
Section
Version 8.0

This documentation is provided under restrictions on use and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this documentation, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you
find any errors, please report them to us in writing.

© 2024 Creatio. All rights reserved.

4

4

5

14

15

15

16

17

17

19

19

22

24

24

27

29

29

32

34

34

38

40

40

42

43

43

46

47

47

47

48

Table of Contents

Section

Section containers

Section structure

Create a section

Add a custom column to the section list

Set up the appearance conditions of the section list

Add a section record action

Set up the quick filters block of the section

Delete a section

Add an action for a single record to the section

Create a schema of the replacing section view model

The outcome of the example

Add an action for multiple records to the section

Create a schema of the replacing section view model

The outcome of the example

Set up action handling for multiple section records

Create a schema of the replacing section view model

The outcome of the example

Set up action handling using a lookup for multiple section records

Create a schema of the replacing section view model

The outcome of the example

Set up the display conditions of the section list

Create a schema of the replacing section view model

The outcome of the example

Set up the quick filters section block

Create a schema of the replacing section view model

The outcome of the example

BaseSectionV2 schema

Messages

Attributes

Methods

Table of Contents | 3

© 2024 Creatio. All rights reserved.

Section
 Beginner

A section is a UI element that represents a specific business entity and contains a set of records. For example,
[Accounts], [Contacts], [Activities], etc. Sections are available from the side panel. You can group sections
into workplaces to improve usability for particular roles. Learn more about sections in the user documentation
guide: Section.

Section containers
Creatio stores section UI elements in the corresponding containers. Containers are configured in the base
schema of the section or replacing view model schema of the section. Containers depend on the section view.

Sections have the following views:

Note. Creatio uses HTML container meta names. It generates actual IDs that match the HTML elements of
the section based on the meta names.

View the main section list containers in the figure below.

View the main section analytics containers in the figure below.

Section list

Section analytics

Section | 4

© 2024 Creatio. All rights reserved.

https://academy.creatio.com/docs/user/no-code_customization/ui_and_business_logic_customization/section_setup

Section structure
Sections have the following components:

The action button container (ActionButtonsContainer) contains the section action button and the drop-down
action list button.

The filter container (QuickFilterViewContainer) contains filters and tags.

The container of the section list view (GridDataViewContainer) contains section records. Record edit, copy,
and delete action buttons reside in the active list record. Displayed in the section list.

The section analytics view container (AnalyticsDataViewContainer) contains the section dashboards. Displayed
in the section analytics.

List. A component that displays the section record index in tile or list view. Displayed in the
GridDataViewContainer container.

Analytics. A component that visualizes statistical data using charts, singular metrics, or lists. Dashboard
blocks and custom dashboards are displayed in the AnalyticsDataViewContainer container.

Section | 5

© 2024 Creatio. All rights reserved.

List
A list is a UI element that displays the index of records added to the section or detail. For example, a contact
index in the [Contacts] section.

Section lists come in the following types:

A section list has the following views:

View the tile view of the [Contacts] section list in the figure below.

View the list view of the [Contacts] section list in the figure below.

Actions. A functional element that represents a set of operations with the active section list record. Call
actions using buttons located in the ActionButtonsContainer container and active section list record.

Filter. A tool for condition-based data search and segmentation. Displayed in the QuickFilterViewContainer
container.

Tag. A label for manual record segmentation. Displayed in the QuickFilterViewContainer , similar to the filter.

Vertical list. Enables users to switch between records without closing the page.

Editable list. Enables users to edit records directly in the list without opening the pages.

Tile view. Displays list record fields over multiple rows. Default view.

List view. Displays records as a simple table. Each record corresponds to a single row. The display order of
fields can differ between the list and tile views.

Section | 6

© 2024 Creatio. All rights reserved.

Each section corresponds to a configuration schema. The schema describes the structure of the corresponding
database table with record data and contains specific instructions on processing the data. For example, the
ContactSectionV2 schema configures the [Contacts] section. All section schemas inherit from the
BaseSectionV2 base section schema. Each table row loosely corresponds to a section list record. For example,
the [Contacts] section corresponds to the Contact business object schema that contains the index and
properties of the [Contact] table rows. By default, the section list does not display every column of the
corresponding database table. This is done to keep the displayed data easily digestible. You can view every
column on the section record page.

Edit the appearance of the list, the index of displayed fields, and the sorting of data in the drop-down menu of the
section toolbar’s [View] button. Learn more in the user documentation: Work with record lists.

Analytics
The purpose of section analytics is to analyze the statistical data of the section. By default, Creatio displays the
list section view. To switch to the analytics section view, click the [Dashboards] button next to the section
name. To open the analytics view of all sections, open the [Dashboards] section.

View an example of [Activities] section analytics in the figure below.

Section | 7

© 2024 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15521
https://academy.creatio.com/documents?id=1016

Dashboards display analytical data. Learn more about dashboards in a separate article and the user
documentation guide: Dashboard widgets, Analytics. Dashboards are located on dashboard tabs. Learn more
about dashboard tabs in the user documentation: Add analytics in section.

Actions
Section actions are functional elements that represent an index of operations with one or more list records.
You can run actions using buttons of different types. The buttons are located both in the action container of the
current section and the container of the active record.

View the [Contacts] section actions in the figure below.

Section | 8

© 2024 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15602
https://academy.creatio.com/docs/user/no_code_customization/analytics
https://academy.creatio.com/documents?id=1405

Section actions have the following types:

The standard [Contacts] section actions are as follows:

standard

additional

[New contact]. Opens a pop-up box that lets you add and save a new section record.

[Open]. Opens the page of the active section record.

[Copy]. Opens a section record page, copies the active record data into the page, and creates a new record
when you click [Save].

[Delete]. Deletes the active record.

[Select multiple records]. Selects multiple list records.

[Select all]. Selects all list records.

[Export to Excel]. Exports all list records of the current section to an *.xlsx file. Learn more about data
export in the user documentation: Excel data export.

[Data import]. Imports data from an *xlsx file into Creatio. Learn more about data import in the user
documentation: Excel data import.

[Change log setup]. Opens the logging management page that also lets you select the section columns to log

Section | 9

© 2024 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=1864
https://academy.creatio.com/documents?id=1252

Additional actions implement the functionality that depends on the section business logic. Additional [Contacts]
section actions are as follows:

Filters
A filter is a tool for condition-based data search and segmentation. You can use filters as an individual tool in
Creatio sections. Filters are also available as part of other tools, for example, when you set up dynamic folders,
dashboards, or business processes. Creatio displays filter controls above the section list. Learn more about
filters in the user documentation: Filters.

Filters have the following types:

Configure the quick filter on the toolbar. Configure the standard and advanced filters in the [Filters/folders]
menu.

when a record is edited.

[Synchronize now]. Synchronizes Creatio with Google contacts. Creatio synchronizes only records tagged as
per the synchronization settings. Learn more about contact synchronization in the user documentation:
Synchronize contacts and activities with Google.

[Add new account for synchronization]. Synchronizes Creatio Cloud with Google. Learn more about
synchronization in the user documentation: Synchronize contacts and activities with Google.

[Add to folder]. Opens a pop-up box that lets you select a folder where to place the active record.

[Exclude from folder]. Excludes the active record from all of its current folders.

[Show duplicate 'Contacts']. Opens an additional page that contains all likely duplicates of the contacts.
Creatio adds records to this page automatically after performing the duplicate search.

[Show on map]. Lets you display the location of selected contacts on the map. The action opens a box with a
map that marks the contacts selected in the list. If the address fields of the selected contacts are empty,
Creatio does not perform the action. If the address fields of some contacts are empty or filled out incorrectly,
the box displays the corresponding information.

[Update the values in the 'Age' column]. Updates the [Age] column on the active contact page.

[Schedule daily update of the 'Age' column]. Opens a pop-up box that lets you set up the time of the daily
contact age update.

[Mark all email addresses as valid]. Selects the [Valid] checkbox for the email address of the active contact
record.

quick filter

advanced filter

standard filter

Section | 10

© 2024 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=1424
https://academy.creatio.com/documents?id=1424
https://academy.creatio.com/documents?id=1017

Quick filter is available in certain Creatio sections. Use quick filters to filter data by the most frequently used
parameters (typically, by the date and owner). For example, the [Activities] section includes a quick filter since
you most often need to view the activity of a single employee during the specified period. Learn more about the
quick filter in the user documentation: Filters.

To set the quick filter, select the period to filter the section list records in the [Select period] drop-down
menu.

View an example of a quick filter that filters activities by current month (the [Select period] drop-down menu is
set to [Current month]) in the figure below.

Standard filter lets you search for records by the values of one or more current section columns quickly.
Available in most section lists. Learn more about the standard filter in the user documentation: Filters.

To set the standard filter:

View an example of a standard filter that filters activities by account (the [Account] field is set to [Estron]) in
the figure below.

Select [Add filter] in the [Filters/folders] drop-down menu.

Select the field and field value to filter the section list records.

Section | 11

© 2024 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=1232&anchor=title-1755-1
https://academy.creatio.com/documents?id=1233&anchor=title-1755-4

Advanced filter consists of several parameters and complex search conditions. For example, you can use the
advanced filter to display meetings with new customers in the [Activities] section. You can also save the
parameters and conditions of an advanced filter as a dynamic folder to reuse them later. Learn more about the
advanced filter in the user documentation: Filters.

To set the advanced filter:

View an example of an advanced filter that filters activities by account (the [Name] field of the [Account] object
is set to [Novelty]) and job title (the [Job title] field of the [Contact] object is set to [Specialist]) in the figure
below.

A folder is a filtering tool that groups records by specific conditions. Folders can have hierarchical structure.
Learn more about folders in the user documentation: Folders.

Folders have the following types:

You can only add records to or remove them from static folders. Creatio adds a record to a folder automatically if
the record meets the filter conditions of the folder. If a record no longer meets the filter conditions of the folder,
Creatio removes the record from the folder automatically.

To set up a folder:

View an example folder that includes contacts not connected to accounts (the [Contacts not connected to
accounts] folder) in the figure below.

Select [Switch to advanced mode] in the [Filters/folders] drop-down menu.

Select the object, object column, and column value to filter the section list records.

Dynamic folders. Contain only the section records that match the specified filter conditions. For example,
you can filter records by creation date to create a [New customers] dynamic folder. Creatio generates and
updates the content of such folders automatically.

Static folders. Contain only the section records added by users, manually or as part of the conversion from
a dynamic folder. For example, you can create a [VIP customers] static folder to ensure sales associates or
their managers make personal decisions to add customers to the folder.

Select [Show folders] in the [Filters/folders] drop-down menu.

Select the folder to filter the section list records.

Section | 12

© 2024 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=1234&anchor=title-1755-10
https://academy.creatio.com/documents?id=1018

Tags
A tag is a special label you can use to segment records manually. For example, you can tag records in the
[Contacts] section to mark VIP customers or ban customers. Tag records manually. To select a tag, click
[Tag] and select a tag to filter the section list records. Learn more about tags in the user documentation: Tags.

Creatio provides the following tag types:

View an example of contacts that are VIP customers ([VIP customer] tag selected) in the figure below.

Private tags. Only visible and accessible to the user who created them. Any user can create any number of
private tags. Private tags are not visible to managers and system administrators. Creatio marks private tags
green.

Corporate tags. Visible to the company employees. Any employee can add or remove a corporate tag. Any
employee/role that has permissions for the [Corporate tags management] (CanManageCorporateTags code)
operation can create corporate tags. Creatio marks corporate tags blue.

Public tags. Visible to the company employees, as well as self-service portal users. Any employee can add or
remove a public tag. Any employee/role that has permissions for the [Public tags management] (
CanManagePublicTags code) operation can create public tags. Creatio marks public tags red.

Section | 13

© 2024 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=1881

Create a section
You can create a section in the Section Wizard. To create a section, follow the instructions in the user
documentation: Create a new section.

View object schemas and client schemas that the Section Wizard creates in the custom package when you add a
section in the table below.

Schemas that the Section Wizard creates

Name Purpose Parent object

Object schemas

[Section
object
name]

The primary section object BaseEntity base object.

[Section
object
name]Fold
er

The object folder.

A utility object that ensures the correct grouping of
section records. Structures the section folder tree.

BaseFolder base folder.

[Section
object
name]InFo
lder

The object in the folder.

A utility object that ensures grouping section records
operates as intended. Defines links between section
records and their folders.

BaseItemInFolder base
element in the folder.

[Section
object
name]File

The object for the [Attachments] detail. File file.

[Section
object
name]Tag

The section tag. BaseTag base tag.

[Section
object
name]InTa
g

The tag in the section object. BaseEntityInTag base
tag in the base object.

Client schemas

[Section
object
name]Sect
ion

The section schema. BaseSectionV2 base
section schema.

[Section
object
name]Page

The schema of the section record page. BaseModulePageV2 base
schema of the section
record page.

Section | 14

© 2024 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=1245

Add a custom column to the section list
To add a custom column to the section list, add a column to the schema of the section business object. When
you add a custom column, Creatio adds a replacing view model schema to the current package. The schema
inherits the base object columns. The custom column is added to the schema.

You can use the following tools to add a custom column to the schema of the section business object:

To add a custom column to the section list in the Section Wizard, follow the instructions in the user
documentation: Work with record lists.

To add a custom column to the section page in Creatio IDE:

Set up the appearance conditions of the section list
Creatio lets you set up the appearance conditions of the section list. Record lists that match the specified
conditions are displayed in line with the configured visual styles.

To set up the appearance conditions of the section list:

Section Wizard

Creatio IDE

Create a replacing view model schema of the section page to place the custom column. To do this, follow the
guide in a separate article: Client module.

1.

Select the view model schema to replace as the parent object.2.

Add a custom column of the corresponding type to the replacing view model schema of the section page.3.

Set up the appearance of the custom column in the section list.4.

Create a replacing view model schema of the section page. To do this, follow the guide in a separate article:
Client module.

1.

Select the view model schema to replace as the parent object.2.

Set up the appearance conditions of the section list. To do this, implement the
prepareResponseCollectionItem() method in the methods property. The method overloads the base method
and modifies the data row before uploading the row to the list. Implement the assignment of a specific value
to the customStyle property in the method. The property controls the list row appearance. The property is an
object that has child properties that are similar to CSS properties and generate the visual style of the relevant
list records.

View an example of the customStyle property setup below.

Example of the customStyle property setup

3.

item.customStyle = {
 /* Set the text color to white. */
 "color": "white",
 /* Set the background color to orange. */
 "background": "orange"
};

Section | 15

© 2024 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=1016&anchor=title-756-9
https://academy.creatio.com/documents?id=15102&anchor=title-3028-4
https://academy.creatio.com/documents?id=15102&anchor=title-3028-4

Add a section record action
Creatio lets you add custom actions for either a single record or multiple records. The BaseSectionV2 schema of
the NUI package implements the base content of the [Actions] drop-down menu on the section page.

To add an action for a single section record:

Create a replacing view model schema of the section page. To do this, follow the guide in a separate article:
Client module.

1.

Select the view model schema to replace as the parent object.2.

The section action index is an instance of the Terrasoft.BaseViewModelCollection class. Each item of the
action index is a view model. Set up the action in the configuration object that lets you both set the properties
of the action view model explicitly and use the base binding mechanism.

Implement the menu item behavior. To do this, implement the getSectionActions() overloaded parent
schema method in the methods property. The method returns the collection of section actions. When you
replace base sections in the getSectionActions() method of the replacing module, call the parent
implementation of the method to initialize the actions of the parent section. To do this, execute the
this.callParent(arguments) method that returns the action collection of the base section.

To add an action to the collection, call the addItem() method. The getButtonMenuItem() callback method is
passed to the method as a parameter. The method creates an instance of the action view model by the
configuration object passed to the method as the parameter.

Reference the selected record via the ActiveRow attribute of the section view model. The attribute returns the
primary column value of the selected record. In turn, you can use the primary column value of the selected
record to get the values uploaded to the field list of the selected object.

The SelectedRows property of the section view model stores the primary column values of the selected
records. You can use these values to get the values uploaded to the field list of selected objects. For example,
from a regular list’s data collection stored in the GridData view model property of the list.

View the base implementation of action addition below.

BaseSectionV2

3.

/**
* Returns the collection of section actions in the list view mode.
* @protected
* @virtual
* @return {Terrasoft.BaseViewModelCollection} The section action collection.
*/
getSectionActions: function() {
 /* The action collection. An instance of Terrasoft.BaseViewModelCollection. */
 var actionMenuItems = this.Ext.create("Terrasoft.BaseViewModelCollection");
 /* Add an action to the collection. Pass the method that instantiates the action model instance to the passed configuration object as callback. */
 actionMenuItems.addItem(
 this.getButtonMenuItem({
 /* The configuration object that sets up the action. */

Section | 16

© 2024 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15102&anchor=title-3028-4

View the properties of the section action’s configuration object that is passed as a parameter to the
getButtonMenuItem() method in the table below.

Configuration object properties

Property Description

Type The type of the [Actions] drop-down menu item. The property lets you add a horizontal
line that separates menu blocks to the action menu. To do this, specify
Terrasoft.MenuSeparator as the property value. If you do not specify the property value,
Creatio adds a menu item by default.

Caption The title of the [Actions] menu item. We recommend using localizable strings for titles.

Click Binds an action handler method by the method name.

Enabled The boolean property that controls the menu item availability.

Visible The boolean property that controls the menu item visibility.

Set up the quick filters block of the section
Creatio lets you implement a custom quick filters block for section list records.

To set up the quick filters block of the section:

Delete a section

 ...
 })
);
 return actionMenuItems;
}

Create a replacing view model schema of the section page. To do this, follow the guide in a separate article:
Client module.

1.

Select the view model schema to replace as the parent object.2.

Implement the filtering behavior. To do this, implement the initFixedFiltersConfig() method in the
methods property. The method initializes the fixed filters. In the method, create a configuration object that has
an array of filters. Assign the object link to the fixedFiltersConfig attribute of the view model.

3.

Make sure you have access to Creatio configuration and database.1.

Unlock the file that corresponds to the relevant section in the SVN repository.2.

Delete the section that is based on the relevant object. To do this, execute an SQL query.

SQL query

3.

Section | 17

© 2024 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15272&anchor=title-2174-3
https://academy.creatio.com/documents?id=15102&anchor=title-3028-4

Replace ToDelete with the name of the custom section schema.

MSSQL

DECLARE @UId UNIQUEIDENTIFIER
DECLARE @ModuleEntityUID UNIQUEIDENTIFIER;
DECLARE @ModuleID UNIQUEIDENTIFIER;
DECLARE @Name NVARCHAR(max) = 'ToDelete';
select @UId = UId from SysSchema where Name Like @Name
select @ModuleEntityUID = Id from SysModuleEntity where
SysEntitySchemaUId = @UId
select @ModuleID = Id from SysModule where SysModuleEntityId = @ModuleEntityUID;
delete from SysModuleInWorkplace where SysModuleId = @ModuleID;
delete from SysModule where Id = @ModuleID;
delete from SysModuleEdit where SysModuleEntityId = @ModuleEntityUID;
delete from SysModuleEntity where Id = @ModuleEntityUID;
delete from SysDetail where EntitySchemaUId = @UId;
delete from SysLookup where SysEntitySchemaUId = @UId;
delete from [Lookup] where SysEntitySchemaUId = @UId;

PostgreSQL

do $$
DECLARE
name varchar(100) = 'UsrProperty';
moduleID UUID;
moduleEntityUID UUID;
uId UUID;
BEGIN
uId = (select "UId" from "SysSchema" where "Name" Like name);
moduleEntityUID = (select "Id" from "SysModuleEntity" where
"SysEntitySchemaUId" = uId);
moduleID = (select "Id" from "SysModule" where "SysModuleEntityId" = moduleEntityUID);
update "SysModule" set "Image32Id"=Null where "Id" = moduleID;
delete from "SysModuleInWorkplace" where "SysModuleId" = moduleID;
delete from "SysModule" where "Id" = moduleID;
delete from "SysModuleEdit" where "SysModuleEntityId" = moduleEntityUID;
delete from "SysModuleEntity" where "Id" = moduleEntityUID;
delete from "SysDetail" where "EntitySchemaUId" = uId;
delete from "SysLookup" where "SysEntitySchemaUId" = uId;
delete from "Lookup" where "SysEntitySchemaUId" = uId;
end $$;

After you clear the database, delete the custom schemas from the [Configuration] section.4.

Section | 18

© 2024 Creatio. All rights reserved.

Add an action for a single record to the
section

 Medium

The example is relevant to Sales Creatio products.

Example. Add an action for the record of the [Orders] section list. The action must display the order
creation date in a message box. The action must be active for orders at the [In progress] stage.

Create a schema of the replacing section view model

Delete the configuration schemas in this order:

ToDeleteFile .a.

ToDeleteInFolder .b.

ToDeleteInTag .c.

ToDeleteTag .d.

ToDeleteFolder .e.

ToDelete .f.

Go to the [Configuration] section and select a custom package to add the schema.1.

Click [Add] → [Replacing view model] on the section list toolbar.2.

Fill out the schema properties.3.

Add an action for a single record to the section | 19

© 2024 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15101&anchor=title-1188-1
https://academy.creatio.com/documents?id=15121

Set [Code] to "OrderSectionV2".

Set [Title] to "Order section".

Set [Parent object] to "OrderSectionV2".

Add a localizable string that contains the menu item caption.4.

Click the button in the context menu of the [Localizable strings] node.a.

Fill out the localizable string properties.b.

Set [Code] to "CreationDateActionCaption".

Set [Value] to "Show creation date".

Click [Add] to add a localizable string.e.

Implement the menu item behavior. To do this, implement the following methods in the methods property:5.

isRunning() . Checks whether the order selected in the list is at the [In progress] stage.

isCustomActionEnabled() . Determines whether the menu item is available.

showOrderInfo() . The action handler method that displays the order creation date in a message box.

Add an action for a single record to the section | 20

© 2024 Creatio. All rights reserved.

Reference the selected record via the ActiveRow attribute of the section view model. The attribute returns the
primary column value of the selected record. In turn, you can use the primary column value of the selected
record to get the values uploaded to the field list of the selected object.

View the source code of the replacing view model schema of the section below.

OrderSectionV2

getSectionActions() . The overloaded parent schema method that retrieves the section action collection.

define("OrderSectionV2", ["OrderConfigurationConstants"], function(OrderConfigurationConstants) {
 return {
 /* The name of the section object schema. */
 entitySchemaName: "Order",
 /* The methods of the section view model. */
 methods: {
 /* Check the order stage. activeRowId is the primary column value of the selected list record. */
 isRunning: function(activeRowId) {
 /* Retrieve the data collection of the section list's regular list view. */
 var gridData = this.get("GridData");
 /* Retrieve the order model by the specified primary column value. */
 var selectedOrder = gridData.get(activeRowId);
 /* Retrieve the properties of the order status model. */
 var selectedOrderStatus = selectedOrder.get("Status");
 /* Return true if the order status is [In progress], return false otherwise. */
 return selectedOrderStatus.value === OrderConfigurationConstants.Order.OrderStatus.Running;
 },
 /* Determine whether the menu item is available. */
 isCustomActionEnabled: function() {
 /* Attempt to retrieve the ID of the active record. */
 var activeRowId = this.get("ActiveRow");
 /* Return true if the ID is defined and the order status is [In progress], return false otherwise. */
 return activeRowId ? this.isRunning(activeRowId) : false;
 },
 /* The action handler method. Displays the order creation date in the message box. */
 showOrderInfo: function() {
 var activeRowId = this.get("ActiveRow");
 var gridData = this.get("GridData");
 /* Retrieve the order creation date. The column must be added to the list. */
 var dueDate = gridData.get(activeRowId).get("Date");
 /* Display the message box. */
 this.showInformationDialog(dueDate);
 },
 /* Overload the base virtual method that returns the section action collection. */
 getSectionActions: function() {
 /* Call the parent method implementation that retrieves the collection of the initialized section actions. */
 var actionMenuItems = this.callParent(arguments);
 /* Add a separator line. */
 actionMenuItems.addItem(this.getButtonMenuItem({

Add an action for a single record to the section | 21

© 2024 Creatio. All rights reserved.

The outcome of the example
To view the outcome of the example:

As a result, Creation will add the [Show creation date] action to the order page.

If the order is at the [In progress] stage, the [Show creation date] action will be active.

 Type: "Terrasoft.MenuSeparator",
 Caption: ""
 }));
 /* Add a menu item to the section action index. */
 actionMenuItems.addItem(this.getButtonMenuItem({
 /* Bind the menu item caption to the localizable schema string. */
 "Caption": {bindTo: "Resources.Strings.CreationDateActionCaption"},
 /* Bind the action handler method. */
 "Click": {bindTo: "showOrderInfo"},
 /* Bind the property of the menu item availability to the value returned by the isCustomActionEnabled method. */
 "Enabled": {bindTo: "isCustomActionEnabled"}
 }));
 /* Return the expanded section action collection. */
 return actionMenuItems;
 }
 }
 };
});

Click [Save] on the Designer's toolbar.6.

Clear the browser cache.1.

Refresh the [Orders] section page.2.

Add an action for a single record to the section | 22

© 2024 Creatio. All rights reserved.

Run the [Show creation date] action to bring up the message box that displays the order creation date.

If the order's current stage is not [In progress], the [Show creation date] action will be inactive.

Add an action for a single record to the section | 23

© 2024 Creatio. All rights reserved.

Add an action for multiple records to the
section

 Medium

The example is relevant to Sales Creatio products.

Example. Add an action for records of the [Orders] section list. The action must display the index of
accounts for the selected orders in the message box.

Create a schema of the replacing section view model
Go to the [Configuration] section and select a custom package to add the schema.1.

Click [Add] → [Replacing view model] on the section list toolbar.2.

Add an action for multiple records to the section | 24

© 2024 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15101&anchor=title-1188-1
https://academy.creatio.com/documents?id=15121

Fill out the schema properties.3.

Set [Code] to "OrderSectionV2".

Set [Title] to "Order section".

Set [Parent object] to "OrderSectionV2".

Add a localizable string that contains the menu item caption.4.

Click the button in the context menu of the [Localizable strings] node.a.

Fill out the localizable string properties.b.

Set [Code] to "AccountsSectionAction".

Set [Value] to "Accounts for the selected orders".

Add an action for multiple records to the section | 25

© 2024 Creatio. All rights reserved.

Click [Add] to add a localizable string.e.

Implement the menu item behavior. To do this, implement the following methods in the methods property:

The primary column values of the selected records are stored in the SelectedRows property of the section
view model. You can use these values to get the values uploaded to the field list of the selected objects. For
example, from a regular list's data collection stored in the GridData view model property of the list.

View the source code of the replacing view model schema of the section below.

OrderSectionV2

5.

isCustomActionEnabled() . Determines whether the menu item is available.

showOrderInfo() . The action handler method that displays the index of accounts for the selected orders in
the message box.

getSectionActions() . The overloaded parent schema method that retrieves the section's action collection.

define("OrderSectionV2", ["OrderConfigurationConstants"], function(OrderConfigurationConstants) {
 return {
 /* The name of the section object schema. */
 entitySchemaName: "Order",
 /* The methods of the section view model. */
 methods: {
 /* Determine whether the menu item is available. */
 isCustomActionEnabled: function() {
 /* Attempt to retrieve the array of the selected record IDs. */
 var selectedRows = this.get("SelectedRows");
 /* Return true if the array contains items (at least one list record is selected), return false otherwise. */
 return selectedRows ? (selectedRows.length > 0) : false;
 },
 /* The action handler method. Displays the index of accounts in the message box. */
 showOrdersInfo: function() {
 /* Retrieve the array of the selected record IDs. */
 var selectedRows = this.get("SelectedRows");
 /* Retrieve the data collection of the list records. */
 var gridData = this.get("GridData");
 /* The variable that stores the object model of the selected order. */
 var selectedOrder = null;

Add an action for multiple records to the section | 26

© 2024 Creatio. All rights reserved.

The outcome of the example
To view the outcome of the example:

 /* The variable that stores the account name for the selected order. */
 var selectedOrderAccount = "";
 /* The variable that generates the message box text. */
 var infoText = "";
 /* Process the array of the selected record IDs. */
 selectedRows.forEach(function(selectedRowId) {
 /* Retrieve the object model of the selected order. */
 selectedOrder = gridData.get(selectedRowId);
 /* Retrieve the account name for the selected order. The column must be added to the list. */
 selectedOrderAccount = selectedOrder.get("Account").displayValue;
 /* Add the account name to the message box text. */
 infoText += "\n" + selectedOrderAccount;
 });
 /* Display the message box. */
 this.showInformationDialog(infoText);
 },
 /* Overload the base virtual method that returns the section action collection. */
 getSectionActions: function() {
 /* Call the parent method implementation that retrieves the collection of the initialized section actions. */
 var actionMenuItems = this.callParent(arguments);
 /* Add a separator line. */
 actionMenuItems.addItem(this.getButtonMenuItem({
 Type: "Terrasoft.MenuSeparator",
 Caption: ""
 }));
 /* Add a menu item to the section action index. */
 actionMenuItems.addItem(this.getButtonMenuItem({
 /* Bind the menu item caption to the localizable schema string. */
 "Caption": {bindTo: "Resources.Strings.AccountsSectionAction"},
 /* Bind the action handler method. */
 "Click": {bindTo: "showOrdersInfo"},
 /* Bind the property of the menu item availability to the value returned by the isCustomActionEnabled method. */
 "Enabled": {bindTo: "isCustomActionEnabled"},
 /* Support the multiple selection mode. */
 "IsEnabledForSelectedAll": true
 }));
 /* Return the expanded section action collection. */
 return actionMenuItems;
 }
 }
 };
});

Click [Save] on the Designer's toolbar.6.

Add an action for multiple records to the section | 27

© 2024 Creatio. All rights reserved.

The section single record mode is used by default. To select multiple list records, click [Select multiple records] in
the menu of the [Actions] button. This changes the visual view of the list. You will see record selection elements
appear.

As a result, Creatio will add the [Accounts for the selected orders] action to the order page.

Run the [Accounts for the selected orders] action to bring up the message box that displays the account list for
the selected orders.

To cancel the multiple selection mode, click [Cancel multiple selection] in the menu of the [Actions] button.

If you do not select any records in the [Orders] section list, the [Accounts for the selected orders] action will

Clear the browser cache.1.

Refresh the [Orders] section page.2.

Add an action for multiple records to the section | 28

© 2024 Creatio. All rights reserved.

be inactive.

Set up action handling for multiple section
records

 Medium

Example. Set up action handling in the [Activities] section list. The action sets the [Completed] status for
selected activities.

Create a schema of the replacing section view model
Go to the [Configuration] section and select a custom package to add the schema.1.

Click [Add] → [Replacing view model] on the section list toolbar.2.

Set up action handling for multiple section records | 29

© 2024 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15101&anchor=title-1188-1
https://academy.creatio.com/documents?id=15121

Fill out the schema properties.3.

Set [Code] to "ActivitySectionV2".

Set [Title] to "Activities section".

Set [Parent object] to "ActivitySectionV2".

Add a localizable string that contains the menu item caption.4.

Click the button in the context menu of the [Localizable strings] node.a.

Fill out the localizable string properties.b.

Set [Code] to "AllDoneCaption".

Set [Value] to "Mark as Completed".

Set up action handling for multiple section records | 30

© 2024 Creatio. All rights reserved.

Click [Add] to add a localizable string.e.

Implement the menu item behavior. To do this, implement the following methods in the methods property:

View the source code of the replacing view model schema of the section below.

ActivitySectionV2

5.

isCustomActionEnabled() . Determines whether the menu item is available.

setAllDone() . The action handler method that sets the [Completed] status for selected activities.

getSectionActions() . The overloaded parent schema method that retrieves the section action collection.

define("ActivitySectionV2", ["ConfigurationConstants"], function(ConfigurationConstants) {
 return {
 /* The name of the section object schema. */
 entitySchemaName: "Activity",
 /* The methods of the section view model. */
 methods: {
 /* Determine whether the menu item is available. */
 isCustomActionEnabled: function() {
 /* Attempt to retrieve the array of the selected record IDs. */
 var selectedRows = this.get("SelectedRows");
 /* Return true if the array contains items (at least one list record is selected), return false otherwise. */
 return selectedRows ? (selectedRows.length > 0) : false;
 },
 /* The action handler method. Sets the [Completed] status for selected records. */
 setAllDone: function() {
 /* Retrieve the array of the selected record IDs. */
 var selectedRows = this.get("SelectedRows");
 /* Run handling if at least one record was selected. */
 if (selectedRows.length > 0) {
 /* Create an instance of the batch query class. */
 var batchQuery = this.Ext.create("Terrasoft.BatchQuery");
 /* Update each of the selected records. */
 selectedRows.forEach(function(selectedRowId) {
 /* Create an UpdateQuery class instance with the Activity root schema. */
 var update = this.Ext.create("Terrasoft.UpdateQuery", {

Set up action handling for multiple section records | 31

© 2024 Creatio. All rights reserved.

The outcome of the example
To view the outcome of the example:

 rootSchemaName: "Activity"
 });
 /* Apply the filter to determine the record to update. */
 update.enablePrimaryColumnFilter(selectedRowId);
 /* Set the [Status] column to "Completed" using the ConfigurationConstants.Activity.Status.Done configuration constant. */
 update.setParameterValue("Status", ConfigurationConstants.Activity.Status.Done, this.Terrasoft.DataValueType.GUID);
 /* Add a record update query to the batch query. */
 batchQuery.add(update);
 }, this);
 /* Execute the batch server query. */
 batchQuery.execute(function() {
 /* Update the list. */
 this.reloadGridData();
 }, this);
 }
 },
 /* Overload the base virtual method that returns the section action collection. */
 getSectionActions: function() {
 /* Call the parent method implementation that retrieves the collection of the initialized section actions. */
 var actionMenuItems = this.callParent(arguments);
 /* Add a separator line. */
 actionMenuItems.addItem(this.getButtonMenuItem({
 Type: "Terrasoft.MenuSeparator",
 Caption: ""
 }));
 /* Add a menu item to the section action index. */
 actionMenuItems.addItem(this.getButtonMenuItem({
 /* Bind the menu item caption to the localizable schema string. */
 "Caption": { bindTo: "Resources.Strings.AllDoneCaption" },
 /* Bind the action handler method. */
 "Click": { bindTo: "setAllDone" },
 /* Bind the property of the menu item availability to the value returned by the isCustomActionEnabled method. */
 "Enabled": { bindTo: "isCustomActionEnabled" },
 /* Support the multiple selection mode. */
 "IsEnabledForSelectedAll": true
 }));
 /* Return the expanded section action collection. */
 return actionMenuItems;
 }
 }
 };
});

Click [Save] on the Designer's toolbar.6.

Set up action handling for multiple section records | 32

© 2024 Creatio. All rights reserved.

The section single record mode is used by default. To select multiple list records, click [Select multiple records] in
the menu of the [Actions] button. This changes the visual view of the list. You will see record selection elements
appear.

As a result, Creatio will add the [Mark as Completed] action to the activity page.

Run the [Mark as Completed] action to set the [Status] column of the selected activities to [Completed].

To cancel the multiple selection mode, click [Cancel multiple selection] in the menu of the [Actions] button.

Clear the browser cache.1.

Refresh the [Activities] section page.2.

Set up action handling for multiple section records | 33

© 2024 Creatio. All rights reserved.

If you do not select any records in the [Activities] section list, the [Mark as Completed] action will be inactive.

Set up action handling using a lookup for
multiple section records

 Medium

Example. Set up action handling in the [Activities] section list. The action must open the [Contacts]
lookup box. Set the selected contact as the owner of the selected activities.

Create a schema of the replacing section view model
Go to the [Configuration] section and select a custom package to add the schema.1.

Click [Add] → [Replacing view model] on the section list toolbar.2.

Set up action handling using a lookup for multiple section records | 34

© 2024 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15101&anchor=title-1188-1
https://academy.creatio.com/documents?id=15121

Fill out the schema properties.3.

Set [Code] to "ActivitySectionV2".

Set [Title] to "Activities section".

Set [Parent object] to "ActivitySectionV2".

Add a localizable string that contains the menu item caption.4.

Click the button in the context menu of the [Localizable strings] node.a.

Fill out the localizable string properties.b.

Set [Code] to "SetOwnerCaption".

Set [Value] to "Assign Owner".

Set up action handling using a lookup for multiple section records | 35

© 2024 Creatio. All rights reserved.

Click [Add] to add a localizable string.e.

Implement the menu item behavior. To do this, implement the following methods in the methods property:

View the source code of the replacing view model schema of the section below.

ActivitySectionV2

5.

isCustomActionEnabled() . Determines whether the menu item is available.

setOwner() . The action handler method that opens the [Contacts] lookup.

lookupCallback() . The callback method that sets the contact selected from the lookup as the owner of the
selected activities.

getSectionActions() . The overloaded parent schema method that retrieves the section action collection.

define("ActivitySectionV2", ["ConfigurationConstants"], function(ConfigurationConstants) {
 return {
 /* The name of the section object schema. */
 entitySchemaName: "Activity",
 /* The methods of the section view model. */
 methods: {
 /* Determine whether the menu item is available. */
 isCustomActionEnabled: function() {
 /* Attempt to retrieve the array of the selected record IDs. */
 var selectedRows = this.get("SelectedRows");
 /* Return true if the array contains items (at least one list record is selected), return false otherwise. */
 return selectedRows ? (selectedRows.length > 0) : false;
 },
 /* The action handler method. Opens the [Contacts] lookup. */
 setOwner: function() {
 /* Define the lookup configuration. */
 var config = {
 /* The [Contact] schema. */
 entitySchemaName: "Contact",
 /* Disable multiple selection. */
 multiSelect: false,
 /* Display the [Name] column. */
 columns: ["Name"]

Set up action handling using a lookup for multiple section records | 36

© 2024 Creatio. All rights reserved.

 };
 /* Open the lookup with a particular configuration and the callback function that triggers when a user clicks the [Select] button. */
 this.openLookup(config, this.lookupCallback, this);
 },
 /* Set the contact selected from the lookup as the owner of the selected activities. */
 lookupCallback: function(args) {
 /* The ID of the selected lookup record. */
 var activeRowId;
 /* Retrieve the selected lookup records. */
 var lookupSelectedRows = args.selectedRows.getItems();
 if (lookupSelectedRows && lookupSelectedRows.length > 0) {
 /* Retrieve the ID of the first selected lookup record. */
 activeRowId = lookupSelectedRows[0].Id;
 }
 /* Retrieve the array of the selected record IDs. */
 var selectedRows = this.get("SelectedRows");
 /* Run handling if at least one record was selected and the owner was selected in the lookup. */
 if ((selectedRows.length > 0) && activeRowId) {
 /* Create an instance of the batch query class. */
 var batchQuery = this.Ext.create("Terrasoft.BatchQuery");
 /* Update each of the selected records. */
 selectedRows.forEach(function(selectedRowId) {
 /* Create an UpdateQuery class instance with the Activity root schema. */
 var update = this.Ext.create("Terrasoft.UpdateQuery", {
 rootSchemaName: "Activity"
 });
 /* Apply the filter to determine the record to update. */
 update.enablePrimaryColumnFilter(selectedRowId);
 /* Set the [Owner] column to the ID of the contact selected from the lookup. */
 update.setParameterValue("Owner", activeRowId, this.Terrasoft.DataValueType.GUID);
 /* Add a record update query to the batch query. */
 batchQuery.add(update);
 }, this);
 /* Execute the batch server query. */
 batchQuery.execute(function() {
 /* Update the list. */
 this.reloadGridData();
 }, this);
 }
 },
 /* Overload the base virtual method that returns the section action collection. */
 getSectionActions: function() {
 /* Call the parent method implementation that retrieves the collection of the initialized section actions. */
 var actionMenuItems = this.callParent(arguments);
 /* Add a separator line. */
 actionMenuItems.addItem(this.getButtonMenuItem({
 Type: "Terrasoft.MenuSeparator",
 Caption: ""
 }));

Set up action handling using a lookup for multiple section records | 37

© 2024 Creatio. All rights reserved.

The outcome of the example
To view the outcome of the example:

The section single record mode is used by default. To select multiple list records, click [Select multiple records] in
the menu of the [Actions] button. This changes the visual view of the list. You will see record selection elements
appear.

As a result, Creatio will add the [Assign Owner] action to the order page.

 /* Add a menu item to the section action index. */
 actionMenuItems.addItem(this.getButtonMenuItem({
 /* Bind the menu item caption to the localizable schema string. */
 "Caption": { bindTo: "Resources.Strings.SetOwnerCaption" },
 /* Bind the action handler method. */
 "Click": { bindTo: "setOwner" },
 /* Bind the property of the menu item availability to the value returned by the isCustomActionEnabled method. */
 "Enabled": { bindTo: "isCustomActionEnabled" },
 /* Support the multiple selection mode. */
 "IsEnabledForSelectedAll": true
 }));
 /* Return the expanded section action collection. */
 return actionMenuItems;
 }
 }
 };
});

Click [Save] on the Designer&'s toolbar.6.

Clear the browser cache.1.

Refresh the [Activities] section page.2.

Set up action handling using a lookup for multiple section records | 38

© 2024 Creatio. All rights reserved.

Run the [Assign Owner] action to open the [Contacts] lookup box. Creatio sets the selected contact as the
owner of the selected activities in the [Assignee] column.

To cancel the multiple selection mode, click [Cancel multiple selection] in the menu of the [Actions] button.

If you do not select any records in the [Activities] section list, the [Assign Owner] action will be inactive.

Set up action handling using a lookup for multiple section records | 39

© 2024 Creatio. All rights reserved.

Set up the display conditions of the section
list

 Medium

The example is relevant to Sales Creatio products.

Example. In the [Orders] section list, highlight orders at the [In progress] stage green.

Create a schema of the replacing section view model
Go to the [Configuration] section and select a custom package to add the schema.1.

Click [Add] → [Replacing view model] on the section list toolbar.2.

Set up the display conditions of the section list | 40

© 2024 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15101&anchor=title-1188-1
https://academy.creatio.com/documents?id=15121

Fill out the schema properties.3.

Set [Code] to "OrderSectionV2".

Set [Title] to "Order section".

Set [Parent object] to "OrderSectionV2".

Set up the appearance conditions of the section list. To do this, implement the
prepareResponseCollectionItem() method in the methods property. The method overloads the base method,
modifies the data row before uploading the row to the list, as well as injects custom styles into specific list
rows.

View the source code of the replacing view model schema of the section below.

OrderSectionV2

4.

Set up the display conditions of the section list | 41

© 2024 Creatio. All rights reserved.

The outcome of the example
To view the outcome of the example:

As a result, Creatio will highlight the orders at the [In progress] stage in green.

define("OrderSectionV2", ["OrderConfigurationConstants"], function(OrderConfigurationConstants) {
 return {
 /* The name of the section object schema. */
 entitySchemaName: "Order",
 /* The methods of the section view model. */
 methods: {
 /* Overload the base method that modifies the data row before uploading the row to the list. */
 prepareResponseCollectionItem: function(item) {
 /* Call the base method. */
 this.callParent(arguments);
 item.customStyle = null;
 /* Determine the order status. */
 var running = item.get("Status");
 /* If the order status is "In progress", change the record style. */
 if (running.value === OrderConfigurationConstants.Order.OrderStatus.Running) {
 item.customStyle = {
 /* Set the text color to white. */
 "color": "white",
 /* Set the background color to green. */
 "background": "#8ecb60"
 };
 }
 }
 }
 };
});

Click [Save] on the Designer's toolbar.5.

Clear the browser cache.1.

Refresh the [Orders] section page.2.

Set up the display conditions of the section list | 42

© 2024 Creatio. All rights reserved.

Set up the quick filters section block
 Medium

Example. Add a quick filters block to the [Contracts] section. Filter contracts by contract start date and
owner.

Create a schema of the replacing section view model
Go to the [Configuration] section and select a custom package to add the schema.1.

Click [Add] → [Replacing view model] on the section list toolbar.2.

Set up the quick filters section block | 43

© 2024 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15101&anchor=title-1188-1
https://academy.creatio.com/documents?id=15121

Fill out the schema properties.3.

Set [Code] to "ContractSectionV2".

Set [Title] to "Page schema - "Contracts" section".

Set [Parent object] to "ContractSectionV2".

Add localizable strings that contain filter names.4.

Add a localizable string that contains the name of the filter by owner.a.

Click the button in the context menu of the [Localizable strings] node.a.

Fill out the localizable string properties.b.

Set [Code] to "OwnerFilterCaption".

Set [Value] to "Owner".

Click [Add] to add a localizable string.e.

Add a localizable string that contains the name of the filter by period.b.

Click the button in the context menu of the [Localizable strings] node.a.

Set up the quick filters section block | 44

© 2024 Creatio. All rights reserved.

Fill out the localizable string properties.b.

Set [Code] to "PeriodFilterCaption".

Set [Value] to "Period".

Click [Add] to add a localizable string.e.

Implement the filtering behavior. To do this, implement the initFixedFiltersConfig() method in the
methods property. In the method, create a configuration object with the array of PeriodFilter and
OwnerFilter filters, assign the object link to the fixedFiltersConfig attribute of the view model.

View the source code of the replacing view model schema of the section below.

ContractSectionV2

5.

define("ContractSectionV2", ["BaseFiltersGenerateModule"], function(BaseFiltersGenerateModule) {
 return {
 /* The name of the section object schema. */
 entitySchemaName: "Contract",
 /* The methods of the section view model. */
 methods: {
 /* Initialize the fixed filters. */
 initFixedFiltersConfig: function() {
 /* Create a configuration object. */
 var fixedFilterConfig = {
 /* Specify the section object schema as the object schema for the fixed filters. */
 entitySchema: this.entitySchema,
 /* The array of filters. */
 filters: [
 /* The period filter. */
 {
 /* The filter name. */
 name: "PeriodFilter",
 /* The filter caption. */
 caption: this.get("Resources.Strings.PeriodFilterCaption"),
 /* Set the data type to data. */
 dataValueType: this.Terrasoft.DataValueType.DATE,
 /* The start date of the filtering period. */

Set up the quick filters section block | 45

© 2024 Creatio. All rights reserved.

The outcome of the example
To view the outcome of the example, refresh the [Contracts] section page.

As a result, Creatio will display the fixed filters block in the [Contracts] section. The block will let you filter
contracts both by start date and owner.

 startDate: {
 /* Filter data from the [Date] column. */
 columnName: "StartDate",
 /* Set the default value to the start of the current week. */
 defValue: this.Terrasoft.startOfWeek(new Date())
 },
 /* Set the end date of the filtering period to the end of the current week. */
 dueDate: {
 columnName: "StartDate",
 defValue: this.Terrasoft.endOfWeek(new Date())
 }
 },
 /* The owner filter. */
 {
 /* The filter name. */
 name: "Owner",
 /* The filter caption. */
 caption: this.get("Resources.Strings.OwnerFilterCaption"),
 /* Filter data from the [Owner] column. */
 columnName: "Owner",
 /* Set the default value to the current user contact specified in the system setting. */
 defValue: this.Terrasoft.SysValue.CURRENT_USER_CONTACT,
 /* Set the data type to lookup. */
 dataValueType: this.Terrasoft.DataValueType.LOOKUP,
 /* The filter. */
 filter: BaseFiltersGenerateModule.OwnerFilter
 }
]
 };
 /* Assign the link to the created configuration object to the [FixedFilterConfig] attribute. */
 this.set("FixedFilterConfig", fixedFilterConfig);
 }
 }
 };
});

Click [Save] on the Designer's toolbar.6.

Set up the quick filters section block | 46

© 2024 Creatio. All rights reserved.

BaseSectionV2 schema
 Beginner

BaseSectionV2 is the base section schema. Provides the base section logic. Implemented in the NUI package.
This is a view model schema. Learn more about the schema properties in a separate article: Client schema. All
section schemas must inherit from the BaseSectionV2 schema.

Messages
Base section messages

Name Mode Direction Description

RerenderModule Address Publish Rerender the message of the
dashboard module.

ReloadDataOn
Restore

Broadcasting Subscription Whether to reload data on the following
launch.

SelectedPackage
Result

Address Subscription The selected result.

The Terrasoft.core.enums.MessageMode enumeration represents the message modes, and the
Terrasoft.core.enums.MessageDirectionType enumeration represents the message directions. Learn more
about the MessageMode enumeration in the JS class library. Learn more about the MessageDirectionType
enumeration in the JS class library.

Attributes

The SchemaName editing schema.

JS

ChartEditSchemaName TEXT

BaseSectionV2 schema | 47

© 2024 Creatio. All rights reserved.

https://academy.creatio.com/documents?id=15311
https://academy.creatio.com/api/jscoreapi/7.15.0/#!/api/Terrasoft.core.enums.MessageMode
https://academy.creatio.com/api/jscoreapi/7.15.0/#!/api/Terrasoft.core.enums.MessageDirectionType

The flag that marks the schema as empty.

The active row of the analytics schema

The view collection of the list analytics.

The visibility flag of the button to print out analytical forms.

The analytics data collection.

The visibility flag of the analytics action buttons.

View the name of the analytics section.

The data binding flag.

The Terrasoft.core.enums.DataValueType enumeration represents the attribute data types. Learn more about
the DataValueType enumeration in the JS class library.

Methods

Whether the user has permission to execute CRUD operations with the schedule. The [Analytics setup] (
CanManageAnalytics code) system operation manages the access permissions.

IsEmptyChart BOOLEAN

AnalyticsChartActiveRow GUID

AnalyticsGridData COLLECTION

IsAnalyticsPrintButtonVisible BOOLEAN

AnalyticsData COLLECTION

IsAnalyticsActionButtonsContainerVisible BOOLEAN

AnalyticsDataViewName TEXT

IsBindDataActionVisible BOOLEAN

checkCanManageAnalytics()

onCanManageAnalytics(result)

BaseSectionV2 schema | 48

© 2024 Creatio. All rights reserved.

https://academy.creatio.com/api/jscoreapi/7.15.0/#!/api/Terrasoft.core.enums.DataValueType

Specifies the CanManageAnalytics attribute depending on the queried [Display demo links] (ShowDemoLinks

code) system setting and [Analytics setup] (CanManageAnalytics code) system operation.

BaseSectionV2 schema | 49

© 2024 Creatio. All rights reserved.

	Table of Contents
	Section
	Section containers
	Section structure
	List
	Analytics
	Actions
	Filters
	Tags

	Create a section
	Add a custom column to the section list
	Set up the appearance conditions of the section list
	Add a section record action
	Set up the quick filters block of the section
	Delete a section

	Add an action for a single record to the section
	Create a schema of the replacing section view model
	The outcome of the example

	Add an action for multiple records to the section
	Create a schema of the replacing section view model
	The outcome of the example

	Set up action handling for multiple section records
	Create a schema of the replacing section view model
	The outcome of the example

	Set up action handling using a lookup for multiple section records
	Create a schema of the replacing section view model
	The outcome of the example

	Set up the display conditions of the section list
	Create a schema of the replacing section view model
	The outcome of the example

	Set up the quick filters section block
	Create a schema of the replacing section view model
	The outcome of the example

	BaseSectionV2 schema
	Messages
	Attributes
	Methods

