
Landings
Version 8.0

This documentation is provided under restrictions on use and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this documentation, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you
find any errors, please report them to us in writing.

© 2024 Creatio. All rights reserved.

4

4

4

5

5

6

6

6

17

18

21

22

22

23

23

24

24

Table of Contents

Web-To-Object

Implementing the Web-to-Object service

External API of the Web-to-Object service

Using the Web-to-Object service

Set up web form for a custom object

Case description

Source code

Case implementation algorithm

Implement a handler to create an entity using a web form

1. Implement a custom handler

2. Register a custom handler in the database

The outcome of the example

Web-to-Case

The logic of the automatic filling of case fields.

Recommendations for the execution of project solutions

Create Web-to-Case landing pages

Steps to create Web-to-Case landing

Table of Contents | 3

© 2024 Creatio. All rights reserved.

Web-To-Object
 Advanced

Web-to-Object is a mechanism for implementing simple one-way integrations with Creatio. It enables you to
create records in Creatio sections (leads, cases, orders, etc.) simply by sending the necessary data to the Web-
to-Object service.

The most common cases of using the Web-to-Object service are the following:

Using Web-to-Object will enable you to configure the registration of virtually any objects in Creatio (e.g., a lead, an
order or a case).

The [Landings and web-forms] section is used to work with landing in Creatio. This section is available in all
Creatio products, however it might not be enabled in workplaces of certain products (e.g., Sales Creatio). Each
record in the [Landing and web-forms] section corresponds to a landing page. The record edit page features a
[Landing setup] tab.

Implementing the Web-to-Object service
The main functionality of the Web-To-Object mechanism is contained in the WebForm package and is common to
all products. Depending on the product, this functionality may be extended by the Web-to-Lead (the
WebLeadForm package), Web-to-Order (the WebOrderForm package), and Web-to-Case (the WebCaseForm package)
mechanisms.

To process data received from a web-form of a landing, the WebForm package implements the
GeneratedObjectWebFormService configuration service (the Terrasoft.Configuration.GeneratedWebFormService
class). The data of the landing’s web-form is accepted as the argument of the
public string SaveWebFormObjectData(FormData formData) method. They are then passed to the
public void HandleForm(FormData formData) method of the Terrasoft.Configuration.WebFormHandler class, in
which the corresponding system object is created.

External API of the Web-to-Object service
To use the service, send a POST request to

For example

Integrating Creatio with custom landings and web forms. The service call is performed from a landing (a
customized custom page with a web form), after the visitor submits the completed web form.

Integrating with external systems to create Creatio objects.

[Creatio application path]/0/ServiceModel/GeneratedObjectWebFormService.svc/SaveWebFormObjectData

Web-To-Object | 4

© 2024 Creatio. All rights reserved.

https://academy.creatio.com/docs/developer/application_components/landings/web_to_case/overview

The content type of the request is application/json. In addition to the required cookies, the JSON object containing
the data of the web-form must be added to the content of the request. JSON object example:

Using the Web-to-Object service

Integrating with custom landings and web-forms

Integrating with external systems
To integrate with external systems:

1. Create a new record in the [Landing and web-forms] section

2. Get the address to the service (serviceUrl property) and the identifier (the landingId property) from the
configuration object of the created record.

3. Implement the process of sending a POST-request to the Web-to-Object service (at the received address) in
the external system. Add the necessary data to the request in form of a JSON object. Set the value of the
received identifier to the formId property of the JSON object.

Set up web form for a custom object

http://mycreatio.com/0/ServiceModel/GeneratedObjectWebFormService.svc/SaveWebFormObjectData

{
 "formData":{
 "formId":"d66ebbf6-f588-4130-9f0b-0ba3414dafb8",
 "formFieldsData":[
 {"name":"Name","value":"John Smith"},
 {"name":"Email","value":"j.smith@creatio.com"},
 {"name":"Zip","value":"00000"},
 {"name":"MobilePhone","value":"0123456789"},
 {"name":"Company","value":"Creatio"},
 {"name":"Industry","value":""},
 {"name":"FullJobTitle","value":"Sales Manager"},
 {"name":"UseEmail","value":""},
 {"name":"City","value":"Boston"},
 {"name":"Country","value":"USA"},
 {"name":"Commentary","value":""},
 {"name":"BpmHref","value":"http://localhost/Landing/"},
 {"name":"BpmSessionId","value":"0ca32d6d-5d60-9444-ec34-5591514b27a3"}
]
 }
}

Set up web form for a custom object | 5

© 2024 Creatio. All rights reserved.

 Medium

Create a custom Creatio object via a landing page web form on a third party website. Learn more about landing
pages in the “[Landing pages and web forms] section” article.

The general procedure of creating a custom object via a web form is as follows:

Attention. Tracking website events only works for leads and does not work for custom objects.

Case description
Create a custom [Contact] object using a landing page web form.

Source code
You can download the package with an implementation of the case using the following link.

Case implementation algorithm

1. Register a new landing page type
To do this:

In the created record, specify (Fig.1):

Fig. 1. Setting landing page parameters

Register a new landing page type.1.

Add an edit page for the web form.2.

Map the new landing page type to the created edit page.3.

Update the scripts for the web form record page.4.

Create and configure a landing page in the [Landing pages and web forms] section.5.

Deploy and set up a landing page with a web form.6.

Open the System Designer by clicking . Go to the [System setup] block –> click [Lookups].1.

Select the [Landing types] lookup.2.

Add a new record.3.

[Name] – “Contact”

[Object] – “Contact.”

Set up web form for a custom object | 6

© 2024 Creatio. All rights reserved.

https://academy.creatio.com/docs/7-17/user/crm_tools/landing_pages_and_web_forms/landing_overview/setup_landing_general_information
https://academy.creatio.com/sites/default/files/documents/downloads/SDK/Packages/sdkWebFormPackage_20.07.07_16.56.49.zip

2. Add an edit page for the web form
Run the [Add] –> [Schema of the Edit Page View Model] menu command on the [Schemas] tab in the
[Configuration] section of the custom package (Fig. 2). The procedure for creating a view model schema of the
edit page is covered in the Create a client schema article.

Fig. 2. – Adding a view model schema of the edit page

Set up web form for a custom object | 7

© 2024 Creatio. All rights reserved.

https://academy.creatio.com/docs/7-17/developer/development_tools/creatio_ide/develop_in_creatio_ide/development_in_creatio_ide#case-1185

Specify the following parameters for the created schema of the edit page view model (Fig. 3):

Fig. 3. Setting up the mini-page view model schema

The complete source code of the module is available below:

[Title] – "ContactGeneratedWebFormPage"

[Name] – "UsrContactGeneratedWebFormPage"

[Parent object] – "Edit page, landing."

Set up web form for a custom object | 8

© 2024 Creatio. All rights reserved.

Save the schema after making the changes.

Add the ContactScriptTemplate localizable string. Specify <div>Test</div> as the string value (Fig. 4).

Fig. 4. Setting up a localizable string

Save the schema after making the changes.

3. Map the new landing page type to the created edit page
To do this, add the record to the [dbo.SysModuleEdit] DB table. Execute the following SQL script to add the
record:

SQL script

// UsrContactGeneratedWebFormPage – unique schema name.
define("UsrContactGeneratedWebFormPage", ["UsrContactGeneratedWebFormPageResources"],
 function() {
 return {
 details: /**SCHEMA_DETAILS*/{}/**SCHEMA_DETAILS*/,
 methods: {
 /**
 * @inheritdoc BaseGeneratedWebFormPageV2#getScriptTemplateFromResources
 * @overriden
 */
 getScriptTemplateFromResources: function() {
 var scriptTemplate;
 if (this.getIsFeatureEnabled("OutboundCampaign")) {
 // ContactScriptTemplate – localizable string name.
 scriptTemplate = this.get("Resources.Strings.ContactScriptTemplate");
 } else {
 scriptTemplate = this.get("Resources.Strings.ScriptTemplate");
 }
 return scriptTemplate;
 }
 },
 diff: /**SCHEMA_DIFF*/[]/**SCHEMA_DIFF*/
 };
 });

Set up web form for a custom object | 9

© 2024 Creatio. All rights reserved.

Attention. 41AE7D8D-BEC3-41DF-A6F0-2AB0D08B3967 — non-editable identifier of the GeneratedWebForm
entity schema in the [dbo.SysSchema] DB table. The ID is relevant for any case featuring adding a landing
page for a custom entity.

MSSQL

-- Parameters of new landing page
DECLARE @editPageName nvarchar(250) = N'UsrContactGeneratedWebFormPage'; -- declare the name of the created schema
DECLARE @landingTypeName NVARCHAR(250) = N'Contact'; -- the type name of the landing
DECLARE @actionCaption NVARCHAR(250) = N'Contact form'; -- declare the type name for the landing in the section when creating a new record

-- Set system parameters based on new landing page
DECLARE @generatedWebFormEntityUId uniqueidentifier = '41AE7D8D-BEC3-41DF-A6F0-2AB0D08B3967';
DECLARE @cardSchemaUId uniqueidentifier = (select top 1 UId from SysSchema where Name = @editPageName);
DECLARE @pageCaption nvarchar(250) = (select top 1 Caption from SysSchema where Name = @editPageName);
DECLARE @sysModuleEntityId uniqueidentifier = (select top 1 Id from SysModuleEntity where SysEntitySchemaUId = @generatedWebFormEntityUId);
DECLARE @landingTypeId uniqueidentifier = (SELECT TOP 1 Id FROM LandingType WHERE Name = @landingTypeName);

-- Adding new Landing page variant to application interface
INSERT INTO SysModuleEdit
(Id, SysModuleEntityId, TypeColumnValue, UseModuleDetails, CardSchemaUId, ActionKindCaption, ActionKindName, PageCaption)
VALUES
(NEWID(), @sysModuleEntityId, @landingTypeId, 1, @cardSchemaUId, @actionCaption, @editPageName, @pageCaption)

PostgreSQL

DO $$
DECLARE
 v_editPageName VARCHAR(250) := N'ContactGeneratedWebFormPageV2';
 v_landingTypeName VARCHAR(250) := N'Contact';
 v_actionCaption VARCHAR(250) := N'Contact form';
 v_pageCaption varchar(250) := (select "Caption" from "SysSchema" where "Name" = v_editPageName);
 v_generatedWebFormEntityUId UUID := '41AE7D8D-BEC3-41DF-A6F0-2AB0D08B3967';
 v_cardSchemaUId UUID := (select "UId" from "SysSchema" where "Name" = v_editPageName);
 v_sysModuleEntityId UUID := (select "Id" from "SysModuleEntity" where "SysEntitySchemaUId" = v_generatedWebFormEntityUId);
 v_landingTypeId UUID := (SELECT "Id" FROM "LandingType" WHERE "Name" = v_landingTypeName);
BEGIN
 INSERT INTO "SysModuleEdit"
 ("SysModuleEntityId", "TypeColumnValue", "UseModuleDetails", "CardSchemaUId", "ActionKindCaption", "ActionKindName", "PageCaption")
 VALUES
 (v_sysModuleEntityId, v_landingTypeId, true, v_cardSchemaUId, v_actionCaption, v_editPageName, v_pageCaption);
END;
$$ LANGUAGE plpgsql;

Set up web form for a custom object | 10

© 2024 Creatio. All rights reserved.

Clear the browser cache after running the script. As a result, you will be able to add the new [Contact form]
landing type in the [Landing pages and web forms] section. However, the script that must be added to the
source code of the landing page will not be immediately available on the landing record page (Fig. 6).

Fig. 5. The record list of the [Landing pages and web forms] section

Fig. 6. Landing edit page

4. Update the scripts for the web form record page

Set up web form for a custom object | 11

© 2024 Creatio. All rights reserved.

The value of the variable contains an escaped HTML string with <script> tags and other information for setting
up web form field clusters – the columns for the created entity. This value must be localizable. To do so, execute
the following SQL script:

In the Adding entity columns block, add the names of the entity columns to be filled with the values from the web
form.

Attention. Replace the double quote (") and space () characters with the " and HTML
character entity references.

Attention. Add the (@scriptVariableNameColumn) variable and concatenate it to scriptResult for adding a
field.

If the values of other fields (except for Name and Email) are required after completing the setup, re-run the
script from this paragraph after registering all of the required columns, including the existing ones, in the
Adding entity columns block. When the script is re-run, the settings created earlier are updated.

-- Landing edit page schema name
DECLARE @editPageName nvarchar(250) = N'UsrContactGeneratedWebFormPage'; -- declare the name of the created schema

-- region Scripts' structure
DECLARE @sqriptPrefix nvarchar(max) = N'<div style="font-family: "Courier New", monospace; font-size: 10pt;"><script src="http://ajax.googleapis.com/ajax/libs/jquery/1.11.2/jquery.min.js"></script>
<script src="https://webtracking-v01.bpmonline.com/JS/track-cookies.js"></script>
<script src=##apiUrl##></script>
<script>
/**
* Replace the "css-selector" placeholders in the code below with the element selectors on your landing page.
* You can use #id or any other CSS selector that will define the input field explicitly.
* Example: "Email": "#MyEmailField".
* If you don"t have a field from the list below placed on your landing, leave the placeholder or remove the line.
*/
var config = {
 fields: {
 ';
DECLARE @sqriptDelimiter nvarchar(max) = N'
 ';
DECLARE @sqriptSuffix nvarchar(max) = N'
 },
 landingId: ##landingId##,
 serviceUrl: ##serviceUrl##,
 redirectUrl: ##redirectUrl##
};
/**
* The function below creates a object from the submitted data.
* Bind this function call to the "onSubmit" event of the form or any other elements events.
* Example: <form class="mainForm" name="landingForm" onSubmit="createObject(); return false">
*/
function createObject() {
 landing.createObjectFromLanding(config)
}
/**
* The function below inits landing page using URL parameters.
*/
function initLanding() {
 landing.initLanding(config)
}
jQuery(document).ready(initLanding)
</script></div>';
-- endregion

-- region Scripts' variables
DECLARE @sqriptNameColumn nvarchar(max); -- declare column variables to map to the landing
DECLARE @sqriptEmailColumn nvarchar(max);
DECLARE @scriptResult nvarchar(max);
-- endregion

-- Adding entity columns.
SET @sqriptNameColumn = N'"Name": "css-selector", // Name of a contact';
SET @sqriptEmailColumn = N'"Email": "css-selector", // Email';

-- Concat result scripts.
SET @scriptResult = @sqriptPrefix + @sqriptNameColumn + @sqriptDelimiter + @sqriptEmailColumn + @sqriptSuffix;

-- Set new localizable scripts value for resource with name like '%ScriptTemplate'
UPDATE SysLocalizableValue
SET [Value] = @scriptResult
WHERE SysSchemaId = (SELECT TOP 1 Id FROM SysSchema WHERE [Name] = @editPageName)
and [Key] like '%ScriptTemplate.Value'

Set up web form for a custom object | 12

© 2024 Creatio. All rights reserved.

https://en.wikipedia.org/wiki/Concatenation

After the script execution completes, open the schema created in the configuration and re-save it to re-save the
resources as well. As a result, when selecting [Contact form] in the [Landing pages and web forms]
section, Creatio will display the landing edit page (Fig. 6) combined with the script to copy to the landing page
source code.

Fig. 7. Landing edit page

The script contains the config configuration object, which has the following properties defined:

The configuration to be formed is displayed below.

fields – contains the Name and Email properties. Their values must match the selectors of the id attributes of
the corresponding field of the web form.

landingId – the landing page ID in the database.

serviceUrl – the URL of the service to which the web form data will be sent.

onSuccess – the handler function to process a successful contact creation. Optional property.

onError – the handler function to process a contact creation error. Optional property.

var config = {
 fields: {
 "Name": "css-selector", // Contact name
 "Email": "css-selector", // Email name
 },
 landingId: "b73790ab-acb1-4806-baea-4342a1f3b2a8",
 serviceUrl: "http://localhost:85/0/ServiceModel/GeneratedObjectWebFormService.svc/SaveWebFormObjectData",
 redirectUrl: ""
};

Set up web form for a custom object | 13

© 2024 Creatio. All rights reserved.

5. Create and configure a landing page in the [Landing pages and web
forms] section
To do this, go the [Landing pages and web forms] section and click [Contact form].

In the created record, specify (Fig. 8):

Fig. 8. Landing edit page

Save the page to apply the changes.

6. Deploy and set up a landing page with a web form
Create a landing page with a web form using HTML markup in any text editor. Learn more about creating a
landing page and adding the landing script in the “How to connect your website landing page to Creatio” article.

To register contact data sent via the web form in Creatio, add the following fields (<input> HTML element) to the
source code of the landing page:

Specify the name and id attributes for each field.

To create a new [Contact] object when sending web form data to Creatio, add the JavaScript code to the landing
page. Copy the source code from the [STEP 2. Copy the code and configure and map the fields] field on
the landing record page (fig 8.).

The config object is passed as an argument of the createObject() function, which is executed upon submitting

[Name] – “Contact”

[Website domains] – "http://localhost:85/Landing/LandingPage.aspx"

[Status] – "Active".

Contact name.

Contact email.

Set up web form for a custom object | 14

© 2024 Creatio. All rights reserved.

https://academy.creatio.com/docs/7-17/user/crm_tools/landing_pages_and_web_forms/web_to_object/connect_a_landing_to_creatio/connect_your_website_landing_page_to_Creatio

the web form.

Ensure that the createObject() function is called upon submitting the web form. To do this, add the
onSubmit="createObject(); return false" attribute to the <form> element. You can retrieve the required attribute
value from the [STEP 3. Insert the customized code into the landing page source code. Set up a
function to create the object on form submit] field on the landing edit page (Fig. 8).

The complete source code of the landing page is available below:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8"><!--STEP 2--> <!--Copy this part from the STEP 2 field of the landing edit page--><script src="http://ajax.googleapis.com/ajax/libs/jquery/1.11.2/jquery.min.js"></script>
 <script src="https://webtracking-v01.bpmonline.com/JS/track-cookies.js"></script>
 <script src="https://webtracking-v01.bpmonline.com/JS/create-object.js"></script>
 <script>

 /**
 * Replace the "css-selector" placeholders in the code below with the element selectors on your landing page.
 * You can use #id or any other CSS selector that will define the input field explicitly.
 * Example: "Email": "#MyEmailField".
 * If you don"t have a field from the list below placed on your landing, leave the placeholder or remove the line.
 */
 var config = {
 fields: {
 "Name": "#name-field", // Name of a contact
 "Email": "#email-field", // Email
 },
 landingId: "b73790ab-acb1-4806-baea-4342a1f3b2a8",
 serviceUrl: "http://localhost:85/0/ServiceModel/GeneratedObjectWebFormService.svc/SaveWebFormObjectData",
 redirectUrl: "",
 onSuccess: function(response) {
 window.alert(response.resultMessage);
 },
 onError: function(response) {
 window.alert(response.resultMessage);
 }
 };
 /**
 * The function below creates a object from the submitted data.
 * Bind this function call to the "onSubmit" event of the form or any other elements events.
 * Example: <form class="mainForm" name="landingForm" onSubmit="createObject(); return false">
 */
 function createObject() {
 landing.createObjectFromLanding(config)
 }
 /**
 * The function below inits landing page using URL parameters.
 */

Set up web form for a custom object | 15

© 2024 Creatio. All rights reserved.

Open the landing page Specify the values for the created contact (Fig. 9):

Fig. 9. Landing page

Click [Submit] to create the contact.

Attention. The contact from the landing page will only be added if the domain of the landing page is
specified in the [Website domains] field on the landing record page.

If you place the page on the local server available via the “localhost” reserved domain name (as specified in the
landing page setup, Fig. 8), then the script for creating a contact from the landing page will work correctly (Fig.
10).

 function initLanding() {
 landing.initLanding(config)
 }
 jQuery(document).ready(initLanding)
 </script><!--STEP 2--></head>
<body>
<h1>Landing web-page</h1>
<div>
 <h2>Contact form</h2>
 <form method="POST" class="mainForm" name="landingForm" onSubmit="createObject(); return false">Name:
<input type="text" name="Name" id="name-field">
 Email:
<input type="text" name="Email" id="email-field">

<input type="submit" value="Submit">

 </form>
</div>
</body>
</html>

[Name] — "New User"

[Email] — "new_user@creatio.com".

Set up web form for a custom object | 16

© 2024 Creatio. All rights reserved.

https://en.wikipedia.org/wiki/Localhost

Fig. 10. A message about successful data addition

As a result, Creatio will create contact with the specified parameters (Fig. 11).

Fig. 11. Automatically created contact

Implement a handler to create an entity
using a web form

Implement a handler to create an entity using a web form | 17

© 2024 Creatio. All rights reserved.

 Advanced

The Contact entity contains the CustomRequiredTextColumn required text column. When an event participant (
EventTarget) is created via a web form, Creatio searches for the corresponding contact. By default, if Creatio
cannot find the contact, a new contact is created. Saving the contact leads to an error since the
CustomRequiredTextColumn required field is not populated. To ensure the contact is saved successfully,
implement a custom handler and call it before an event participant is created.

Example. Implement a custom handler that runs before an event participant is created.

Before you implement the example, set up a web form that creates a custom object. Add a
CustomRequiredTextColumn required custom field to the web form. To do this, follow the instructions in a separate
article: Set up web form for a custom object.

1. Implement a custom handler
Go to the [Configuration] section and select a custom package to add the schema.1.

Click [Add] → [Source code] on the section list toolbar.2.

Go to the Schema Designer and fill out the schema properties:3.

Set [Code] to "UsrCustomWebFormEventTargetPreProcessHandler".

Set [Title] to "CustomWebFormEventTargetPreProcessHandler".

Implement a handler to create an entity using a web form | 18

© 2024 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15744
https://academy.creatio.com/documents?id=15101&anchor=title-1188-1
https://academy.creatio.com/documents?id=15121

Click [Apply] to apply the properties.

Implement a custom handler that runs before an event participant is created.

View the source code of the UsrCustomWebFormEventTargetPreProcessHandler schema of the [Source code]
type below.

UsrCustomWebFormEventTargetPreProcessHandlerUsrCustomWebFormEventTargetPreProcessHandler

4.

Add a Terrasoft.Configuration namespace in the Schema Designer.a.

Add namespaces whose data types to utilize in the class using the using directive.b.

Add a class name that matches the schema name (the [Code] property).c.

Specify the WebFormEventTargetPreProcessHandler class as a parent class.d.

namespace Terrasoft.Configuration
{
 using System;
 using System.Linq;
 using Core.Entities;
 using Core;
 using GeneratedWebFormService;

 #region Class: UsrCustomWebFormEventTargetPreProcessHandler
 /// <summary>
 /// Call the custom handler before the event participant is saved.
 /// </summary>
 /// <seealso cref="Terrasoft.Configuration.IGeneratedWebFormPreProcessHandler" />
 public class CustomWebFormEventTargetPreProcessHandler: WebFormEventTargetPreProcessHandler, IGeneratedWebFormPreProcessHandler
 {

 #region Properties: Private
 private UserConnection _userConnection { get; set; }
 private FormData _formData { get; set; }

Implement a handler to create an entity using a web form | 19

© 2024 Creatio. All rights reserved.

 #endregion

 #region Methods: Private
 private string GetCustomRequiredColumnValue(string customColumnName) {
 var customFormField = this._formData.formFieldsData
 .FirstOrDefault(x => x.name == customColumnName);
 if (customFormField == null) {
 throw new Exception($"There is no required form field {customColumnName}");
 }
 if (string.IsNullOrEmpty(customFormField?.value)) {
 throw new Exception($"Required value is empty for field {customColumnName}");
 }
 return customFormField.value;
 }
 #endregion

 #region Methods: Protected
 /// <summary>
 /// Create a contact entity whose custom required text column is populated with the form value.
 /// </summary>
 /// <param name="contactId">The unique contact ID.</param>
 /// <param name="contactNameField">The required contact name field of the form.</param>
 protected override void CreateContactEntity(Guid contactId, FormFieldsData contactNameField) {
 EntitySchema contactSchema = _userConnection.EntitySchemaManager.GetInstanceByName(nameof(Contact));
 Entity contact = contactSchema.CreateEntity(_userConnection);
 contact.SetDefColumnValues();
 contact.SetColumnValue("Id", contactId);
 contact.SetColumnValue("Name", contactNameField.value);

 // Set the value of the custom required column.
 var customRequiredColumnName = nameof(Contact.CustomRequiredTextColumn);
 var customRequiredColumnValue = GetCustomRequiredColumnValue(customRequiredColumnName);
 contact.SetColumnValue(customRequiredColumnName, customRequiredColumnValue);

 contact.Save(false);
 }
 #endregion

 #region Methods: Public
 /// <inheritdoc/>
 /// Overload the inherited method so that it initiates the <see cref="UserConnection"/> and <see cref="FormData"/> instances.
 public new FormData Execute(UserConnection userConnection, FormData formData,
 IWebFormImportParamsGenerator paramsGenerator) {
 _userConnection = userConnection;
 _formData = formData;
 return base.Execute(userConnection, formData, paramsGenerator);
 }
 #endregion

Implement a handler to create an entity using a web form | 20

© 2024 Creatio. All rights reserved.

2. Register a custom handler in the database
To implement the custom handler, register it in the [WebFormProcessHandlers] database table.

You can register the custom handler in the database in several ways:

Since the schema inherits from the out-of-the-box handler and the custom schema calls the base logic, you must
disable the out-of-the-box handler.

You can disable the out-of-the-box handler in the following ways:

 }
 #endregion
}

Click [Save] then [Publish] on the Designer's toolbar.5.

using a lookup

To register the custom handler in the database using a lookup:

Click to open the System Designer.

Go to the [System setup] block → [Lookups].

Add a new handler record to the [Web form process handlers] entity lookup. By default, this lookup is
absent from the index of Creatio lookups. To add the [Web form process handlers] lookup to Creatio,
create a lookup and select the [Web form process handlers] object as the lookup object.

Fill out the lookup fields:

Set [Entity name] to "EventTarget".

Set [FullClassName] to "Terrasoft.Configuration.CustomWebFormEventTargetPreProcessHandler,
Terrasoft.Configuration".

Select the [Is active] checkbox.

using an SQL query

To register the custom handler in the database using an SQL query, execute the following SQL query.

SQL query

INSERT INTO WebFormProcessHandlers (Id, EntityName, FullClassName, IsActive)
 VALUES (NEWID(), N'EventTarget', 'Terrasoft.Configuration.CustomWebFormEventTargetPreProcessHandler, Terrasoft.Configuration', 1)

using a lookup

To disable the out-of-the-box handler using a lookup:

Click to open the System Designer.

Go to the [System setup] block → [Lookups].

Open the lookup and clear the [Is active] checkbox for the [EventTarget] entity that has the
"Terrasoft.Configuration.CustomWebFormEventTargetPreProcessHandler, Terrasoft.Configuration"

Implement a handler to create an entity using a web form | 21

© 2024 Creatio. All rights reserved.

The outcome of the example
To view the outcome of the example, restart the application pool.

As a result, Creatio will add a new contact when a form is submitted with required fields populated, including the
CustomRequiredTextColumn field.

Web-to-Case
 Advanced

Web-to-Case functionality implements the ability to create cases in the Creatio by filling the required form fields
embedded in a third-party site - landing.

The ProductCore package depends on the WebForms package, that contains Web-to-Case functionality. This
means that landings can be used in all products. Pre-configured base functionality is implemented in the service
enterprise, customer center, marketing products and all bundles that these products are part of.

More information about landings can be found in the [Landings] section articles of the corresponding products
(such as Marketing Creatio).

Web-to-Case configuration can be done in the system interface. To implement generated JavaScript to a third-
party site, you need the basic Web development skills.

The Web-to-Case base functionality allows to configure the following features without programming (using minor
improvements on a third-party site):

You can modify the project to set up a preliminary handler of case registration through the Web-to-Case with the

value in the [FullClassName] field.

using an SQL query

To disable the out-of-the-box handler using an SQL query, execute the following SQL query.

SQL query

UPDATE WebFormProcessHandlers
SET IsActive = 0
WHERE FullClassName = 'Terrasoft.Configuration.WebFormEventTargetPreProcessHandler, Terrasoft.Configuration'

The form interface and styles.

List of the additionally passed fields.

List of default values for the fields that are not displayed in the form.

The list of domains from which the case registration for each landing will be possible.

The address to which the user will be redirected after submitting the form.

JavaScript event handlers of successful/unsuccessful case registration.

Additional landings, that can be configured in different way. That makes it possible to distinguish cases created
from different sites.

Web-to-Case | 22

© 2024 Creatio. All rights reserved.

https://academy.creatio.com/documents?product=marketing&ver=7&id=1081

data validation, correction, creation of related entities and etc. The automatic creation of contact for the
registered case is configured in the Creatio base configuration in the handler of case registration through the
Web form.

The logic of the automatic filling of case fields.
In the process of case registration through the Web form, the following fields are recommended for filling:
[Name], [Email], [Phone], [Case subject]. The [Case subject] value will be passed to the new case.

The Creatio will identify the contact by [Name], [Email] and [Phone] fields. The search is performed in a
following way:

If more than one contact are found, then the first contact will be used as contact of the case. Also the case
registration date (RegisteredOn column) will be automatically filled with the current date and time.

Recommendations for the execution of project solutions
If you need to customize the Web-to-Case, use its base functionality as an example.

To execute the project solution:

If contact fields matches the [Name], [Email] and [Phone] fields from the filled form, they will be added to the
created case.

1.

If contact fields matches only the [Name] and [Email] fields from the filled form, they will be added to the
created case.

2.

If contact fields matches only the [Email] field from the filled form, it will be added to the created case.3.

Otherwise, a new contact is created and the [Name], [Email] and [Phone] fields will be filled in. The created
contact is added to the registered case.

4.

Create a page schema that is inherited from the CaseGeneratedWebFormPageV2 . The page should not be a
replacement page.

1.

Add a record of the new type of landing to the LandingType table and localization to the SysLandingTypeLcz
table.

2.

Register the typed page created in the first step (the value of the type is new).3.

If you need preliminary processing of the form data before saving the record in the database, you need to
create a class that implements the IGeneratedWebFormPreProcessHandler interface. This class is a preliminary
handler for case registration. Implement the Execute() method. This method is the entry point to the handler.
Additional actions are implemented in this method. You can take the WebFormCasePreProcessHandler schema as
an example.

4.

If you need to perform actions after saving the record in the database, you need to create a class that
implements the IGeneratedWebFormPreProcessHandler interface. This class is a preliminary handler for case
registration. Implement the Execute() method and perform necessary actions.

5.

If you created the registration handlers of the case, register them in the WebFormProcessHandlers table. Use an
existing record as an example of registration.

6.

Edit the script template that forms the configuration JavaScript object of the landing, and place it in the
ScriptTemplate localized string of the created page. Specify the similar script for all localizations used. You can

7.

Web-to-Case | 23

© 2024 Creatio. All rights reserved.

Create Web-to-Case landing pages
 Advanced

Steps to create Web-to-Case landing

1. Create new landing record in the Creatio
To create a new landing record, execute the [Add] action in the [Landing pages and web forms] section. Fill in
the following fields on the opened page (Fig. 1):

Fig. 1 Landing edit page

Attention.

When creating a case, you can receive only four fields ("Subject, "Email", "Name" and "Phone") from the
landing page. Therefore, you must set the default values for the new landing record(Fig. 2).

Fig. 2 Values by default

find an example of the script in the CaseGeneratedWebFormPageV2 schema.

Bind all created data to the package.8.

[Name] – landing page name in Creatio.

[Website domains] – your landing page URL.

[Status] – landing status.

[Redirection URL] – the URL that is opened after the landing page form is completed.

Create Web-to-Case landing pages | 24

© 2024 Creatio. All rights reserved.

Save the page to apply the changes.

2. Create a landing page
To create landing page, you need to create a standard HTML page containing a Web form in any text editor using
HTML markup.

To register the data sent via the web-form, add four fields to the form (using <input> element) that define the
case:

Specify the name and id attributes for each field.

To send a form data to Creatio when creating a new [Case] object, you need to add a JavaScript script to the
HTML page. Copy the script source code from the [STEP 2. Copy the code and configure and map the fields]
field of the landing edit page (Fig. 1).

Note.

The script must be copied from the already saved landing.

The script contains the config configuration object that has following properties:

Case subject

Contact email

Contact name

Contact phone

fields – contains the object with "Subject, "Email", "Name" and "Phone” values that must match the id
attribute selectors of the corresponding web form fields.

Create Web-to-Case landing pages | 25

© 2024 Creatio. All rights reserved.

The config configuration object is passed as an argument of the createObject() function that must be
executed when the form is submitted.

To call the createObject() function when sending a form, add the onSubmit = "createObject(); return false"
attribute to the

tag of the HTML page of the Landing page (see STEP 3, Fig. 1).

An example of the complete landing page source code for the case registration:

landingId – contains the landing Id in the database.

serviceUrl – contains URL of the service to which the form data will be sent.

redirectUrl – contains redirection URL specified in the [Redirection URL] field of the landing.

onSuccess – contains a function that handles the successful creation of a case. Optional property.

onError – contains a function that handles the error of the case creation. Optional property.

<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
 <!--STEP 2-->
 <!--This part needs to be copied from the STEP 2 field of the lending edit page-->
 <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.11.2/jquery.min.js"></script>
 <script src="https://webtracking-v01.creatio.com/JS/track-cookies.js"></script>
 <script src="https://webtracking-v01.creatio.com/JS/create-object.js"></script>
 <script>
 /**
 * Replace the "css-selector" placeholders in the code below with the element selectors on your landing page.
 * You can use #id or any other CSS selector that will define the input field explicitly.
 * Example: "Email": "#MyEmailField".
 * If you don't have a field from the list below placed on your landing, leave the placeholder or remove the line.
 */
 var config = {
 fields: {
 "Subject": "#subject-field", // Case subject
 "Email": "#email-field", // Visitor's email
 "Name": "#name-field", // Visitor's name code
 "Phone": "#phone-field", // Visitor's phone number
 },
 landingId: "8ab71187-0428-4372-b81c-fd05b141a2e7",
 serviceUrl: "http://localhost/creatioservice710/0/ServiceModel/GeneratedObjectWebFormService.svc/SaveWebFormObjectData",
 redirectUrl: "http://creatio.com",
 onSuccess: function(response) {
 window.alert(response.resultMessage);
 },
 onError: function(response) {

Create Web-to-Case landing pages | 26

© 2024 Creatio. All rights reserved.

3. Add the page to the website.
A case from the landing page will be added to the Creatio only if the page is hosted on the site whose name is
listed in the [Website domains] field of the landing page record in Creatio. If you open the page in the browser
locally, then an empty message will be displayed when the case is created.

Fig. 3 Empty message

 window.alert(response.resultMessage);
 }

 };
 /**
 * The function below creates a object from the submitted data.
 * Bind this function call to the "onSubmit" event of the form or any other elements events.
 * Example: <form class="mainForm" name="landingForm" onSubmit="createObject(); return false"
 */
 function createObject() {
 landing.createObjectFromLanding(config)
 }
 </script>
 <!--STEP 2-->
</head>
<body>
<h1>Landing web-page</h1>
<div>
 <h2>Case form</h2>
 <form class="mainForm" name="landingForm" onSubmit="createObject(); return false">
 Subject:

 <input type="text" name="subject" id="subject-field">

 Email:

 <input type="text" name="Email" id="email-field">

 Name:

 <input type="text" name="Name" id="name-field">

 Phone:

 <input type="text" name="Phone" id="phone-field">

 <input type="submit" value="Submit">

 </form>
</div>
</body>
</html>

Create Web-to-Case landing pages | 27

© 2024 Creatio. All rights reserved.

Note.

The output of an empty message is configured in the onError() method of the configuration object.

If you place the page on the local server of the computer that serves as the reserved domain name localhost (as
specified in the landing setting , Fig. 1), then the script that adds the address from the web page of the landing
will work correctly (Fig. 4)

Fig. 4 The correct adding of data

Create Web-to-Case landing pages | 28

© 2024 Creatio. All rights reserved.

https://en.wikipedia.org/wiki/Localhost

As a result, a case with specified parameters will be automatically created.

Fig. 5 Automatically created case

Create Web-to-Case landing pages | 29

© 2024 Creatio. All rights reserved.

	Table of Contents
	Web-To-Object
	Implementing the Web-to-Object service
	External API of the Web-to-Object service
	Using the Web-to-Object service
	Integrating with custom landings and web-forms
	Integrating with external systems

	Set up web form for a custom object
	Case description
	Source code
	Case implementation algorithm
	1. Register a new landing page type
	2. Add an edit page for the web form
	3. Map the new landing page type to the created edit page
	4. Update the scripts for the web form record page
	5. Create and configure a landing page in the [Landing pages and web forms] section
	6. Deploy and set up a landing page with a web form

	Implement a handler to create an entity using a web form
	1. Implement a custom handler
	2. Register a custom handler in the database
	The outcome of the example

	Web-to-Case
	The logic of the automatic filling of case fields.
	Recommendations for the execution of project solutions

	Create Web-to-Case landing pages
	Steps to create Web-to-Case landing
	1. Create new landing record in the Creatio
	2. Create a landing page
	3. Add the page to the website.

