValidator": {
 "type": "usr.MyValidator",
 "params": {
 "invalidName": "test",
 "message": "Invalid name"
 }
 }
 }
 },
 ...
 }
}/**SCHEMA_VIEW_MODEL_CONFIG*/,

Implement the field value validation on a page | 42

© 2023 Creatio. All rights reserved.

Outcome of the example
To view the outcome of the example:

As a result, the app will not save the test record and display an error notification in a pop-up box.

The app will save a record that has a different name, such as Validator's name , correctly. The record will be
displayed in the Validators section list.

Implement the field value conversion on a
page

 Medium

Example. Add a converter that converts the [Name] field value to uppercase to the record page of the

Complete source code of the page schema

Click [Save] on the Client Module Designer's toolbar.3.

Open the Validators app page and click [Run app].1.

Click [New] on the Validators app toolbar.2.

Enter "test" in the [Name] field.3.

Click [Save] on the validator page toolbar.4.

Implement the field value conversion on a page | 43

© 2023 Creatio. All rights reserved.

custom [Converters] section. The [Name] field value must remain the same. Display the converted value
in the [Label] type component.

1. Set up the page UI

2. Set up the field value conversion
Configure the business logic in the Client Module Designer. For this example, set up the field value conversion.
Convert the value of the [Name] field on the [Validators form page] page.

Create a custom Converters app based on the [Records & business processes] template. To do this, follow
the guide in user documentation: Create a custom app.

1.

Open the [Converters form page] page in the working area of the Converters app page.

The [Converters form page] page includes the [Name] field by default.

2.

Add a [Label] type component to the working area of the Freedom UI Designer.3.

Click in the action panel of the Freedom UI Designer. After you save the page settings, Creatio opens

the source code of the Freedom UI page.

4.

Implement a custom usr.ToUpperCase converter in the converters schema section.

convertersconverters schema section

1.

converters: /**SCHEMA_CONVERTERS*/{
 /* The custom converter. Converts the value to uppercase. */
 "usr.ToUpperCase": function(value) {
 return value?.toUpperCase() ?? '';
 }
}/**SCHEMA_CONVERTERS*/,

Bind the caption property of the Label element to the $UsrName model attribute in the viewConfigDiff
schema section. $UsrName is the value of the [Name] field. Add the usr.ToUpperCase converter to the
$UsrName attribute.

viewConfigDiffviewConfigDiff schema section

2.

viewConfigDiff: /**SCHEMA_VIEW_CONFIG_DIFF*/[
...,
{
 "operation": "insert",
 "name": "Label",
 "values": {
 ...,
 /* Bind the usr.ToUpperCase converter to the $UsrName attribute. */

Implement the field value conversion on a page | 44

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=2377

Outcome of the example
To view the outcome of the example:

As a result, when you fill out the [Name] field on the converter page, Creatio will convert the field value to
uppercase and display it in the [Label] type component. The [Name] field value will remain the same.

Display the value of a system variable
 Beginner

Creatio 8 Atlas uses the sdk.SysValuesService service to manage system variables.

In Creatio 8 Atlas, accessing system variables is different from the previous versions. In this version, write the
system variable name in lowercase without _ delimiters and the CURRENT prefix (for example, maintainer ,
primaryLanguage , etc.).

To display the value of a system variable on a page:

Complete source code of the page schema

 "caption": "$UsrName | usr.ToUpperCase",
 ...
 },
 ...
}
]/**SCHEMA_VIEW_CONFIG_DIFF*/,

Click [Save] on the Client Module Designer's toolbar.3.

Open the Converters app page and click [Run app].1.

Click [New] on the Converters app toolbar.2.

Enter "Converter's name" in the [Name] field.3.

Add a page inscription to display the values of system variables at step 1 of the Freedom UI page1.

Display the value of a system variable | 45

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15370&anchor=title-3836-1

View a detailed example that configures how to display the value of a system variable in a separate article: Display
the values of system variables on a page.

Display the values of system variables on a
page

 Medium

Example. Display the following on the record page of the custom [System variables] section:

Retrieve the values from the corresponding system variables.

customization procedure if needed.

Set up how to display the value of a system variable on the page at step 2 of the Freedom UI page
customization procedure.

2.

Enable the sdk.SysValuesService system variable service. To do this, add the @creatio-devkit/common
dependency to the AMD module.

View an example that adds a dependency to the UsrAppClientSchemaName AMD module below.

AMD module dependencies

a.

Add an attribute that stores data to the viewModelConfig schema section. Add the attribute similarly to the
procedure for setting up the field display condition.

b.

Bind the caption property to the corresponding model attribute in the viewConfigDiff schema section.
Property binding is similar to that described in the setup procedure for the field display condition. Instead
of the visible property, use the caption property responsible for the text displayed in the element.

c.

Add a custom implementation of the crt.HandlerViewModelInitRequest system query handler to the
handlers schema section. The handler is executed when the View model is initialized. Depending on the
value of the attribute (true or false), the handler executes different business logic.

View an example of a crt.HandlerViewModelInitRequest query handler with someVariable calculation result
written in the SomeAttributeName attribute below.

handlers schema section

d.

Instantiate the system value service from @creatio-devkit/common .a.

Load system values.b.

Calculate the value and write the calculation result to the corresponding attribute if needed.c.

the name of the current user

the time offset value in hours between the time zone of the current contact and universal time (UTC)

Display the values of system variables on a page | 46

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15370&anchor=title-3836-1
https://academy.creatio.com/documents?id=15379&anchor=title-3836-3
https://academy.creatio.com/documents?id=15379&anchor=title-3836-3
https://academy.creatio.com/documents?id=15355

1. Set up the page UI
Create a custom System variables app based on the [Records & business processes] template. To do this,
follow the guide in the user documentation: Create a custom app.

1.

Open the [System variables form page] page in the working area of the System variables app page.2.

Delete the [Name] field the [Requests form page] page includes by default.3.

Add the label of the current contact.4.

Add a [Label] type component to the working area of the Freedom UI Designer.a.

Click in the action panel of the Freedom UI Designer and fill out the label properties in the setup

area.

b.

Set [Title] to "Current user."

Select "Caption" in the [Style] property.

Select gray in the [Text color] property.

Add the following labels in a similar way:

View the properties of the labels to add in the table below.

5.

the value of the current contact name from the system variable

the time offset from UTC

the time offset value from UTC from the system variable

Display the values of system variables on a page | 47

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=2377

2. Set up the retrieval of system variable values
Configure the business logic in the Client Module Designer. For this example, set up the retrieval of system
variable values

Label property values

Element Property Property
value

The label that contains the value of the current contact
name from the system variable

[Title] "Current user
(value)"

[Style] Select "Body
text"

The label of the time offset from UTC

[Title] "Contact time
offset"

[Style] Select "Caption"

[Text
color]

Select the gray
color

The label that contains the time offset value from UTC
from the system variable

[Title] "Contact time
offset
(value)"

[Style] Select "Body
text"

Click in the action panel of the Freedom UI Designer. After you save the page settings, Creatio opens

the source code of the Freedom UI page.

6.

Enable the sdk.SysValuesService system variable service. To do this, add @creatio-devkit/common to the AMD
module as a dependency.

AMD module dependencies

1.

/* Declare the AMD module. */
define("UsrAppSystemvariable_FormPage", /**SCHEMA_DEPS*/["@creatio-devkit/common"] /**SCHEMA_DEPS*/, function/**SCHEMA_ARGS*/(sdk)/**SCHEMA_ARGS*/ {
 return {
 ...
 };
});

Display the values of system variables on a page | 48

© 2023 Creatio. All rights reserved.

Add the following attributes to the viewModelConfig schema section:

viewModelConfigviewModelConfig schema section

2.

CurrentUser . Stores the name of the current contact.

ContactTimezone . Stores the time offset in hours between the time zone of the current contact and UTC.

viewModelConfig: /**SCHEMA_VIEW_MODEL_CONFIG*/{
 "attributes": {
 ...,
 /* The attribute that stores the name of the current contact. */
 "CurrentUser": {},
 /* The attribute that stores the time offset in hours between the time zone of the current contact and universal time (UTC). */
 "ContactTimezone": {}
 }
}/**SCHEMA_VIEW_MODEL_CONFIG*/,

Change the caption property value in the viewConfigDiff schema section:

The caption property handles the text contained in the element.

viewConfigDiffviewConfigDiff schema section

3.

$CurrentUser for the CurrentUserValue element

$ContactTimezone for the ContactTimeOffsetValue element

viewConfigDiff: /**SCHEMA_VIEW_CONFIG_DIFF*/[
 ...,
 {
 "operation": "insert",
 "name": "CurrentUserValue",
 "values": {
 ...,
 /* Bind the CurrentUser attribute to the caption property. */
 "caption": "$CurrentUser",
 ...
 },
 ...
 },
 ...,
 {
 "operation": "insert",
 "name": "ContactTimeOffsetValue",
 "values": {
 ...,
 /* Bind the ContactTimezone attribute to the caption property. */
 "caption": "$ContactTimezone",

Display the values of system variables on a page | 49

© 2023 Creatio. All rights reserved.

Outcome of the example
To view the outcome of the example:

 ...
 },
 ...
 }
]/**SCHEMA_VIEW_CONFIG_DIFF*/,

Add a custom implementation of the crt.HandlerViewModelInitRequest system query handler to the handlers
schema section. Execute the handler when Creatio initializes the View model.

handlershandlers schema section

Complete source code of the page schema

4.

Create an instance of the system value service from @creatio-devkit/common .a.

Upload the system values.b.

Specify the name of the current user contact in the CurrentUser attribute.c.

Convert the time zone offset value from minutes to hours and specify the converted value in the
ContactTimezone attribute.

d.

handlers: /**SCHEMA_HANDLERS*/[
 {
 request: "crt.HandleViewModelInitRequest",
 /* The custom implementation of the system query handler. */
 handler: async (request, next) => {
 /* Create an instance of the system value service from @creatio-devkit/common. */
 const sysValuesService = new sdk.SysValuesService();
 /* Upload the system values. */
 const sysValues = await sysValuesService.loadSysValues();
 /* Specify the name of the current user contact in the CurrentUser attribute. */
 request.$context.CurrentUser = sysValues.userContact.displayValue;
 /* Convert the time zone offset value from minutes to hours and specify the converted value in the ContactTimezone attribute. */
 const offset = sysValues.userTimezoneOffset;
 const offsetDisplayValue = (offset > 0 ? '+' : '') + (offset / 60) + 'h';
 request.$context.ContactTimezone = offsetDisplayValue;
 /* Call the next handler if it exists and return its result. */
 return next?.handle(request);
 }
 }
] /**SCHEMA_HANDLERS*/,

Click [Save] on the Client Module Designer's toolbar.5.

Display the values of system variables on a page | 50

© 2023 Creatio. All rights reserved.

As a result, Creatio will display the name of the current user and the time offset value in hours between the time
zone of the current contact and UTC on the record page of the custom [System variables] section. The values
will be retrieved from the corresponding system variables.

Send a web service request and handle the
response

 Beginner

Creatio 8 Atlas uses the sdk.HttpClientService service to send web service requests.

To send a web service request and handle the response on the page:

Open the System variables app page and click [Run app].1.

Click [New] on the System variables app toolbar.2.

Add a page inscription to display the handled result of a web service request at step 1 of the Freedom UI page
customization procedure if needed.

1.

Set up how to send a web service request and handle the response on the page at step 2 of the
Freedom UI page customization procedure.

2.

Enable the sdk.HttpClientService service that sends HTTP requests. Enable the service similarly to the
display procedure for the value of system variables.

a.

Add an attribute that stores data to the viewModelConfig schema section. Add the attribute similarly to the
setup procedure for the field display condition.

b.

Bind the caption property to the corresponding model attribute in the viewConfigDiff schema section.
Property binding is similar to that described in the setup procedure for the field display condition. Instead
of the visible property, use the caption property responsible for the text displayed in the element.

c.

Add a custom implementation of the crt.HandlerViewModelInitRequest system query handler to the
handlers schema section. The handler is executed when the View model is initialized.

d.

Send a web service request and handle the response | 51

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15370&anchor=title-3836-1
https://academy.creatio.com/documents?id=15370&anchor=title-3836-1
https://academy.creatio.com/documents?id=15380
https://academy.creatio.com/documents?id=15379&anchor=title-3836-3
https://academy.creatio.com/documents?id=15379&anchor=title-3836-3

View a detailed example that sets up a web service request and handles the response in a separate article: Send a
request to an external web service and handle its result on a page.

Send a request to an external web service
and handle its result on a page

 Medium

Example. Call the coindesk.com external web service from the record page of the [Http Client Service]
custom section. Display the current BTC to the USD exchange rate.

1. Set up the page UI

View an example of the crt.HandlerViewModelInitRequest request handler that sends a request to the
https://SomeUrlValue web service, receives the someValue parameter from the response body, and writes
the parameter to the SomeAttributeName attribute, below.

handlers schema section

Instantiate the HTTP client from @creatio-devkit/common .a.

Specify the URL to get the required information. If a web service request is sent using a non-absolute
path (without https:// or http:// prefixes), this is a request to an internal Creatio web service. In that
case, Creatio automatically adds the address of the current app to the link.

b.

Send a GET request.c.

Retrieve the required values from the response and write them to the corresponding attributes.d.

Create a custom Http Client Service app based on the [Records & business processes] template. To do
this, follow the guide in the user documentation: Create a custom app.

1.

Open the [Http Client Service form page] page in the working area of the Http Client Service app page.2.

Delete the [Name] field the [Http Client Service form page] page includes by default.3.

Add a label of the BTC to the USD exchange rate.4.

Add a [Label] type component to the working area of the Freedom UI Designer.a.

Click in the action panel of the Freedom UI Designer and fill out the label properties in the setup

area.

b.

Set [Title] to "BTC to USD exchange rate."

Select "Caption" in the [Style] property.

Select gray in the [Text color] property.

Send a request to an external web service and handle its result on a page | 52

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15369
https://academy.creatio.com/documents?id=2377

2. Send the web service request and handle its results
Configure the business logic in the Client Module Designer. For this example, send the web service request and
handle its results.

Add a label that contains the value of the BTC to the USD exchange rate.5.

Add a [Label] type component to the working area of the Freedom UI Designer.a.

Click in the action panel of the Freedom UI Designer and fill out the label properties in the setup

area.

b.

Set [Title] to "BTC to USD exchange rate (value)."

Select "Body text" in the [Style] property.

Click in the action panel of the Freedom UI Designer. After you save the page settings, Creatio opens

the source code of the Freedom UI page.

6.

Enable the sdk.HttpClientService service that sends HTTP requests. To do this, add @creatio-devkit/common
to the AMD module as a dependency.

1.

Send a request to an external web service and handle its result on a page | 53

© 2023 Creatio. All rights reserved.

AMD module dependencies

/* Declare the AMD module. */
define("UsrAppHttpClientServ_FormPage", /**SCHEMA_DEPS*/["@creatio-devkit/common"] /**SCHEMA_DEPS*/, function/**SCHEMA_ARGS*/(sdk)/**SCHEMA_ARGS*/ {
 ...
 };
});

Add the BtcToUsd attribute that stores data of the bitcoin to dollar exchange rate to the viewModelConfig
schema section.

viewModelConfigviewModelConfig schema section

2.

viewModelConfig: /**SCHEMA_VIEW_MODEL_CONFIG*/{
 "attributes": {
 ...,
 /* The attribute that stores the bitcoin to dollar exchange rate. */
 "BtcToUsd": {}
 }
}/**SCHEMA_VIEW_MODEL_CONFIG*/,

Bind the caption property of the BtcToUsdExchangeRateValue element to the $BtcToUsd model attribute in the
viewConfigDiff schema section. The caption property handles the text contained in the element.

viewConfigDiffviewConfigDiff schema section

3.

viewConfigDiff: /**SCHEMA_VIEW_CONFIG_DIFF*/[
 ...,
 {
 "operation": "insert",
 "name": "BtcToUsdExchangeRateValue",
 "values": {
 ...,
 /* Bind the BtcToUsd attribute to the caption property. */
 "caption": "$BtcToUsd",
 ...
 },
 ...
 }
]/**SCHEMA_VIEW_CONFIG_DIFF*/,

Add a custom implementation of the crt.HandlerViewModelInitRequest system query handler to the handlers
schema section. Execute the handler when Creatio initializes the View model.

4.

Create an instance of the HTTP client from @creatio-devkit/common .a.

Send a request to an external web service and handle its result on a page | 54

© 2023 Creatio. All rights reserved.

Outcome of the example
To view the outcome of the example:

As a result, Creatio will display the current BTC to the USD exchange rate on the record page of the [Http Client
Service] custom section. The value will be retrieved from the coindesk.com external web service.

handlershandlers schema section

Complete source code of the page schema

Specify the URL to retrieve the current rate. Use the coindesk.com external web service.b.

Send a GET request.c.

Retrieve the rate from the response and specify the rate in the BtcToUsd attribute.d.

handlers: /**SCHEMA_HANDLERS*/[
 {
 request: "crt.HandlerViewModelInitRequest",
 /* The custom implementation of the system query handler. */
 handler: async (request, next) => {
 /* Create an instance of the HTTP client from @creatio-devkit/common. */
 const httpClientService = new sdk.HttpClientService();
 /* Specify the URL to retrieve the current rate. Use the coindesk.com external service. */
 const endpoint = "https://api.coindesk.com/v1/bpi/currentprice/USD.json";
 /* Send a GET request. The HTTP client converts the response body from JSON to a JS object automatically. */
 const response = await httpClientService.get(endpoint);
 /* Retrieve the rate from the response and specify the rate in the BtcToUsd attribute. */
 request.$context.BtcToUsd = response.body.bpi.USD.rate;
 /* Call the next handler if it exists and return its result. */
 return next?.handle(request);
 },
 },
] /**SCHEMA_HANDLERS*/,

Click [Save] on the Client Module Designer's toolbar.5.

Open the Http Client Service app page and click [Run app].1.

Click [New] on the Http Client Service app toolbar.2.

Send a request to an external web service and handle its result on a page | 55

© 2023 Creatio. All rights reserved.

Hide functionality on a page
 Beginner

Creatio 8 Atlas lets you execute the following actions that hide functionality on a page:

Hide functionality during development
Creatio 8 Atlas uses the sdk.FeatureService service to check functionality status.

To hide functionality during development on a page :

Hide functionality during development.

Hide functionality due to insufficient access permissions.

Add a page component that contains the functionality during development at step 1 of the Freedom UI page
customization procedure if needed.

1.

Set up how to hide the functionality on the page at step 2 of the Freedom UI page customization
procedure.

2.

Enable the sdk.FeatureService service that checks the functionality status. Enable the service similarly to
the display procedure for the value of system variables.

a.

Add an attribute that stores data to the viewModelConfig schema section. Add the attribute similarly to the
setup procedure for the field display condition.

b.

Bind the visible property to the corresponding model attribute in the viewConfigDiff schema section.
Property binding is similar to that described in the setup procedure for the field display condition.

c.

Add a custom implementation of the crt.HandlerViewModelInitRequest system query handler to the
handlers schema section. The handler is executed when the View model is initialized.

View an example of a crt.HandlerViewModelInitRequest query handler that receives a feature status with
the SomeFeatureCode code and writes it to the SomeAttributeName attribute below.

handlers schema section

d.

Instantiate the service that checks the functionality status from @creatio/sdk .a.

Get the status of the functionality by its code and write it to the corresponding attribute.b.

Hide functionality on a page | 56

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15370&anchor=title-3836-1
https://academy.creatio.com/documents?id=15370&anchor=title-3836-1
https://academy.creatio.com/documents?id=15380
https://academy.creatio.com/documents?id=15379&anchor=title-3836-3
https://academy.creatio.com/documents?id=15379&anchor=title-3836-3

View a detailed example that hides functionality during development in a separate article: Hide a feature at the
development stage on a page.

Hide functionality due to insufficient access permissions
Creatio 8 Atlas uses the sdk.RightsService service to check access permissions.

To hide functionality due to insufficient access permissions:

View a detailed example that hides functionality due to insufficient access permissions in a separate article: Hide
the feature on a page due to insufficient access permissions.

Hide a feature at the development stage on
a page

 Medium

Example. Hide a custom [Feature] button on a record page of a custom [Feature Service] section. The
button contains the feature at the development stage.

Add a page component with the functionality for which access permissions are configured at step 1 of the
Freedom UI page customization procedure if needed.

1.

Set up how to hide functionality on the page due to insufficient access permissions at step 2 of the
Freedom UI page customization procedure.

2.

Enable the sdk.RightsService service that checks access permissions. Enable the service similarly to the
display procedure for the value of system variables.

a.

Add an attribute that stores data to the viewModelConfig schema section. Add the attribute similarly to the
setup procedure for the field display condition.

b.

Bind the visible property to the corresponding model attribute in the viewConfigDiff schema section.
Property binding is similar to that described in the setup procedure for the field display condition.

c.

Add a custom implementation of the crt.HandlerViewModelInitRequest system query handler to the
handlers schema section. The handler is executed when the View model is initialized.

View an example of the crt.HandlerViewModelInitRequest request handler that checks for permissions to
perform a system operation with the SomeOperationCode code and writes the result to the
SomeAttributeName attribute below.

handlers schema section

d.

Instantiate the service that checks access permissions from @creatio/sdk .a.

Get information about the user’s permissions to perform the corresponding action.b.

Write the result of the checkup to the corresponding attribute.c.

Hide a feature at the development stage on a page | 57

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15363
https://academy.creatio.com/documents?id=15370&anchor=title-3836-1
https://academy.creatio.com/documents?id=15370&anchor=title-3836-1
https://academy.creatio.com/documents?id=15380
https://academy.creatio.com/documents?id=15379&anchor=title-3836-3
https://academy.creatio.com/documents?id=15379&anchor=title-3836-3
https://academy.creatio.com/documents?id=15364

1. Set up the page UI
Add the developed feature to hide.1.

Open the [Feature] page and fill out the feature properties:a.

Set [Feature code] to "UsrShowMyButton."

Set [Feature name] to "Show My Button."

Click [Create feature].d.

Create a custom Feature Service app based on the [Records & business processes] template. To do this,
follow the guide in the user documentation: Create a custom app.

2.

Open the [Feature service form page] page in the working area of the Feature Service app page.3.

Delete the [Name] field the [Feature Service form page] page includes by default.4.

Add a button that contains the feature at the development stage.5.

Add a [Button] type component to the toolbar of the Freedom UI Designer.a.

Click in the action panel of the Freedom UI Designer and fill out the button properties in the

setup area.

b.

Set [Title] to "Feature."

Select "Primary" in the [Style] property.

Click in the action panel of the Freedom UI Designer. After you save the page settings, Creatio opens

the source code of the Freedom UI page.

6.

Hide a feature at the development stage on a page | 58

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15631&anchor=title-3459-2
https://academy.creatio.com/documents?id=2377

2. Hide the feature at the development stage
Configure the business logic in the Client Module Designer. For this example, hide the feature at the development
stage.

Enable the sdk.FeatureService service that checks the feature status. To do this, add @creatio-devkit/common
to the AMD module as a dependency.

AMD module dependencies

1.

/* Declare the AMD module. */
define("UsrAppFeatureService_FormPage", /**SCHEMA_DEPS*/["@creatio-devkit/common"] /**SCHEMA_DEPS*/, function/**SCHEMA_ARGS*/(sdk)/**SCHEMA_ARGS*/ {
 ...
 };
});

Add the ShowMyButton attribute that stores feature status data to the viewModelConfig schema section.

viewModelConfigviewModelConfig schema section

2.

viewModelConfig: /**SCHEMA_VIEW_MODEL_CONFIG*/{
 "attributes": {
 ...,
 /* The attribute that stores the feature status. */
 "ShowMyButton": {}
 }
}/**SCHEMA_VIEW_MODEL_CONFIG*/,

Bind the visible property of the FeatureButton element to the ShowMyButton model attribute in the
viewConfigDiff schema section.

viewConfigDiffviewConfigDiff schema section

3.

viewConfigDiff: /**SCHEMA_VIEW_CONFIG_DIFF*/[
 {
 "operation": "insert",
 "name": "FeatureButton",
 "values": {
 ...,
 /* The property that flags the field as visible. Bound to the ShowMyButton attribute. */
 "visible": "$ShowMyButton"
 },
 ...
 }
]/**SCHEMA_VIEW_CONFIG_DIFF*/,

Hide a feature at the development stage on a page | 59

© 2023 Creatio. All rights reserved.

Outcome of the example
To view the outcome of the example for the feature at the development stage:

As a result, Creatio will hide the [Feature] button that contains the feature at the development stage on the
Feature Service app page.

To view the outcome of the example for the fully developed feature:

Add a custom implementation of the crt.HandlerViewModelInitRequest system query handler to the handlers
schema section. Execute the handler when Creatio initializes the View model.

handlershandlers schema section

Complete source code of the page schema

4.

Create an instance of the service that checks the feature status from @creatio-devkit/common .a.

Retrieve the status of the feature that has the UsrShowMyButton code and specify the status in the
ShowMyButton attribute.

b.

handlers: /**SCHEMA_HANDLERS*/[
 {
 request: "crt.HandleViewModelInitRequest",
 /* The custom implementation of the system query handler. */
 handler: async (request, next) => {
 /* Create an instance of the service that checks the feature status from @creatio-devkit/common. */
 const featureService = new sdk.FeatureService();
 /* Retrieve the UsrShowMyButton feature status and specify it in the ShowMyButton attribute. */
 request.$context.ShowMyButton = await featureService.getFeatureState('UsrShowMyButton');
 /* Call the next handler if it exists and return its result. */
 return next?.handle(request);
 }
 }
] /**SCHEMA_HANDLERS*/,

Click [Save] on the Client Module Designer's toolbar.5.

Open the Feature Service app page and click [Run app].1.

Click [New] on the Feature Service app toolbar.2.

Hide a feature at the development stage on a page | 60

© 2023 Creatio. All rights reserved.

As a result, Creatio will display the [Feature] button that contains the fully developed feature on the
Feature Service app page.

Hide the feature on a page due to
insufficient access permissions

 Medium

Example. Hide the [Excel data import] button on the record page of the custom [Rights Service] section
if the user lacks permission to import Excel data.

1. Set up the page UI

Enable the feature that has UsrShowMyButton code.1.

Open the [Feature] page.a.

Enable the Show My Button feature in the page list.b.

Click [Save changes] and refresh the page.c.

Refresh the Feature Service app page.2.

Click [New] on the Feature Service app toolbar.3.

Create a custom Rights Service app based on the [Records & business processes] template. To do this,
follow the guide in the user documentation: Create a custom app.

1.

Open the [Rights Service form page] page in the working area of the Rights Service app page.2.

Delete the [Name] field the [Rights Service form page] page includes by default.3.

Add a button that starts Excel data import.4.

Add a [Button] type component to the toolbar of the Freedom UI Designer.a.

Click in the action panel of the Freedom UI Designer and fill out the button properties in the

setup area.

b.

Set [Title] to "Excel data import."

Select "Primary" in the [Style] property.

Hide the feature on a page due to insufficient access permissions | 61

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=2377

2. Hide the feature if the user lacks permission to access it
Configure the business logic in the Client Module Designer. For this example, hide the feature if the user lacks
permission to access it

Click in the action panel of the Freedom UI Designer. After you save the page settings, Creatio opens

the source code of the Freedom UI page.

5.

Enable the sdk.RightsService that checks access permissions. To do this, add @creatio-devkit/common to the
AMD module as a dependency.

AMD module dependencies

1.

/* Declare the AMD module. */
define("UsrAppRightsService_FormPage", /**SCHEMA_DEPS*/["@creatio-devkit/common"] /**SCHEMA_DEPS*/, function/**SCHEMA_ARGS*/(sdk)/**SCHEMA_ARGS*/ {
 ...
 };
});

Add the CanImportFromExcel attribute that stores the user's access permission data to the viewModelConfig
schema section.

viewModelConfigviewModelConfig schema section

2.

viewModelConfig: /**SCHEMA_VIEW_MODEL_CONFIG*/{
 "attributes": {
 ...,
 /* The attribute that stores the user's access permission data. */
 "CanImportFromExcel": {}
 }
}/**SCHEMA_VIEW_MODEL_CONFIG*/,

Bind the visible property of the ExcelDataImportButton element to the CanImportFromExcel model attribute in
the viewConfigDiff schema section. The visible property flags the button as visible.

viewConfigDiffviewConfigDiff schema section

3.

Hide the feature on a page due to insufficient access permissions | 62

© 2023 Creatio. All rights reserved.

Outcome of the example

viewConfigDiff: /**SCHEMA_VIEW_CONFIG_DIFF*/[
 {
 "operation": "insert",
 "name": "ExcelDataImportButton",
 "values": {
 ...,
 /* The property that flags the button as visible. Bound to the CanImportFromExcel attribute. */
 "visible": "$CanImportFromExcel"
 },
 ...
 }
]/**SCHEMA_VIEW_CONFIG_DIFF*/,

Add a custom implementation of the crt.HandlerViewModelInitRequest system query handler to the handlers
schema section. Execute the handler when Creatio initializes the View model.

handlershandlers schema section

Complete source code of the page schema

4.

Create an instance of the service that checks access permissions from @creatio-devkit/common .a.

Retrieve data about the user's access permission to the CanImportFromExcel system operation.b.

Specify the data in the CanImportFromExcel attribute.c.

handlers: /**SCHEMA_HANDLERS*/[
 {
 request: "crt.HandleViewModelInitRequest",
 /* The custom implementation of the system query handler. */
 handler: async (request, next) => {
 /* Create an instance of the service that checks access permissions from @creatio-devkit/common. */
 const rightService = new sdk.RightsService();
 /* Retrieve data about the user's access permission to the CanImportFromExcel system operation. */
 const canImportFromExcel = await rightService.getCanExecuteOperation('CanImportFromExcel');
 /* Specify the data in the CanImportFromExcel attribute. */
 request.$context.CanImportFromExcel = canImportFromExcel;
 /* Call the next handler if it exists and return its result. */
 return next?.handle(request);
 },
 }
] /**SCHEMA_HANDLERS*/,

Click [Save] on the Client Module Designer's toolbar.5.

Hide the feature on a page due to insufficient access permissions | 63

© 2023 Creatio. All rights reserved.

To view the outcome of the example without the access permission:

As a result, Creatio will hide the [Excel data import] button that starts Excel data import on the Rights Service
app page.

To view the outcome of the example with the access permission:

As a result, Creatio will display the [Excel data import] button that starts Excel data import on the
Rights Service app page.

Open a page from a custom handler
 Beginner

Creatio 8 Atlas uses the sdk.HandlerChainService service to open pages. Creatio 7.X and Creatio 8 Atlas use the
same method to open record pages. You can pass the needed default column values when Creatio adds a
record.

Creatio 8 Atlas provides the following actions to open pages from a custom handler:

Log in to the app as a user who lacks the permission to import data from Excel. For example, create a new
user or revoke the permission from an existing user. To add a user, follow the guide in the user
documentation: Add users. To set up access permissions, follow the guide in the user documentation: System
operation permissions. The [Excel import] (CanImportFromExcel code) system operation manages Excel data
import.

1.

Open the Rights Service app page and click [Run app].2.

Click [New] on the Rights Service app toolbar.3.

Refresh the Rights Service app page.1.

Click [New] on the Rights Service app toolbar.2.

Open a record page from a custom handler.

Open a Freedom UI page from a custom handler.

Open a page from a custom handler | 64

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=1441
https://academy.creatio.com/documents?id=2000

Open a record page from a custom handler

View a detailed example that opens a record page in a separate article: Open a record page from a custom
handler.

Open a Freedom UI page from a custom handler

Add a page button that opens the record page on click at step 1 of the Freedom UI page customization
procedure if needed.

1.

Set up how to open the record page from a custom handler at step 2 of the Freedom UI page
customization procedure.

2.

Enable the sdk.HandlerChainService service that opens pages. Enable the service similarly to the display
procedure for the value of system variables.

a.

Bind the clicked property to the corresponding query in the viewConfigDiff schema section. Describe
the business logic that opens the page in the handlers schema section. The clicked property is
responsible for the action performed on button click.

View an example that binds the clicked property to the usr.SomeRequest custom query below.

viewConfigDiff schema section

b.

Add the implementation of a custom query to the handlers schema section.

To open a page:

View an example of the usr.SomeRequest query handler that sends the crt.UpdateRecordRequest system
query below. The crt.UpdateRecordRequest query opens the page of the SomeSchemaName record with the
SomeRecordId ID.

handlers schema section

To open the page and populate the fields with the specified values:

View an example of the usr.SomeRequest query handler that sends the crt.CreateRecordRequest system
query below. The crt.CreateRecordRequest query opens the SomeSchemaName record page and populates the
[SomeField] field with the "SomeRecordId" value.

handlers schema section

c.

Get an instance of the sdk.HandlerChainService singleton service that opens pages.a.

Send a crt.UpdateRecordRequest system query that opens the page by the specified ID.b.

Get an instance of the sdk.HandlerChainService singleton service that opens pages.a.

Send the crt.CreateRecordRequest system query that creates a page with fields populated with the
specified values.

b.

Take steps 1-2 from the procedure to open the record page from a custom handler.1.

Open a page from a custom handler | 65

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15370&anchor=title-3836-1
https://academy.creatio.com/documents?id=15370&anchor=title-3836-1
https://academy.creatio.com/documents?id=15380
https://academy.creatio.com/documents?id=15365
https://academy.creatio.com/documents?id=15346&anchor=title-3836-15

View a detailed example that opens a Freedom UI page in a separate article: Open a Freedom UI page from a
custom handler.

Open a record page from a custom handler
 Medium

Example. Add the following buttons to the record page of the custom [Handler Chain Service] section:

Records open similarly in Creatio versions 7.X and 8.X. When Creatio adds a new record, you can pass the
needed default column values.

1. Set up the UI of the pages

Set up how to open a Freedom UI page from a custom handler at step 2 of the procedure for opening
the record page from a custom handler. To do this, add the implementation of a custom query to the
handlers schema section.

View an example usr.SomeRequest query handler that sends the crt.OpenPageRequest system query below.
The crt.OpenPageRequest query opens the SomePageName page.

handlers schema section

2.

Get an instance of the sdk.HandlerChainService singleton service that opens pages.a.

Send a crt.OpenPageRequest system query that opens the Freedom UI page with the specified name.b.

[Edit contact]. Must open the page of the contact that has the specified ID.

[Create request]. Must open the page of a new request in the custom [Requests] section. The [Name
] field must be populated with the "New request" value.

Set up the UI of the custom [Requests] section page. Create a custom Requests app based on the
[Records & business processes] template. To do this, follow the guide in the user documentation: Create a
custom app.

The [Requests form page] page includes the [Name] field by default.

1.

Set up the UI of the custom [Handler Chain Service] section page.2.

Click on the Requests app page.a.

Create a custom Handler Chain Service app based on the [Records & business processes] template. To
do this, follow the guide in the user documentation: Create a custom app.

b.

Open the [Handler Chain Service form page] page in the working area of the Handler Chain Service app
page.

c.

Delete the [Name] field the [Handler Chain Service form page] page includes by default.d.

Add a button that opens the page of the contact that has the specified ID.e.

Open a record page from a custom handler | 66

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15346&anchor=title-3836-15
https://academy.creatio.com/documents?id=15366
https://academy.creatio.com/documents?id=2377
https://academy.creatio.com/documents?id=2377

2. Set up the way record pages open
Configure the business logic in the Client Module Designer. For this example, set up the way record pages open.

Add a [Button] type component to the toolbar of the Freedom UI Designer.a.

Click in the action panel of the Freedom UI Designer and set the [Title] button property in the

setup area to "Edit contact."

b.

Add a button that opens the page of a new request in the custom [Requests] section.f.

Add a [Button] type component to the toolbar of the Freedom UI Designer.a.

Click in the action panel of the Freedom UI Designer and fill out the button properties in the

setup area.

b.

Set [Title] to "Create request."

Select "Primary" in the [Style] property.

Click in the action panel of the Freedom UI Designer. After you save the page settings, Creatio

opens the source code of the Freedom UI page.

g.

Enable the sdk.HandlerChainService service that opens pages. To do this, add @creatio-devkit/common to the
AMD module as a dependency.

AMD module dependencies

1.

/* Declare the AMD module. */
define("UsrAppHandlerChainSe_FormPage", /**SCHEMA_DEPS*/["@creatio-devkit/common"] /**SCHEMA_DEPS*/, function/**SCHEMA_ARGS*/(sdk)/**SCHEMA_ARGS*/ {
 ...
 };

Open a record page from a custom handler | 67

© 2023 Creatio. All rights reserved.

});

Change the clicked property value in the viewConfigDiff schema section to the following:

The clicked property handles the action executed on button click.

viewConfigDiffviewConfigDiff schema section

2.

usr.EditContactRequest for the EditContactButton element

usr.CreateUsrRequestRequest for the CreateRequestButton element

viewConfigDiff: /**SCHEMA_VIEW_CONFIG_DIFF*/[
 {
 "operation": "insert",
 "name": "EditContactButton",
 "values": {
 ...,
 "clicked": {
 /* Bind the sending of the custom usr.EditContactRequest query to the clicked button event. */
 "request": "usr.EditContactRequest"
 }
 },
 ...
 },
 {
 "operation": "insert",
 "name": "CreateRequestButton",
 "values": {
 ...,
 "clicked": {
 /* Bind the sending of the custom usr.CreateUsrRequestRequest query to the clicked button event. */
 "request": "usr.CreateUsrRequestRequest"
 }
 },
 ...
 }
]/**SCHEMA_VIEW_CONFIG_DIFF*/,

Implement custom query handlers in the handlers schema section:3.

usr.EditContactRequest

Retrieve the instance of the sdk.HandlerChainService singleton service that opens pages.

Send the crt.UpdateRecordRequest system query that opens the page of the contact that has the
specified ID. You can view the ID of the contact whose page to open in the browser address bar. For
this example, open the page of the Alexander Wilson contact whose ID is "98dae6f4-70ae-4f4b-9db5-
e4fcb659ef19."

Open a record page from a custom handler | 68

© 2023 Creatio. All rights reserved.

handlershandlers schema section

usr.CreateUsrRequestRequest

Retrieve the instance of the sdk.HandlerChainService singleton service that opens pages.

Send the crt.CreateRecordRequest system query that opens the page of a new request. Populate the
[Name] field with the "New request" value.

handlers: /**SCHEMA_HANDLERS*/[
 {
 request: "usr.EditContactRequest",
 /* Implement the custom query handler. */
 handler: async (request, next) => {
 /* Retrieve the instance of the singleton service that opens pages. */
 const handlerChain = sdk.HandlerChainService.instance;
 /* Send the crt.UpdateRecordRequest system query that opens the page of the contact that has the specified ID. */
 await handlerChain.process({
 type: 'crt.UpdateRecordRequest',
 entityName: 'Contact',
 recordId: '98dae6f4-70ae-4f4b-9db5-e4fcb659ef19',
 $context: request.$context
 });
 /* Call the next handler if it exists and return its result. */
 return next?.handle(request);
 }
 },
 {
 request: "usr.CreateUsrRequestRequest",
 /* Implement the custom query handler. */
 handler: async (request, next) => {
 /* Retrieve the instance of the singleton service that opens pages. */
 const handlerChain = sdk.HandlerChainService.instance;
 /* Send the crt.CreateRecordRequest system query that opens the page of a new request. Populate the [Name] field with the specified value. */
 await handlerChain.process({
 type: 'crt.CreateRecordRequest',
 entityName: 'UsrAppRequests',
 defaultValues: [{
 attributeName: 'UsrName',
 value: 'New request'
 }],
 $context: request.$context
 });
 /* Call the next handler if it exists and return its result. */
 return next?.handle(request);
 }
 }
] /**SCHEMA_HANDLERS*/,

Open a record page from a custom handler | 69

© 2023 Creatio. All rights reserved.

Outcome of the example
To view the outcome of the example that opens the contact page:

As a result, Creatio will open the page of the Alexander Wilson contact whose ID is "98dae6f4-70ae-4f4b-9db5-
e4fcb659ef19."

To view the outcome of the example that opens the request page and populates the field:

As a result, Creatio will open the page of a new request in the custom [Requests] section. The [Name] field will
be populated with the "New request" value.

Complete source code of the page schema

Click [Save] on the Client Module Designer's toolbar.4.

Open the Handler Chain Service app page and click [Run app].1.

Click [New] on the Handler Chain Service app toolbar.2.

Click [Edit contact] on the record page of the custom Handler Chain Service section.3.

Refresh the Handler Chain Service app page.1.

Click [New] on the Handler Chain Service app toolbar.2.

Click [Create request] on the record page of the custom Handler Chain Service section.3.

Open a record page from a custom handler | 70

© 2023 Creatio. All rights reserved.

Open a Freedom UI page from a custom
handler

 Medium

Example. Add an [Open page] button to the record page of the custom [Handler Chain Service] section.
The button must open the StudioHomePage Freedom UI page.

1. Set up the page UI

2. Set up the way the Freedom UI page opens
Configure the business logic in the Client Module Designer. For this example, set up the way the Freedom UI page

Create a custom Handler Chain Service app based on the [Records & business processes] template. To do
this, follow the guide in the user documentation: Create a custom app.

1.

Open the [Handler Chain Service form page] page in the working area of the Handler Chain Service app
page.

2.

Add a button that opens the StudioHomePage page.3.

Add a [Button] type component to the toolbar of the Freedom UI Designer.a.

Click in the action panel of the Freedom UI Designer and set the [Title] button property in the

setup area to "Open page."

b.

Click in the action panel of the Freedom UI Designer. After you save the page settings, Creatio opens

the source code of the Freedom UI page.

4.

Open a Freedom UI page from a custom handler | 71

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=2377

opens.

Enable the sdk.HandlerChainService service that opens pages. To do this, add @creatio-devkit/common to the
AMD module as a dependency.

AMD module dependencies

1.

/* Declare the AMD module. */
define("UsrAppHandlerChainSe_FormPage", /**SCHEMA_DEPS*/["@creatio-devkit/common"] /**SCHEMA_DEPS*/, function/**SCHEMA_ARGS*/(sdk)/**SCHEMA_ARGS*/ {
 ...
 };
});

Change the clicked property value for the OpenPageButton element in the viewConfigDiff schema section to
usr.OpenUsrTestPageRequest . The clicked property handles the action executed on button click.

viewConfigDiffviewConfigDiff schema section

2.

viewConfigDiff: /**SCHEMA_VIEW_CONFIG_DIFF*/[
 {
 "operation": "insert",
 "name": "OpenPageButton",
 "values": {
 ...,
 "clicked": {
 /* Bind the sending of the custom usr.OpenUsrTestPageRequest query to the clicked button event. */
 "request": "usr.OpenUsrTestPageRequest"
 }
 },
 ...
 }
]/**SCHEMA_VIEW_CONFIG_DIFF*/,

Implement the usr.OpenUsrTestPageRequest custom query handler in the handlers schema section.

handlershandlers schema section

3.

Retrieve the instance of the sdk.HandlerChainService singleton service that opens pages.a.

Send the crt.OpenPageRequest system query that opens the StudioHomePage page.b.

handlers: /**SCHEMA_HANDLERS*/[
 {
 request: "usr.OpenUsrTestPageRequest",
 /* Implement the custom query handler. */
 handler: async (request, next) => {
 /* Retrieve the instance of the singleton service that opens pages. */

Open a Freedom UI page from a custom handler | 72

© 2023 Creatio. All rights reserved.

Outcome of the example
To view the outcome of the example:

As a result, Creatio will open the StudioHomePage Freedom UI page.

Custom UI component based on a classic

Complete source code of the page schema

 const handlerChain = sdk.HandlerChainService.instance;
 /* Send the crt.OpenPageRequest system query that opens the Freedom UI page. */
 await handlerChain.process({
 type: 'crt.OpenPageRequest',
 schemaName: 'StudioHomePage',
 $context: request.$context
 });
 /* Call the next handler if it exists and return its result. */
 return next?.handle(request);
 }
 }
] /**SCHEMA_HANDLERS*/,

Click [Save] on the Client Module Designer's toolbar.4.

Open the Handler Chain Service app page and click [Run app].1.

Click [New] on the Handler Chain Service app toolbar.2.

Click [Open Page] on the record page of the custom Handler Chain Service section.3.

Open a Freedom UI page from a custom handler | 73

© 2023 Creatio. All rights reserved.

Custom UI component based on a classic
Creatio page element

 Beginner

In Creatio, you can expand the out-of-the-box set of Freedom UI page components with custom components.

Creatio lets you implement the following custom component types:

You can implement a custom component based on a classic Creatio page element in Creatio version 8.0.2
Atlas and later.

To implement a custom component based on a classic Creatio page element:

1. Create a custom component

Custom component based on a classic Creatio page element. Supported in Creatio 8.0.2 Atlas and later.

Remote module. Supported in Creatio 8.0.3 Atlas and later.

Create a custom component.1.

Add the custom component to the Freedom UI page.2.

Create a module schema. To do this, follow the instruction in a separate article: Client module.1.

Implement a custom component.2.

Add a dependency on the @creatio-devkit/common library to the AMD module.

Example that adds a dependency to the UsrAppClientSchemaNameUsrAppClientSchemaName AMD module

a.

/* AMD module declaration. */
define("UsrAppClientSchemaName", ["@creatio-devkit/common"], function (sdk) {
 ...
});

Declare the component class.

Example that declares the UsrAppClientSchemaNameUsrAppClientSchemaName class

b.

/* AMD module declaration. */
define("UsrAppClientSchemaName", ["@creatio-devkit/common"], (sdk) {
 /* Declare the class. */
 class UsrAppClientSchemaName extends HTMLElement {
 constructor() {
 super();
 const shadowDom = this.attachShadow({mode: 'open'});

Custom UI component based on a classic Creatio page element | 74

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15106&anchor=title-3028-9

2. Add the custom component to the Freedom UI page

 shadowDom.innerHTML = '<h1>UsrAppClientSchemaName works!</h1>'
 }
 }
 ...
});

Register the component.

Example that registers the UsrAppClientSchemaNameUsrAppClientSchemaName component

c.

/* AMD module declaration. */
define("UsrAppClientSchemaName", ["@creatio-devkit/common"], (sdk) {
 ...
 /* Register the component. */
 customElements.define('usr-custom-view-element', UsrAppClientSchemaName);
 ...
});

Register the web component as a view element.

Example that registers the usr-custom-view-elementusr-custom-view-element component

d.

/* AMD module declaration. */
define("UsrAppClientSchemaName", ["@creatio-devkit/common"], (sdk) {
 ...
 /* Register the web component as a view element. */
 sdk.registerViewElement({
 type: 'usr.CustomViewElement',
 selector: 'usr-custom-view-element'
 });
});

Add the custom component module to the AMD module declaration as a dependency.

Example that adds the UsrAppClientSchemaNameUsrAppClientSchemaName dependency

1.

/* AMD module declaration. */
define("UsrAppClientSchemaName1", ["UsrAppClientSchemaName"], () {
 ...
});

Add the configuration object of the module that contains the custom component to the viewConfigDiff2.

Custom UI component based on a classic Creatio page element | 75

© 2023 Creatio. All rights reserved.

Note. It is not possible to add a custom component based on a classic Creatio page element to the
component library of the Freedom UI Designer. The Freedom UI Designer displays a placeholder instead of
the custom component on the canvas. This is because classic Creatio page elements are implemented
using the ExtJs framework. To display a custom component in the element library of the Freedom UI
Designer, implement a remote module. To do this, follow the instruction in a separate article: Implement a
remote module.

View a detailed example that implements the custom component in a separate article: Implement a custom
component based on a classic Creatio page.

Implement a custom component based on
a classic Creatio page

 Medium

The example is relevant to version 8.0.2 and later.

schema section.

View the configuration object of the module that contains the UsrCustomViewElement custom component
below.

viewConfigDiffviewConfigDiff schema section

viewConfigDiff: /**SCHEMA_VIEW_CONFIG_DIFF*/[
 {
 "operation": "insert",
 "name": "UsrAppClientSchemaName",
 "values": {
 "type": "usr.CustomViewElement",
 "layoutConfig": {
 "column": 1,
 "row": 1,
 "colSpan": 3,
 "rowSpan": 1
 }
 },
 "parentName": "Main",
 "propertyName": "items",
 "index": 0
 }
]/**SCHEMA_VIEW_CONFIG_DIFF*/,

Implement a custom component based on a classic Creatio page | 76

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15017
https://academy.creatio.com/documents?id=15374

Example. Display the history of the selected account on the [Account timeline] tab of the record page of
the [Requests] custom section. The tab is a web component. Implement the web component based on
the 7.X [Timeline] tab displayed on the contact page.

1. Create an app
Create a custom Requests app based on the [Records & business processes] template. To do this, follow the
procedure in the user documentation: Create a custom app.

1.

Open the [Requests form page] page in the workspace of the Requests app page.

The [Requests form page] page includes the [Name] field by default.

2.

Add an account field:3.

Add a new field of the [Dropdown] type to the Freedom UI Designer’s workspace.a.

Click the button on the Freedom UI Designer’s action panel and fill out the field properties in the

setup area:

b.

Set [Title] to "Account."

Set [Code] to "UsrAccount."

Select "Account" in the [Lookup] property.

Clear the [Enable adding new values] checkbox.

Add a tab that contains the history of the selected account.4.

Add a new [Tabs] layout element to the Freedom UI Designer’s workspace.a.

Delete the [Tab 2] tab the [Requests form page] page includes by default.b.

Click the button on the Freedom UI Designer’s action panel and specify "Account timeline" in the

[Title] tab property in the setup area.

c.

Implement a custom component based on a classic Creatio page | 77

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=2377

2. Create a custom web component

Click [Save] on the Freedom UI Designer’s action panel.5.

Go to the [Configuration] section and select a custom package to add the schema.1.

Click [Add] → [Module] on the section list toolbar.2.

Fill out the schema properties in the Module Designer.3.

Set [Code] to "UsrTimelineModule."

Set [Title] to "Timeline module."

Implement a custom component based on a classic Creatio page | 78

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15101&anchor=title-2093-2
https://academy.creatio.com/documents?id=15121

Implement a custom web component.4.

Add the @creatio-devkit/common , Base7xViewElement , and ckeditor-base modules as dependencies to the
AMD module declaration.

Dependencies of the UsrTimelineModuleUsrTimelineModule AMD module

a.

/* AMD module declaration. */
define("UsrTimelineModule", ["@creatio-devkit/common", "Base7xViewElement", "ckeditor-base"], function (sdk, Base7xViewElement) {
 ...
});

Declare a custom UsrTimelineModule web component class.

UsrTimelineModuleUsrTimelineModule class declaration

b.

/* AMD module declaration. */
define("UsrTimelineModule", ["@creatio-devkit/common", "Base7xViewElement", "ckeditor-base"], function (sdk, Base7xViewElement) {
 /* Class declaration. */
 class UsrTimelineModule extends Base7xViewElement {
 set primaryColumnValue(value) {
 this._primaryColumnValue = value;
 this._init();
 }

 get primaryColumnValue() {
 return this._primaryColumnValue;
 }

 set entitySchemaName(value) {
 this._entitySchemaName = value;
 this._init();
 }

 get entitySchemaName() {
 return this._entitySchemaName;
 }

 set cardSchemaName(value) {
 this._cardSchemaName = value;
 this._init();
 }

 get cardSchemaName() {
 return this._entitySchemaName;
 }

Implement a custom component based on a classic Creatio page | 79

© 2023 Creatio. All rights reserved.

 constructor() {
 super("Timeline");
 }

 _init() {
 if (this._primaryColumnValue && this._cardSchemaName && this._entitySchemaName) {
 this.initContext(() => {
 this._moduleId = this.sandbox.id + "_UsrTimelineModule";
 this.sandbox.subscribe("GetColumnsValues", (attributeNames) => this._getColumnValues(attributeNames), null, [this._moduleId]);
 this.sandbox.subscribe("GetEntityInfo", () => this._getEntityInfo(), null, [this._moduleId]);
 this._loadTimelineSchemaModule();
 });
 }
 }

 _loadTimelineSchemaModule() {
 this._moduleId = this.sandbox.loadModule("BaseSchemaModuleV2", {
 id: this._moduleId,
 renderTo: this._renderTo,
 instanceConfig: {
 schemaName: "TimelineSchema",
 isSchemaConfigInitialized: true,
 useHistoryState: false,
 showMask: true,
 parameters: {
 viewModelConfig: {
 "CardSchemaName": this._cardSchemaName,
 "ReferenceSchemaName": this._entitySchemaName,
 "InitialConfig": {
 "entities": []
 }
 },
 },
 }
 });
 }

 _getColumnValues(attributeNames) {
 const values = {};
 attributeNames?.forEach((attributeName) => {
 switch (attributeName) {
 case "Id":
 values[attributeName] = this._primaryColumnValue?.value;
 break;
 case "Name":
 values[attributeName] = this._primaryColumnValue?.displayValue;
 break;
 default: break;
 }

Implement a custom component based on a classic Creatio page | 80

© 2023 Creatio. All rights reserved.

 });
 return values;
 }

 _getEntityInfo() {
 return {
 entitySchemaName: this._entitySchemaName,
 primaryColumnValue: this._primaryColumnValue?.value,
 primaryDisplayColumnValue: this._primaryColumnValue?.displayValue
 };
 }

 getMessages() {
 const messages = super.getMessages();
 return Object.assign(messages, {
 "GetColumnsValues": {
 mode: Terrasoft.MessageMode.PTP,
 direction: Terrasoft.MessageDirectionType.SUBSCRIBE
 },
 "GetEntityInfo": {
 mode: Terrasoft.MessageMode.PTP,
 direction: Terrasoft.MessageDirectionType.SUBSCRIBE
 }
 });
 }

 disconnectedCallback() {
 this.sandbox.unloadModule(this._moduleId, this._renderTo);
 }
 }
 ...
});

Register the UsrTimelineModule web component on the page.

Register the UsrTimelineModuleUsrTimelineModule web component

c.

/* AMD module declaration. */
define("UsrTimelineModule", ["@creatio-devkit/common", "Base7xViewElement", "ckeditor-base"], function (sdk, Base7xViewElement) {
 ...
 /* Web component registration. */
 customElements.define('usr-timeline', UsrTimelineModule);
 ...
});

Register the usr-timeline web component as a visual element.d.

Implement a custom component based on a classic Creatio page | 81

© 2023 Creatio. All rights reserved.

3. Add the custom web component to the Freedom UI page

Complete source code of the page schema

usr-timelineusr-timeline web component registration

/* AMD module declaration. */
define("UsrTimelineModule", ["@creatio-devkit/common", "Base7xViewElement", "ckeditor-base"], function (sdk, Base7xViewElement) {
 ...
 /* Register a web component as a visual element. */
 sdk.registerViewElement({
 type: 'usr.Timeline',
 selector: 'usr-timeline',
 inputs: {
 primaryColumnValue: {},
 cardSchemaName: {},
 entitySchemaName: {}
 }
 });
});

Click [Save] on the Module Designer’s toolbar.5.

Open the UsrRequests_FormPage schema of the Freedom UI [Requests form page] page in the [Configuration
] section.

1.

Click the button on the Freedom UI Designer’s action panel. This opens the source code of the

Freedom UI page.

2.

Add the custom web component.3.

Add the UsrTimelineModule module of the custom web component as a dependency to the AMD module
declaration.

Dependencies of the UsrRequests_FormPageUsrRequests_FormPage AMD module

a.

/* AMD module declaration. */
define("UsrRequests_FormPage", /**SCHEMA_DEPS*/["UsrTimelineModule"]/**SCHEMA_DEPS*/, function/**SCHEMA_ARGS*/()/**SCHEMA_ARGS*/ {
 ...
});

Add the configuration object of the UsrTimelineModule module with the custom web component to the
viewConfigDiff schema section.

viewConfigDiffviewConfigDiff schema section

b.

Implement a custom component based on a classic Creatio page | 82

© 2023 Creatio. All rights reserved.

Outcome of the example
To view the outcome of the example:

As a result, Creatio will display the [Account timeline] tab of the selected "Accom" account on the request page.

Complete source code of the page schema

viewConfigDiff: /**SCHEMA_VIEW_CONFIG_DIFF*/[
 ...,
 {
 "operation": "insert",
 "name": "Timeline_qwerty",
 "values": {
 "type": "usr.Timeline",
 "layoutConfig": {
 "column": 1,
 "row": 1,
 "colSpan": 12,
 "rowSpan": 8
 },
 "primaryColumnValue": "$UsrAccount",
 "cardSchemaName": "AccountPageV2",
 "entitySchemaName": "Account"
 },
 "parentName": "GridContainer_qaocexw",
 "propertyName": "items",
 "index": 0
 },
 ...
]/**SCHEMA_VIEW_CONFIG_DIFF*/,

Click [Save] on the Client Module Designer’s toolbar.4.

Open the Requests app page and click [Run app]1.

Click [New] on the Requests app toolbar.2.

Enter "Request’s name" in the [Name] field.3.

Select an account in the [Account] field, for example, "Accom."4.

Implement a custom component based on a classic Creatio page | 83

© 2023 Creatio. All rights reserved.

Freedom UI Designer will display a stub in place of the custom web component.

Set up a custom action menu for list and

Set up a custom action menu for list and list records | 84

© 2023 Creatio. All rights reserved.

list records
 Easy

You can set up a custom action menu for the list and list records in Creatio version 8.0.4 Atlas and later.

Creatio lets you use action menu that contains default actions for the list and list records or set up a custom
action menu.

By default, the action menu for the list contains the following actions:

By default, the action menu for list records contains the following actions:

Set up a custom action menu
To set up a custom action menu for the list and list records:

[Save list settings for all users]

[Reset to default list settings]

[Open]

[Copy]

[Delete]

Open the [Freedom UI page] schema that contains the list.1.

Go to the viewConfigDiff schema section and find the configuration object whose the type property value is
"crt.DataGrid". The DataGrid component implements the [List] type component in the front-end.

2.

Implement a custom action menu.

Attention. Add a configuration object to the property array for each action menu item.

To add an item to the action menu, use the following properties:

3.

Add the headerToolbarItems array of properties to implement a custom action menu for the list.

Add the rowToolbarItems array of properties to implement a custom action menu for list records.

type . The registered name of the component to display in the action menu item. Use the "crt.MenuItem"
value.

caption . The text to display in the action menu item. Can be a constant or
"#ResourceString(SomeLocalizableString)#" macro. SomeLocalizableString is the localizable string name
in the schema of the Freedom UI page.

icon . The name of the icon to display in the action menu item, for example, "edit-row-action". We
recommend using the icon property values of the icon button. Learn more in a separate article: Button
component.

Set up a custom action menu for list and list records | 85

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15375&anchor=title-3750-4

Close the WebSocket when destroying the
View of the model

 Medium

View the example of the rowToolbarItems array of properties below. This example implements a custom action
menu for list records.

Example of the rowToolbarItemsrowToolbarItems array of properties

As a result, the custom action menu for list records will contain only the [Open] item.

clicked . The action to execute on item click. Learn more about the clicked property in a separate article:
Open a page from a custom handler. Set the useRelativeContext property to true for the
rowToolbarItems array. Do not use the useRelativeContext property for the headerToolbarItems array. The
useRelativeContext property specifies the ViewModel of a page or list record to use in the query
processing.

viewConfigDiff: /**SCHEMA_VIEW_CONFIG_DIFF*/[
 {
 "operation": "merge",
 "name": "DataTable",
 "values": {
 ...,
 "rowToolbarItems": [{
 "type": 'crt.MenuItem',
 "caption": 'DataGrid.RowToolbar.Open',
 "icon": 'edit-row-action',
 "clicked": {
 "request": 'crt.UpdateRecordRequest',
 "params": {
 "itemsAttributeName": "Items",
 "recordId": "$Items.PDS_Id",
 },
 "useRelativeContext": true
 }
 }]
 }
 ...
 },
 ...
]/**SCHEMA_VIEW_CONFIG_DIFF*/

Click [Save] on the Client Module Designer's toolbar.4.

Close the WebSocket when destroying the View of the model | 86

© 2023 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15384&anchor=title-3836-15

To close the WebSocket when destroying the View of the model, add a custom implementation of the
crt.HandleViewModelDestroyRequest system query handler to the handlers schema section. The handler is
executed when the View of the model is destroyed (for example, when you open another page). Designed to
destroy resources. We do not recommend writing asynchronous code in the handler (server calls, timeouts, etc.)
except for reading the value of attributes.

View an example of the crt.HandleViewModelDestroyRequest query handler that closes the custom SomeWebSocket
WebSocket below.

For Creatio version 8.0.6 and later

For Creatio version 8.0-8.0.5

Close the WebSocket when destroying the View of the model | 87

© 2023 Creatio. All rights reserved.

	Table of Contents
	Freedom UI page customization basics
	Page customization procedure
	Close the WebSocket when destroying the View of the model

	Manage the system setting values on a page
	1. Set up page UI
	2. Manage system setting values
	Outcome of the example

	Change where the query handler is invoked on the page
	1. Set up page UI
	2. Change the origin of the query handler call
	Outcome of the example

	Customize page fields
	Customize the field display condition
	Set up a condition that locks the field
	Set up a field population condition
	Set up a field requirement condition
	Implement field value validation
	Implement field value conversion

	Set up the display condition of a field on a page
	1. Set up the page UI
	2. Set up the field display condition
	Outcome of the example

	Set up the condition that locks the field on a page
	1. Set up the page UI
	2. Set up the condition that locks the field
	Outcome of the example

	Set up the condition that populates a field on a page
	1. Set up the page UI
	2. Set up the condition that populates the field
	Outcome of the example

	Set up the requirement condition of a field on a page
	1. Set up the page UI
	2. Set up the condition that makes the field required
	Outcome of the example

	Implement the field value validation on a page
	1. Set up the page UI
	2. Set up the field validation
	Outcome of the example

	Implement the field value conversion on a page
	1. Set up the page UI
	2. Set up the field value conversion
	Outcome of the example

	Display the value of a system variable
	Display the values of system variables on a page
	1. Set up the page UI
	2. Set up the retrieval of system variable values
	Outcome of the example

	Send a web service request and handle the response
	Send a request to an external web service and handle its result on a page
	1. Set up the page UI
	2. Send the web service request and handle its results
	Outcome of the example

	Hide functionality on a page
	Hide functionality during development
	Hide functionality due to insufficient access permissions

	Hide a feature at the development stage on a page
	1. Set up the page UI
	2. Hide the feature at the development stage
	Outcome of the example

	Hide the feature on a page due to insufficient access permissions
	1. Set up the page UI
	2. Hide the feature if the user lacks permission to access it
	Outcome of the example

	Open a page from a custom handler
	Open a record page from a custom handler
	Open a Freedom UI page from a custom handler

	Open a record page from a custom handler
	1. Set up the UI of the pages
	2. Set up the way record pages open
	Outcome of the example

	Open a Freedom UI page from a custom handler
	1. Set up the page UI
	2. Set up the way the Freedom UI page opens
	Outcome of the example

	Custom UI component based on a classic Creatio page element
	1. Create a custom component
	2. Add the custom component to the Freedom UI page

	Implement a custom component based on a classic Creatio page
	1. Create an app
	2. Create a custom web component
	3. Add the custom web component to the Freedom UI page
	Outcome of the example

	Set up a custom action menu for list and list records
	Set up a custom action menu

	Close the WebSocket when destroying the View of the model

